organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-1-(3-Nitro­phen­yl)-2-({5-[(1E)-2-(3-nitro­phen­yl)hydrazin-1-ylidenemeth­yl]-2-thien­yl}methyl­­idene)hydrazine

aDepartamento de Quimica, ICEx, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil, bDepartment of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB24 3UE, Scotland, cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, dCentro de Desenvolvimento Tecnológico em Saúde (CDTS), Fundação Oswaldo Cruz (FIOCRUZ), Casa Amarela, Campus de Manguinhos, Av. Brasil 4365, 21040-900 Rio de Janeiro, RJ, Brazil, and eCHEMSOL, 1 Harcourt Road, Aberdeen AB15 5NY, Scotland
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 21 January 2010; accepted 22 January 2010; online 27 January 2010)

The title mol­ecule, C18H14N6O4S, adopts a U-shape with the aromatic groups lying syn and oriented in the same direction as the thio­phene S atom. Twists away from planarity are evident with the maximum deviation being found for a terminal nitro group: C/C/N/O = 19.0 (3)°. The conformation about each of the C=N bonds is E. In the crystal, centrosymmetrically related mol­ecules are connected via N—H⋯Onitro hydrogen bonds, forming 14-membered {⋯HNC3NO}2 synthons. These are linked into layers via C—H⋯Onitro inter­actions with the primary inter­actions between layers being of the type C—H⋯π, where the π-system is the thio­phene ring.

Related literature

For the preparation of hydrazones of thio­phene­carbaldehydes, see: Kwon et al. (2009[Kwon, O.-P., Jazbinsek, M., Seo, J.-I., Kim, P.-J., Yun, H., Lee, Y. S. & Gunter, P. (2009). J. Phys. Chem. C, 113, 15405-15411.]); Wardell et al. (2007[Wardell, J. L., Low, J. N. & Glidewell, C. (2007). Acta Cryst. E63, o1848-o1850.]); Vaysse & Pastour (1964[Vaysse, M. & Pastour, P. (1964). Compt. Rend. 259, 2657-2659.]). For general uses of 2-substituted-thio­phenes, see: Campaigne (1984[Campaigne, E. (1984). Comprehensive Heterocyclic Chemistry, Vol. 4, edited by A. R. Katritzky & C. W. Rees, pp. 863-934. Oxford: Pergamon.]). For their specific uses as materials, see: Michaleviciute et al. (2007[Michaleviciute, A., Buika, G., Grazulevicius, J. V., Tran-Van, F., Chevrot, C. & Jankauskas, V. (2007). Mol. Cryst. Liq. Cryst. 468, 459-470.], 2009[Michaleviciute, A., Lygaitis, R., Grazulevicius, J. V., Buika, G., Jankauskas, V., Undzenas, A. & Fataraite, E. (2009). Synth. Met. 159, 223-227.]); Kwon et al. (2009[Kwon, O.-P., Jazbinsek, M., Seo, J.-I., Kim, P.-J., Yun, H., Lee, Y. S. & Gunter, P. (2009). J. Phys. Chem. C, 113, 15405-15411.]). For their specific uses as pharmacological agents, see: Kleemann et al. (2006[Kleemann, A., Engel, J. B., Kutscher, B. & Reichert, D. (2006). In Pharmaceutical Substances. New York, Stuttgart: Georg Thieme Verlag.]); Sonar & Crooks (2009[Sonar, V. N. & Crooks, P. A. (2009). J. Enz. Inhib. Med. Chem. 24, 117-124]); Mellado et al. (2009[Mellado, O. G. & Cortes, E. C. (2009). Mex. Pat. Appl. CODEN: MXXXA3 MX 2007012608 A 20090413.]); Satyanarayana et al. (2008[Satyanarayana, V. S. V., Sreevani, P., Sivakumar, A. & Vijayakumar, V. (2008). ARKIVOC, pp. 221-233.]); Lourenço et al. (2007[Lourenço, M. C. S., Vicente, F. R., Henriques, M., das, G. M. de O., Candéa, A. L. P., Gonçalves, R. S. B., Nogueira, T. C. M., Ferreira, M. de L. & de Souza, M. V. N. (2007). Bioorg. Med. Chem. Lett. 17, 6895-6898.]). For related structures, see: Wardell et al. (2007[Wardell, J. L., Low, J. N. & Glidewell, C. (2007). Acta Cryst. E63, o1848-o1850.], 2010[Wardell, S. M. S. V., de Lima, G. M., Tiekink, E. R. T. & Wardell, J. L. (2010). Acta Cryst. E66, o271-o272.]); Ferreira et al. (2009[Ferreira de Lima, M., de Souza, M. V. N., Tiekink, E. R. T., Wardell, J. L. & Wardell, S. M. S. V. (2009). Acta Cryst. E65, o3203.]); Nogueira et al. (2010[Nogueira, T. C. M., de Souza, M. V. N., Wardell, J. L., Wardell, S. M. S. V. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o177.]).

