organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1α,6β,7β,11α,15β-Penta­hydr­­oxy-7α,20-ep­­oxy-ent-kaur-16-ene

aSchool of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, People's Republic of China, bSchool of Nursing, Xinxiang Medical University, Xinxiang, Henan 453003, People's Republic of China, and cHenan College of Traditional Chinese Medicine, Zhengzhou, Henan 450008, People's Republic of China
*Correspondence e-mail: yannz2009@163.com

(Received 4 January 2010; accepted 6 January 2010; online 13 January 2010)

The title compound, C20H30O6, a natural ent-kaurane diterpenoid, named nervosanin B, was obtained from the medicinal plant Isodon serra. It is composed of four rings with the expected trans and cis junctions. One of the six-membered rings is in a chair conformation, the other two are in boat conformations and the five-membered ring adopts an evenlope conformation. The mol­ecules stack along the a axis and are linked together by inter­molecular O—H⋯O hydrogen bonds. Two intramolecular O—H⋯O interactions also occur.

Related literature

For related literature on genus Isodon and diterpenoids, see: Sun et al. (2001[Sun, H. D., Xu, Y. L. & Jiang, B. (2001). Diterpenoids from Isodon Species, pp. 4-17, 239. Beijing: Science Press.]); Wang et al. (1994[Wang, X. R., Hu, H. P., Wang, H. P., Wang, S. Q., Ueda, S. & Fujita, T. (1994). Phytochemistry, 37, 1367-1370.]); Yan et al. (2008[Yan, F. L., Wang, C. M., Guo, L. Q., Zhang, J. X. & Sun, H. D. (2008). J. Chem. Res. 9, 522-524.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C20H30O6

  • Mr = 366.44

  • Monoclinic, C 2

  • a = 21.581 (11) Å

  • b = 6.111 (3) Å

  • c = 14.080 (7) Å

  • β = 99.129 (8)°

  • V = 1833.3 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 93 K

  • 0.60 × 0.18 × 0.14 mm

Data collection
  • Rigaku AFC10/Saturn724+ diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.944, Tmax = 0.987

  • 7255 measured reflections

  • 2291 independent reflections

  • 1853 reflections with I > 2σ(I)

  • Rint = 0.052

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.079

  • S = 1.00

  • 2291 reflections

  • 257 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2O⋯O5i 0.93 (3) 1.74 (3) 2.655 (3) 167 (3)
O4—H4O⋯O6ii 0.87 (3) 2.02 (3) 2.696 (3) 133 (2)
O3—H3O⋯O6iii 0.89 (3) 1.92 (3) 2.787 (3) 164 (3)
O5—H5O⋯O2 0.89 (3) 1.80 (3) 2.652 (3) 160 (3)
O6—H6O⋯O3 0.78 (3) 1.93 (3) 2.674 (3) 157 (3)
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+1]; (ii) x, y-1, z; (iii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z].

Data collection: CrystalClear (Rigaku, 2008[Rigaku (2008). CrystalClear. Rigaku Corporation, The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Siemens, 1995[Siemens (1995). SHELXTL. Siemens Industrial Automation Inc., Analytical Instrumentation, Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound, 1α,6β,7β,11α,15β-Pentahydroxy-7α,20-epoxy- ent-kaur-16-ene is a natural ent-kaurane diterpenoid. It has been reported previously from Isodon nervosa (Wang et al., 1994; Yan et al., 2008) and its structure was postulated from spectroscopic methods (Wang et al., 1994). Recently, it was also isolated from the medicinal plant Isodon serra, and its crystal structure analysis has been undertaken. The molecular structure is presented in Fig. 1. The molecule contains three six-membered rings (A,B and C) and a five-membered ring (D). There is a trans junction between ring A (C1—C5/C10) and ring B (C5—C10); cis junctions are present between ring B and ring C (C8/C9/C11—C14), and ring C and ring D (C8/C13—C16). Ring A adopts chair conformation, with an average torsion angles of 50.6 (3) °. Rings B and C adopt boat conformations because of the formation of the oxygen bridge at C-7 and C-20. Ring D shows an envelope conformation. In addition, the six-membered rings O1/C20/C10/C5—C7 and O1/C7—C10/C20 both adopt boat conformations.

The bond lengths are within expected ranges (Allen et al., 1987), with averages values (Å): Csp3—Csp3 = 1.542 (3), Csp3—Csp2 = 1.521 (4), Csp2—Csp2 (CC) = 1.312 (4), Csp3—O = 1.435 (3). Compound contains ten chiral centers at C1(S), C5(R), C6(S), C7(S), C8(S), C9(S), C10(S), C11(R) C13(S) and C15(R). Although the absolute configuration could not be reliably determined from anomalous dispersion effects, the negative optical rotation showed this compound to be in the ent-kaurane series as reported in genus Isodon (Sun et al., 2001), rather than in the kaurane series, and so allowed us to assign the correct configuration. In the crystal structure, the molecular packing is stabilized by O2—H···O5, O4—H···O6, O3—H···O6, O5—H···O2 and O6—H···O3 hydrogen bonds along the a axis and are linked by O—H···O hydrogen bonds (Table 1 and Fig. 2).

Related literature top

For related literature on genus Isodon and diterpenoids, see: Sun et al. (2001); Wang et al. (1994); Yan et al. (2008). For bond-length data, see: Allen et al. (1987).

Experimental top

The dried and crushed leaves of Isodon serra (Maxim.) (10 kg, collected from Tongbai Prefecture, Henan Province, China) were extracted four times with Me2CO/H2O (7:3, v/v) at room temperature over a period of six days. The extract was filtered and the solvent was removed under reduced pressure. The residue was then partitioned between water and AcOEt. After removal of the solvent, the AcOEt residue was separated by repeated silica gel (200–300 mesh) column chromatography and recrystallization from CHCl3/CH3OH (10:1), giving 45 mg of compound (m.p. 531–533 K. Optical rotation: [α]D20 -50.6 ° (c 0.15, CH3OH). Crystals suitable for X-ray analysis were obtained by slow evaporation of a solution of the compound in CH3OH at room temperature.

Refinement top

All H atoms were included in calculated positions and refined as riding atoms, with C—H = 0.98Å (CH3), 0.99Å (CH2), 0.95Å (CH2), 1.00Å (CH), and O—H = 0.87 Å, and with Uiso(H) = 1.2 Ueq(C). H atoms of hydroxy obtained from the difference Fourier synthesized, and amended to the x, y and z coordinates and Ueq for least-squares. In the absence of significant anomalous scattering effects, Friedel pairs were merged. The choice of enantiomer was based on comparison of the optical rotation with that of related compounds with known stereochemistry.

Structure description top

The title compound, 1α,6β,7β,11α,15β-Pentahydroxy-7α,20-epoxy- ent-kaur-16-ene is a natural ent-kaurane diterpenoid. It has been reported previously from Isodon nervosa (Wang et al., 1994; Yan et al., 2008) and its structure was postulated from spectroscopic methods (Wang et al., 1994). Recently, it was also isolated from the medicinal plant Isodon serra, and its crystal structure analysis has been undertaken. The molecular structure is presented in Fig. 1. The molecule contains three six-membered rings (A,B and C) and a five-membered ring (D). There is a trans junction between ring A (C1—C5/C10) and ring B (C5—C10); cis junctions are present between ring B and ring C (C8/C9/C11—C14), and ring C and ring D (C8/C13—C16). Ring A adopts chair conformation, with an average torsion angles of 50.6 (3) °. Rings B and C adopt boat conformations because of the formation of the oxygen bridge at C-7 and C-20. Ring D shows an envelope conformation. In addition, the six-membered rings O1/C20/C10/C5—C7 and O1/C7—C10/C20 both adopt boat conformations.