[Scheme 1]

Experimental

Crystal data
  • C18H14N6O4S

  • Mr = 410.41

  • Monoclinic, P 21 /c

  • a = 11.1790 (5) Å

  • b = 20.6993 (9) Å

  • c = 8.0334 (2) Å

  • β = 100.513 (2)°

  • V = 1827.70 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 120 K

  • 0.62 × 0.10 × 0.06 mm

Data collection
  • Nonius KappaCCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2007[Sheldrick, G. M. (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.668, Tmax = 0.746

  • 21780 measured reflections

  • 4183 independent reflections

  • 3001 reflections with I > 2σ(I)

  • Rint = 0.071

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.133

  • S = 1.08

  • 4183 reflections

  • 268 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2n⋯O2i 0.89 (2) 2.27 (2) 3.103 (2) 156 (2)
C2—H2⋯O3ii 0.95 2.46 3.278 (3) 145
C18—H18⋯O4iii 0.95 2.48 3.241 (3) 137
C12—H12⋯Cg1iv 0.95 2.58 3.323 (2) 135
Symmetry codes: (i) -x+1, -y+1, -z+2; (ii) x-1, y, z+1; (iii) x, y, z+1; (iv) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: COLLECT (Hooft, 1998[Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). publCIF. In preparation.]).

Supporting information


Comment top

The preparation of hydrazonederivatives of thiophenecarbaldehydes is well documented (Kwon, et al. 2009; Wardell et al., 2007; Vaysse & Pastour, 1964). As a continuation of structural studies of this class of compound (Wardell et al., 2007; Ferreira et al., 2009; Nogueira et al., 2010; Wardell et al., 2010), the title compound (I) was synthesised and structurally investigated. 2-Substituted thiophenes in general have various uses, for example as dyestuffs, flavour agents, drugs, and inhibitors (Campaigne, 1984). Thiophenes are present in many natural and synthetic products with a wide range of pharmacological activities (Kleemann et al., 2006; Sonar & Crooks, 2009; Mellado et al., 2009; Satyanarayana et al., 2008; Lourenço et al., 2007). Specifically, hydrazone derivatives of thiophene have found uses in optoelectronic applications (Michaleviciute et al., 2007), as optical non-linear materials (Kwon et al., 2009), and as hole transporting materials (Michaleviciute et al., 2009).

The overall molecular conformation in (I) is U-shaped as the two aromatic residues lie to the same side of the molecule and are syn, being orientated in the same direction as the thiophene-S atom, Fig. 1. Twists from planarity in the molecule are evident in each of the side-arms, i.e. about the N2–C6 and N4–N5 bonds; the N1/N2/C6/C7 and C12/N4/N5/C13 torsion angles are 168.57 (18) and -170.79 (19) °, respectively. In addition, the values of the C7/C8/N3/O1 and C14/C14/N6/O3 torsion angles of -161.0 (2) and 164.4 (2) °, respectively, indicate each of the nitro groups is twisted out of the plane of the benzene ring to which it is bonded. The conformation about each of the C5N1 [1.288 (3) Å] and C12N4 [1.285 (3) Å] double bonds is E.

In the crystal packing, centrosymmetrically related molecules associate via NH···Onitro hydrogen bonds to result in the formation of a 14-membered {···HNC3NO}2 synthon, Table 1. The dimeric aggregates are linked into a supramolecular chain along the c axis via CH···Onitro interactions, Table 1 and Fig. 2. The chains in turn are linked into layers in the ac plane via further CH···Onitro interactions, Table 1. The layers thus formed stack along the b axis with the primary interactions between them being of the type C–H···π where the π-system is the thiophene ring [C12–H···ring centroid(S1,C1–C4)i = 2.58 Å, C12···ring centroidi = 3.323 (2) Å with an angle subtended at H = 135 ° for symmetry operation i: x, 3/2-y, -1/2+z]. The second N5-amine H does not participate in a formal hydrogen bond. It is noted that the N4–N5—H residues lie in the interlayer region and are in relative close proximity [e.g. N5–H···N4ii = 2.87 Å] but steric constraints preclude a closer approach of these groups to allow a hydrogen bonding interaction.