The bond lengths are within expected ranges (Allen et al., 1987), with averages values (Å): Csp3—Csp3 = 1.542 (3), Csp3—Csp2 = 1.521 (4), Csp2—Csp2 (CC) = 1.312 (4), Csp3—O = 1.435 (3). Compound contains ten chiral centers at C1(S), C5(R), C6(S), C7(S), C8(S), C9(S), C10(S), C11(R) C13(S) and C15(R). Although the absolute configuration could not be reliably determined from anomalous dispersion effects, the negative optical rotation showed this compound to be in the ent-kaurane series as reported in genus Isodon (Sun et al., 2001), rather than in the kaurane series, and so allowed us to assign the correct configuration. In the crystal structure, the molecular packing is stabilized by O2—H···O5, O4—H···O6, O3—H···O6, O5—H···O2 and O6—H···O3 hydrogen bonds along the a axis and are linked by O—H···O hydrogen bonds (Table 1 and Fig. 2).

For related literature on genus Isodon and diterpenoids, see: Sun et al. (2001); Wang et al. (1994); Yan et al. (2008). For bond-length data, see: Allen et al. (1987).

Computing details top

Data collection: CrystalClear (Rigaku, 2008); cell refinement: CrystalClear (Rigaku, 2008); data reduction: CrystalClear (Rigaku, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Version 5.0; Siemens, 1995); software used to prepare material for publication: SHELXTL (Version 5.0; Siemens, 1995).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of compound. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. The crystal packing of compound, viewed along the a axis, showing the O—H···O hydrogen bonds as dashed lines.
1α,6β,7β,11α,15β-Pentahydroxy-7α,20-epoxy-ent-kaur-16-ene top
Crystal data top
C20H30O6F(000) = 792
Mr = 366.44Dx = 1.328 Mg m3
Monoclinic, C2Melting point = 531–533 K
Hall symbol: C 2yMo Kα radiation, λ = 0.71073 Å
a = 21.581 (11) ÅCell parameters from 3276 reflections
b = 6.111 (3) Åθ = 3.2–27.5°
c = 14.080 (7) ŵ = 0.10 mm1
β = 99.129 (8)°T = 93 K
V = 1833.3 (16) Å3Prism, colorless
Z = 40.60 × 0.18 × 0.14 mm
Data collection top
Rigaku AFC10/Saturn724+
diffractometer
2291 independent reflections
Radiation source: rotating anode1853 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.052
Detector resolution: 28.5714 pixels mm-1θmax = 27.5°, θmin = 3.2°
phi and ω scansh = 2627
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 77
Tmin = 0.944, Tmax = 0.987l = 1816
7255 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.079H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0202P)2 + 0.356P]
where P = (Fo2 + 2Fc2)/3
2291 reflections(Δ/σ)max < 0.001
257 parametersΔρmax = 0.31 e Å3
1 restraintΔρmin = 0.21 e Å3
Crystal data top
C20H30O6V = 1833.3 (16) Å3
Mr = 366.44Z = 4
Monoclinic, C2Mo Kα radiation
a = 21.581 (11) ŵ = 0.10 mm1
b = 6.111 (3) ÅT = 93 K
c = 14.080 (7) Å0.60 × 0.18 × 0.14 mm
β = 99.129 (8)°
Data collection top
Rigaku AFC10/Saturn724+
diffractometer
2291 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
1853 reflections with I > 2σ(I)
Tmin = 0.944, Tmax = 0.987Rint = 0.052
7255 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0391 restraint
wR(F2) = 0.079H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.31 e Å3
2291 reflectionsΔρmin = 0.21 e Å3
257 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.31297 (8)0.1972 (3)0.27447 (11)0.0204 (4)
O20.33579 (8)0.6630 (3)0.49510 (11)0.0188 (4)
O30.32260 (8)0.5439 (3)0.06465 (11)0.0176 (4)
O40.27091 (9)0.1533 (3)0.11757 (12)0.0207 (4)
O50.22162 (10)0.5024 (3)0.43939 (12)0.0225 (5)
O60.21732 (9)0.7558 (3)0.08613 (12)0.0174 (4)
C10.35369 (11)0.7387 (4)0.40541 (16)0.0163 (6)
H10.33400.88530.39040.020*
C20.42453 (11)0.7690 (5)0.42134 (17)0.0206 (6)
H2A0.44510.63000.44470.025*
H2B0.43640.88180.47140.025*
C30.44778 (12)0.8383 (5)0.32867 (17)0.0213 (6)
H3A0.49370.86230.34240.026*
H3B0.42770.97860.30600.026*
C40.43308 (12)0.6660 (5)0.24870 (17)0.0195 (6)
C50.36084 (11)0.6243 (4)0.23254 (16)0.0148 (6)
H50.34170.76230.20310.018*
C60.34003 (12)0.4452 (4)0.15804 (16)0.0155 (6)
H60.37640.34500.15550.019*
C70.28650 (12)0.3120 (4)0.18823 (16)0.0163 (6)
C80.23046 (12)0.4508 (4)0.20869 (16)0.0147 (5)
C90.25655 (11)0.6250 (4)0.28591 (16)0.0139 (5)
H90.25540.76630.24980.017*
C100.32775 (11)0.5824 (4)0.32303 (16)0.0140 (5)
C110.21320 (11)0.6621 (5)0.36261 (16)0.0170 (6)
H110.22330.80930.39210.020*
C120.14368 (11)0.6607 (5)0.32056 (18)0.0228 (6)
H12A0.13160.80790.29460.027*
H12B0.11910.63020.37270.027*
C130.12622 (13)0.4885 (5)0.23918 (18)0.0238 (7)
H130.08450.42020.24240.029*
C140.17780 (12)0.3148 (5)0.24270 (18)0.0215 (6)
H14A0.16450.19160.19850.026*
H14B0.19070.25770.30870.026*
C150.19233 (12)0.5566 (5)0.11644 (17)0.0181 (6)
H150.18880.44850.06250.022*
C160.12735 (13)0.5961 (5)0.14211 (19)0.0292 (7)
C170.08297 (14)0.7116 (6)0.09052 (19)0.0371 (9)
H17A0.04440.73610.11320.045*
H17B0.08940.77070.03050.045*
C180.44957 (12)0.7592 (6)0.15453 (18)0.0278 (7)
H18A0.49430.79710.16360.033*
H18B0.42440.89070.13650.033*
H18C0.44060.64950.10350.033*
C190.47522 (13)0.4647 (5)0.2747 (2)0.0282 (7)
H19A0.46440.35090.22580.034*