Related literature top

For the preparation of hydrazones of thiophenecarbaldehydes, see: Kwon et al. (2009); Wardell et al. (2007); Vaysse & Pastour (1964). For general uses of 2-substituted-thiophenes, see: Campaigne (1984). For their specific uses as materials, see: Michaleviciute et al. (2007, 2009); Kwon et al. (2009). For specific their uses as pharmacological agents, see: Kleemann et al. (2006); Sonar & Crooks (2009); Mellado et al. (2009); Satyanarayana et al. (2008); Lourenço et al. (2007). For related structures, see: Wardell et al. (2007, 2010); Ferreira et al. (2009); Nogueira et al. (2010)

Experimental top

Solutions of 3-nitrophenylhydrazine.hydrochloride (0.38 g, 2 mmol) in EtOH (10 ml) and 2,5-thiophenedicarbaldehyde (0.14 g, 1 mmol) in EtOH (10 ml) were mixed. The reaction mixture was refluxed for 1 h, and rotary evaporated. The solid residue was recrystallised twice from aq. EtOH (v:v 1:2), m.p. 497-479 K. 1H NMR (400 MHz, DMSO-d6): δ 7.26 (s,2H), 7.41 (dd, 2H, J = 1 & 8.1 Hz), 7.51 (t,2H, J = 8.0 Hz), 7.59 (dd, 2H, J = 1.3 & 8.0 Hz), 7.79 (t, 2H, 2.0 Hz), 8.10 (s, 2H), 10.91(s, 2H) p.p.m. 13C (100 MHz, DMSO-d6): δ 105.7, 113.10, 118.2, 128.5, 130.5, 134.3, 140.1, 145.9, 148.8 p.p.m.

Refinement top

The C-bound H atoms were geometrically placed (C–H = 0.95 Å) and refined as riding with Uiso(H) = 1.2Ueq(C). The N-bound H atoms were located from a difference map and refined with Uiso(H) = 1.5Ueq(N).

Structure description top

The preparation of hydrazonederivatives of thiophenecarbaldehydes is well documented (Kwon, et al. 2009; Wardell et al., 2007; Vaysse & Pastour, 1964). As a continuation of structural studies of this class of compound (Wardell et al., 2007; Ferreira et al., 2009; Nogueira et al., 2010; Wardell et al., 2010), the title compound (I) was synthesised and structurally investigated. 2-Substituted thiophenes in general have various uses, for example as dyestuffs, flavour agents, drugs, and inhibitors (Campaigne, 1984). Thiophenes are present in many natural and synthetic products with a wide range of pharmacological activities (Kleemann et al., 2006; Sonar & Crooks, 2009; Mellado et al., 2009; Satyanarayana et al., 2008; Lourenço et al., 2007). Specifically, hydrazone derivatives of thiophene have found uses in optoelectronic applications (Michaleviciute et al., 2007), as optical non-linear materials (Kwon et al., 2009), and as hole transporting materials (Michaleviciute et al., 2009).

The overall molecular conformation in (I) is U-shaped as the two aromatic residues lie to the same side of the molecule and are syn, being orientated in the same direction as the thiophene-S atom, Fig. 1. Twists from planarity in the molecule are evident in each of the side-arms, i.e. about the N2–C6 and N4–N5 bonds; the N1/N2/C6/C7 and C12/N4/N5/C13 torsion angles are 168.57 (18) and -170.79 (19) °, respectively. In addition, the values of the C7/C8/N3/O1 and C14/C14/N6/O3 torsion angles of -161.0 (2) and 164.4 (2) °, respectively, indicate each of the nitro groups is twisted out of the plane of the benzene ring to which it is bonded. The conformation about each of the C5N1 [1.288 (3) Å] and C12N4 [1.285 (3) Å] double bonds is E.