H19B0.46890.40840.33760.034*
H19C0.51930.50650.27720.034*
C200.33680 (12)0.3413 (4)0.35333 (17)0.0168 (6)
H20A0.38200.31190.37440.020*
H20B0.31450.31220.40830.020*
H2O0.3212 (12)0.785 (5)0.5241 (19)0.029 (8)*
H3O0.3098 (15)0.433 (6)0.025 (2)0.054 (12)*
H4O0.2434 (12)0.061 (5)0.1325 (18)0.024 (8)*
H5O0.2608 (14)0.529 (5)0.4670 (18)0.025 (8)*
H6O0.2500 (13)0.724 (5)0.0724 (19)0.027 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0360 (11)0.0146 (10)0.0091 (8)0.0002 (8)0.0015 (7)0.0003 (8)
O20.0292 (11)0.0195 (10)0.0080 (8)0.0025 (9)0.0046 (7)0.0004 (8)
O30.0243 (10)0.0194 (11)0.0089 (9)0.0021 (8)0.0023 (7)0.0002 (9)
O40.0352 (12)0.0143 (10)0.0126 (9)0.0068 (9)0.0038 (8)0.0032 (9)
O50.0291 (12)0.0262 (11)0.0125 (9)0.0036 (9)0.0042 (8)0.0045 (8)
O60.0238 (11)0.0163 (10)0.0120 (9)0.0011 (9)0.0024 (8)0.0024 (8)
C10.0250 (15)0.0167 (14)0.0077 (11)0.0008 (11)0.0042 (10)0.0002 (11)
C20.0247 (15)0.0240 (15)0.0119 (12)0.0005 (13)0.0008 (10)0.0062 (12)
C30.0185 (14)0.0249 (16)0.0205 (14)0.0054 (12)0.0028 (11)0.0045 (13)
C40.0201 (14)0.0241 (15)0.0147 (12)0.0021 (12)0.0045 (10)0.0046 (12)
C50.0198 (14)0.0142 (14)0.0102 (12)0.0000 (11)0.0017 (9)0.0000 (11)
C60.0187 (14)0.0179 (14)0.0090 (12)0.0012 (11)0.0002 (10)0.0003 (11)
C70.0270 (15)0.0123 (13)0.0087 (12)0.0012 (11)0.0000 (10)0.0009 (11)
C80.0177 (14)0.0164 (14)0.0095 (12)0.0043 (11)0.0004 (10)0.0002 (11)
C90.0191 (13)0.0132 (13)0.0101 (12)0.0001 (11)0.0040 (9)0.0027 (11)
C100.0174 (13)0.0163 (14)0.0080 (11)0.0009 (11)0.0009 (9)0.0018 (11)
C110.0235 (14)0.0175 (13)0.0104 (12)0.0009 (12)0.0041 (9)0.0007 (12)
C120.0180 (14)0.0295 (16)0.0219 (14)0.0016 (13)0.0060 (10)0.0016 (14)
C130.0214 (15)0.0337 (18)0.0160 (13)0.0112 (13)0.0026 (11)0.0010 (13)
C140.0293 (16)0.0221 (15)0.0128 (13)0.0099 (13)0.0028 (11)0.0025 (12)
C150.0242 (15)0.0181 (14)0.0113 (12)0.0045 (12)0.0005 (10)0.0006 (12)
C160.0216 (15)0.046 (2)0.0193 (14)0.0025 (15)0.0008 (11)0.0059 (15)
C170.0295 (16)0.061 (2)0.0218 (15)0.0133 (16)0.0072 (12)0.0133 (16)
C180.0257 (16)0.0389 (19)0.0207 (14)0.0132 (14)0.0092 (11)0.0052 (14)
C190.0194 (15)0.0378 (18)0.0268 (15)0.0035 (14)0.0020 (12)0.0095 (15)
C200.0222 (14)0.0178 (14)0.0093 (12)0.0012 (11)0.0008 (10)0.0019 (11)
Geometric parameters (Å, º) top
O1—C71.440 (3)C8—C141.544 (3)
O1—C201.446 (3)C8—C91.562 (3)
O2—C11.454 (3)C8—C151.563 (3)
O2—H2O0.93 (3)C9—C111.554 (3)
O3—C61.441 (3)C9—C101.564 (3)
O3—H3O0.89 (3)C9—H91.0000
O4—C71.392 (3)C10—C201.538 (4)
O4—H4O0.87 (3)C11—C121.523 (3)
O5—C111.446 (3)C11—H111.0000