In the crystal packing, centrosymmetrically related molecules associate via NH···Onitro hydrogen bonds to result in the formation of a 14-membered {···HNC3NO}2 synthon, Table 1. The dimeric aggregates are linked into a supramolecular chain along the c axis via CH···Onitro interactions, Table 1 and Fig. 2. The chains in turn are linked into layers in the ac plane via further CH···Onitro interactions, Table 1. The layers thus formed stack along the b axis with the primary interactions between them being of the type C–H···π where the π-system is the thiophene ring [C12–H···ring centroid(S1,C1–C4)i = 2.58 Å, C12···ring centroidi = 3.323 (2) Å with an angle subtended at H = 135 ° for symmetry operation i: x, 3/2-y, -1/2+z]. The second N5-amine H does not participate in a formal hydrogen bond. It is noted that the N4–N5—H residues lie in the interlayer region and are in relative close proximity [e.g. N5–H···N4ii = 2.87 Å] but steric constraints preclude a closer approach of these groups to allow a hydrogen bonding interaction.

For the preparation of hydrazones of thiophenecarbaldehydes, see: Kwon et al. (2009); Wardell et al. (2007); Vaysse & Pastour (1964). For general uses of 2-substituted-thiophenes, see: Campaigne (1984). For their specific uses as materials, see: Michaleviciute et al. (2007, 2009); Kwon et al. (2009). For specific their uses as pharmacological agents, see: Kleemann et al. (2006); Sonar & Crooks (2009); Mellado et al. (2009); Satyanarayana et al. (2008); Lourenço et al. (2007). For related structures, see: Wardell et al. (2007, 2010); Ferreira et al. (2009); Nogueira et al. (2010)

Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); data reduction: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 70% probability level.
[Figure 2] Fig. 2. A view of the supramolecular chain in (I) whereby centrosymmetrically related dimeric aggregates, held together by NH···Onitro hydrogen bonds (blue dashed bonds), are linked via CH···Onitro interactions (orange dashed lines). Colour code: S, yellow; O, red; N, blue; C, grey; and H, green.
[Figure 3] Fig. 3. View of the stacking of layers in (I) with the central layer highlighted by a superimposed space filling representation. The N–H···O and C–H···O interactions are shown as blue and orange dashed lines, respectively. Colour code: S, yellow; O, red; N, blue; C, grey; and H, green.
(E)-1-(3-Nitrophenyl)-2-({5-[(1E)-2-(3-nitrophenyl)hydrazin-1- ylidenemethyl]-2-thienyl}methylidene)hydrazine top
Crystal data top
C18H14N6O4SF(000) = 848
Mr = 410.41Dx = 1.492 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 13699 reflections
a = 11.1790 (5) Åθ = 2.9–27.5°
b = 20.6993 (9) ŵ = 0.22 mm1
c = 8.0334 (2) ÅT = 120 K
β = 100.513 (2)°Rod, red
V = 1827.70 (12) Å30.62 × 0.10 × 0.06 mm
Z = 4
Data collection top
KappaCCD area-detector
diffractometer
4183 independent reflections
Radiation source: Enraf Nonius FR591 rotating anode3001 reflections with I > 2σ(I)
10 cm confocal mirrors monochromatorRint = 0.071
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 3.1°
φ and ω scansh = 1414
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
k = 2626
Tmin = 0.668, Tmax = 0.746l = 109
21780 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.133H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0678P)2 + 0.3581P]
where P = (Fo2 + 2Fc2)/3
4183 reflections(Δ/σ)max = 0.001
268 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
C18H14N6O4SV = 1827.70 (12) Å3
Mr = 410.41Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.1790 (5) ŵ = 0.22 mm1
b = 20.6993 (9) ÅT = 120 K
c = 8.0334 (2) Å0.62 × 0.10 × 0.06 mm
β = 100.513 (2)°
Data collection top
KappaCCD area-detector
diffractometer
4183 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
3001 reflections with I > 2σ(I)
Tmin = 0.668, Tmax = 0.746Rint = 0.071
21780 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.133H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.27 e Å3
4183 reflectionsΔρmin = 0.34 e Å3
268 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.51694 (5)0.64771 (3)0.10731 (6)0.01767 (15)
O10.86026 (16)0.47833 (10)1.1894 (2)0.0440 (5)
O20.66466 (16)0.47631 (9)1.16581 (19)0.0344 (4)
O31.09960 (18)0.66615 (11)0.6358 (3)0.0553 (6)
O40.91528 (19)0.66409 (11)0.7736 (2)0.0519 (6)
N10.50139 (16)0.59578 (9)0.4425 (2)0.0182 (4)
N20.50940 (17)0.56838 (9)0.5969 (2)0.0191 (4)
H2N0.446 (2)0.5655 (12)0.649 (3)0.029*
N30.75746 (18)0.48377 (10)1.1061 (2)0.0267 (5)
N40.60955 (16)0.69295 (9)0.1986 (2)0.0181 (4)
N50.65934 (16)0.70405 (9)0.3383 (2)0.0184 (4)
H5N0.611 (2)0.7106 (11)0.442 (3)0.028*
N60.9889 (2)0.66605 (11)0.6418 (3)0.0340 (5)
C10.38972 (19)0.64722 (10)0.2032 (2)0.0171 (4)
C20.29149 (19)0.67487 (10)0.1014 (3)0.0194 (5)
H20.21370.67870.13220.023*
C30.31778 (19)0.69709 (10)0.0543 (2)0.0186 (4)
H30.25960.71750.13890.022*
C40.43575 (19)0.68609 (10)0.0706 (2)0.0173 (4)
C50.3983 (2)0.61919 (10)0.3698 (2)0.0189 (5)
H50.32970.61810.42420.023*
C60.6201 (2)0.54271 (10)0.6765 (3)0.0184 (5)
C70.6332 (2)0.52533 (10)0.8470 (3)0.0189 (5)
H70.56800.53030.90690.023*
C80.7441 (2)0.50061 (11)0.9255 (2)0.0208 (5)
C90.8416 (2)0.49104 (11)0.8444 (3)0.0245 (5)
H90.91650.47400.90280.029*
C100.8256 (2)0.50743 (11)0.6740 (3)0.0240 (5)
H100.89030.50080.61400.029*
C110.7166 (2)0.53338 (10)0.5900 (3)0.0216 (5)