O5—H5O0.89 (3)C12—C131.557 (4)
O6—C151.424 (3)C12—H12A0.9900
O6—H6O0.78 (3)C12—H12B0.9900
C1—C21.521 (3)C13—C161.520 (4)
C1—C101.538 (3)C13—C141.533 (4)
C1—H11.0000C13—H131.0000
C2—C31.530 (3)C14—H14A0.9900
C2—H2A0.9900C14—H14B0.9900
C2—H2B0.9900C15—C161.522 (4)
C3—C41.537 (3)C15—H151.0000
C3—H3A0.9900C16—C171.312 (4)
C3—H3B0.9900C17—H17A0.9500
C4—C181.536 (3)C17—H17B0.9500
C4—C191.539 (4)C18—H18A0.9800
C4—C51.560 (3)C18—H18B0.9800
C5—C61.533 (3)C18—H18C0.9800
C5—C101.577 (3)C19—H19A0.9800
C5—H51.0000C19—H19B0.9800
C6—C71.528 (3)C19—H19C0.9800
C6—H61.0000C20—H20A0.9900
C7—C81.541 (4)C20—H20B0.9900
C7—O1—C20113.34 (18)C20—C10—C1111.76 (19)
C1—O2—H2O106.4 (18)C20—C10—C9109.1 (2)
C6—O3—H3O105 (2)C1—C10—C9111.7 (2)
C7—O4—H4O112.2 (17)C20—C10—C5109.0 (2)
C11—O5—H5O101.6 (18)C1—C10—C5110.6 (2)
C15—O6—H6O105 (2)C9—C10—C5104.46 (18)
O2—C1—C2108.07 (18)O5—C11—C12106.6 (2)
O2—C1—C10110.0 (2)O5—C11—C9113.8 (2)
C2—C1—C10115.1 (2)C12—C11—C9113.18 (19)
O2—C1—H1107.8O5—C11—H11107.7
C2—C1—H1107.8C12—C11—H11107.7
C10—C1—H1107.8C9—C11—H11107.7
C1—C2—C3111.5 (2)C11—C12—C13113.5 (2)
C1—C2—H2A109.3C11—C12—H12A108.9
C3—C2—H2A109.3C13—C12—H12A108.9
C1—C2—H2B109.3C11—C12—H12B108.9
C3—C2—H2B109.3C13—C12—H12B108.9
H2A—C2—H2B108.0H12A—C12—H12B107.7
C2—C3—C4112.2 (2)C16—C13—C14102.3 (2)
C2—C3—H3A109.2C16—C13—C12109.4 (2)
C4—C3—H3A109.2C14—C13—C12110.7 (2)
C2—C3—H3B109.2C16—C13—H13111.3
C4—C3—H3B109.2C14—C13—H13111.3
H3A—C3—H3B107.9C12—C13—H13111.3
C18—C4—C3109.2 (2)C13—C14—C8100.6 (2)
C18—C4—C19107.0 (2)C13—C14—H14A111.7
C3—C4—C19109.1 (2)C8—C14—H14A111.7
C18—C4—C5107.32 (19)C13—C14—H14B111.7
C3—C4—C5107.7 (2)C8—C14—H14B111.7
C19—C4—C5116.3 (2)H14A—C14—H14B109.4
C6—C5—C4113.20 (19)O6—C15—C16110.0 (2)
C6—C5—C10108.40 (19)O6—C15—C8115.4 (2)
C4—C5—C10118.60 (19)C16—C15—C8104.6 (2)
C6—C5—H5105.1O6—C15—H15108.9
C4—C5—H5105.1C16—C15—H15108.9
C10—C5—H5105.1C8—C15—H15108.9
O3—C6—C7112.17 (19)C17—C16—C13128.0 (3)
O3—C6—C5109.4 (2)C17—C16—C15125.0 (3)
C7—C6—C5110.02 (19)C13—C16—C15107.0 (2)
O3—C6—H6108.4C16—C17—H17A120.0
C7—C6—H6108.4C16—C17—H17B120.0
C5—C6—H6108.4H17A—C17—H17B120.0
O4—C7—O1106.4 (2)C4—C18—H18A109.5
O4—C7—C6106.3 (2)C4—C18—H18B109.5
O1—C7—C6106.13 (19)H18A—C18—H18B109.5
O4—C7—C8114.2 (2)C4—C18—H18C109.5
O1—C7—C8109.18 (19)H18A—C18—H18C109.5
C6—C7—C8114.2 (2)H18B—C18—H18C109.5
C7—C8—C14113.6 (2)C4—C19—H19A109.5
C7—C8—C9107.36 (19)C4—C19—H19B109.5
C14—C8—C9110.66 (19)H19A—C19—H19B109.5
C7—C8—C15113.4 (2)C4—C19—H19C109.5
C14—C8—C1599.4 (2)H19A—C19—H19C109.5
C9—C8—C15112.4 (2)H19B—C19—H19C109.5
C11—C9—C8113.1 (2)O1—C20—C10110.87 (18)
C11—C9—C10117.39 (18)O1—C20—H20A109.5
C8—C9—C10110.2 (2)C10—C20—H20A109.5
C11—C9—H9104.9O1—C20—H20B109.5
C8—C9—H9104.9C10—C20—H20B109.5
C10—C9—H9104.9H20A—C20—H20B108.1
O2—C1—C2—C3177.3 (2)C2—C1—C10—C542.7 (3)
C10—C1—C2—C353.9 (3)C11—C9—C10—C2080.4 (3)
C1—C2—C3—C461.2 (3)C8—C9—C10—C2051.1 (2)
C2—C3—C4—C18172.4 (2)C11—C9—C10—C143.6 (3)
C2—C3—C4—C1970.9 (3)C8—C9—C10—C1175.10 (19)
C2—C3—C4—C556.2 (3)C11—C9—C10—C5163.1 (2)
C18—C4—C5—C665.8 (3)C8—C9—C10—C565.4 (2)
C3—C4—C5—C6176.8 (2)C6—C5—C10—C2049.2 (2)
C19—C4—C5—C654.0 (3)C4—C5—C10—C2081.7 (3)
C18—C4—C5—C10165.6 (2)C6—C5—C10—C1172.4 (2)
C3—C4—C5—C1048.1 (3)C4—C5—C10—C141.5 (3)
C19—C4—C5—C1074.7 (3)C6—C5—C10—C967.3 (2)
C4—C5—C6—O392.9 (2)C4—C5—C10—C9161.8 (2)
C10—C5—C6—O3133.3 (2)C8—C9—C11—O582.5 (2)
C4—C5—C6—C7143.5 (2)C10—C9—C11—O547.6 (3)
C10—C5—C6—C79.7 (3)C8—C9—C11—C1239.4 (3)
C20—O1—C7—O4174.94 (19)C10—C9—C11—C12169.5 (2)
C20—O1—C7—C662.1 (2)O5—C11—C12—C1387.9 (2)
C20—O1—C7—C861.4 (3)C9—C11—C12—C1337.9 (3)
O3—C6—C7—O458.5 (3)C11—C12—C13—C1693.9 (3)
C5—C6—C7—O4179.55 (19)C11—C12—C13—C1418.2 (3)
O3—C6—C7—O1171.43 (19)C16—C13—C14—C845.9 (2)
C5—C6—C7—O166.6 (2)C12—C13—C14—C870.7 (2)
O3—C6—C7—C868.3 (3)C7—C8—C14—C13170.51 (19)
C5—C6—C7—C853.7 (3)C9—C8—C14—C1368.7 (2)
O4—C7—C8—C1459.6 (3)C15—C8—C14—C1349.7 (2)
O1—C7—C8—C1459.3 (3)C7—C8—C15—O682.9 (3)
C6—C7—C8—C14177.88 (18)C14—C8—C15—O6156.1 (2)
O4—C7—C8—C9177.7 (2)C9—C8—C15—O639.0 (3)
O1—C7—C8—C963.4 (2)C7—C8—C15—C16156.0 (2)
C6—C7—C8—C955.2 (2)C14—C8—C15—C1635.1 (3)
O4—C7—C8—C1553.0 (3)C9—C8—C15—C1682.0 (3)
O1—C7—C8—C15171.9 (2)C14—C13—C16—C17159.5 (3)
C6—C7—C8—C1569.5 (3)C12—C13—C16—C1783.0 (4)
C7—C8—C9—C11139.8 (2)C14—C13—C16—C1523.7 (3)
C14—C8—C9—C1115.3 (3)C12—C13—C16—C1593.8 (3)
C15—C8—C9—C1194.9 (2)O6—C15—C16—C1745.0 (4)
C7—C8—C9—C106.1 (3)C8—C15—C16—C17169.5 (3)
C14—C8—C9—C10118.4 (2)O6—C15—C16—C13131.9 (2)
C15—C8—C9—C10131.5 (2)C8—C15—C16—C137.4 (3)
O2—C1—C10—C2043.5 (3)C7—O1—C20—C100.5 (3)
C2—C1—C10—C2078.9 (3)C1—C10—C20—O1179.14 (19)
O2—C1—C10—C979.1 (2)C9—C10—C20—O156.9 (3)
C2—C1—C10—C9158.6 (2)C5—C10—C20—O156.6 (3)
O2—C1—C10—C5165.08 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2O···O5i0.93 (3)1.74 (3)2.655 (3)167 (3)
O4—H4O···O6ii0.87 (3)2.02 (3)2.696 (3)133 (2)
O3—H3O···O6iii0.89 (3)1.92 (3)2.787 (3)164 (3)
O5—H5O···O20.89 (3)1.80 (3)2.652 (3)160 (3)
O6—H6O···O30.78 (3)1.93 (3)2.674 (3)157 (3)
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x, y1, z; (iii) x+1/2, y1/2, z.