H110.70760.54480.47380.026*
C120.49410 (19)0.70092 (10)0.2128 (2)0.0174 (4)
H120.44740.71640.31590.021*
C130.77989 (19)0.68714 (10)0.3355 (2)0.0162 (4)
C140.8226 (2)0.68469 (10)0.4875 (3)0.0193 (5)
H140.77030.69360.59210.023*
C150.9433 (2)0.66899 (11)0.4818 (3)0.0223 (5)
C161.0241 (2)0.65534 (12)0.3337 (3)0.0264 (5)
H161.10690.64520.33450.032*
C170.9786 (2)0.65709 (11)0.1840 (3)0.0253 (5)
H171.03110.64730.08020.030*
C180.8583 (2)0.67280 (10)0.1833 (3)0.0200 (5)
H180.82890.67380.07960.024*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0173 (3)0.0206 (3)0.0161 (3)0.0015 (2)0.00585 (19)0.0015 (2)
O10.0278 (11)0.0719 (15)0.0297 (10)0.0132 (10)0.0019 (8)0.0147 (9)
O20.0306 (10)0.0526 (12)0.0217 (8)0.0002 (8)0.0090 (7)0.0075 (7)
O30.0333 (12)0.0913 (18)0.0497 (12)0.0191 (11)0.0300 (10)0.0196 (11)
O40.0481 (13)0.0905 (17)0.0198 (10)0.0207 (11)0.0136 (9)0.0044 (9)
N10.0241 (10)0.0195 (10)0.0122 (8)0.0030 (8)0.0065 (7)0.0013 (7)
N20.0215 (10)0.0240 (10)0.0132 (8)0.0002 (8)0.0069 (7)0.0020 (7)
N30.0290 (12)0.0286 (11)0.0230 (10)0.0034 (9)0.0061 (9)0.0030 (8)
N40.0212 (10)0.0197 (10)0.0152 (9)0.0012 (8)0.0080 (7)0.0006 (7)
N50.0165 (9)0.0272 (10)0.0126 (9)0.0029 (8)0.0052 (7)0.0040 (7)
N60.0326 (13)0.0449 (14)0.0297 (12)0.0129 (10)0.0192 (10)0.0116 (9)
C10.0188 (11)0.0167 (11)0.0171 (10)0.0050 (9)0.0070 (8)0.0024 (8)
C20.0161 (11)0.0241 (12)0.0186 (11)0.0013 (9)0.0051 (8)0.0013 (8)
C30.0172 (11)0.0227 (11)0.0154 (10)0.0010 (9)0.0020 (8)0.0006 (8)
C40.0204 (11)0.0164 (11)0.0148 (10)0.0018 (9)0.0025 (8)0.0001 (8)
C50.0208 (11)0.0198 (11)0.0174 (10)0.0039 (9)0.0068 (8)0.0021 (8)
C60.0212 (12)0.0151 (11)0.0190 (10)0.0044 (9)0.0042 (8)0.0020 (8)
C70.0219 (12)0.0176 (11)0.0181 (10)0.0018 (9)0.0063 (8)0.0009 (8)
C80.0258 (13)0.0207 (12)0.0156 (10)0.0034 (9)0.0032 (9)0.0009 (8)
C90.0202 (12)0.0260 (13)0.0274 (12)0.0003 (10)0.0049 (9)0.0012 (9)
C100.0211 (12)0.0261 (13)0.0274 (12)0.0029 (10)0.0112 (9)0.0001 (9)
C110.0245 (12)0.0225 (12)0.0186 (11)0.0053 (9)0.0059 (9)0.0009 (8)
C120.0190 (11)0.0183 (11)0.0150 (10)0.0006 (9)0.0033 (8)0.0009 (8)
C130.0173 (11)0.0163 (11)0.0162 (10)0.0012 (8)0.0061 (8)0.0001 (8)
C140.0200 (12)0.0201 (11)0.0186 (10)0.0004 (9)0.0060 (8)0.0031 (8)
C150.0237 (12)0.0255 (12)0.0207 (11)0.0030 (9)0.0116 (9)0.0019 (8)
C160.0149 (11)0.0340 (14)0.0313 (12)0.0040 (10)0.0070 (9)0.0018 (10)
C170.0193 (12)0.0349 (14)0.0196 (11)0.0007 (10)0.0016 (9)0.0011 (9)
C180.0234 (12)0.0236 (12)0.0137 (10)0.0002 (9)0.0050 (8)0.0002 (8)
Geometric parameters (Å, º) top
S1—C11.737 (2)C5—H50.9500
S1—C41.739 (2)C6—C111.399 (3)
O1—N31.225 (3)C6—C71.398 (3)
O2—N31.229 (2)C7—C81.382 (3)
O3—N61.230 (3)C7—H70.9500
O4—N61.217 (3)C8—C91.382 (3)
N1—C51.288 (3)C9—C101.390 (3)
N1—N21.352 (2)C9—H90.9500
N2—C61.391 (3)C10—C111.389 (3)
N2—H2N0.89 (3)C10—H100.9500
N3—C81.473 (3)C11—H110.9500
N4—C121.285 (3)C12—H120.9500
N4—N51.360 (2)C13—C141.391 (3)
N5—C131.389 (3)C13—C181.400 (3)
N5—H5N0.92 (2)C14—C151.380 (3)
N6—C151.468 (3)C14—H140.9500
C1—C21.369 (3)C15—C161.385 (3)
C1—C51.445 (3)C16—C171.388 (3)
C2—C31.413 (3)C16—H160.9500
C2—H20.9500C17—C181.385 (3)
C3—C41.368 (3)C17—H170.9500
C3—H30.9500C18—H180.9500
C4—C121.449 (3)
C1—S1—C491.17 (10)C6—C7—H7121.1
C5—N1—N2118.56 (18)C9—C8—C7123.82 (19)
N1—N2—C6119.09 (18)C9—C8—N3118.9 (2)
N1—N2—H2N122.5 (16)C7—C8—N3117.29 (19)
C6—N2—H2N118.4 (16)C8—C9—C10117.3 (2)
O1—N3—O2123.37 (19)C8—C9—H9121.4
O1—N3—C8118.43 (19)C10—C9—H9121.4
O2—N3—C8118.20 (19)C9—C10—C11121.2 (2)
C12—N4—N5117.41 (17)C9—C10—H10119.4
N4—N5—C13119.06 (17)C11—C10—H10119.4
N4—N5—H5N121.3 (16)C10—C11—C6119.9 (2)
C13—N5—H5N117.1 (16)C10—C11—H11120.0
O4—N6—O3123.4 (2)C6—C11—H11120.0
O4—N6—C15118