Experimental details

Crystal data
Chemical formulaC20H30O6
Mr366.44
Crystal system, space groupMonoclinic, C2
Temperature (K)93
a, b, c (Å)21.581 (11), 6.111 (3), 14.080 (7)
β (°) 99.129 (8)
V3)1833.3 (16)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.60 × 0.18 × 0.14
Data collection
DiffractometerRigaku AFC10/Saturn724+
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.944, 0.987
No. of measured, independent and
observed [I > 2σ(I)] reflections
7255, 2291, 1853
Rint0.052
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.079, 1.00
No. of reflections2291
No. of parameters257
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.31, 0.21

Computer programs: CrystalClear (Rigaku, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Version 5.0; Siemens, 1995).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2O···O5i0.93 (3)1.74 (3)2.655 (3)167 (3)
O4—H4O···O6ii0.87 (3)2.02 (3)2.696 (3)133 (2)
O3—H3O···O6iii0.89 (3)1.92 (3)2.787 (3)164 (3)
O5—H5O···O20.89 (3)1.80 (3)2.652 (3)160 (3)
O6—H6O···O30.78 (3)1.93 (3)2.674 (3)157 (3)
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x, y1, z; (iii) x+1/2, y1/2, z.
 

Acknowledgements

This work was supported by the Henan Province Science and Technology Foundation of China (grant No. 611042600).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2008). CrystalClear. Rigaku Corporation, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1995). SHELXTL. Siemens Industrial Automation Inc., Analytical Instrumentation, Madison, Wisconsin, USA.  Google Scholar
First citationSun, H. D., Xu, Y. L. & Jiang, B. (2001). Diterpenoids from Isodon Species, pp. 4–17, 239. Beijing: Science Press.  Google Scholar
First citationWang, X. R., Hu, H. P., Wang, H. P., Wang, S. Q., Ueda, S. & Fujita, T. (1994). Phytochemistry, 37, 1367–1370.  CrossRef CAS Web of Science Google Scholar
First citationYan, F. L., Wang, C. M., Guo, L. Q., Zhang, J. X. & Sun, H. D. (2008). J. Chem. Res. 9, 522–524.  Web of Science CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds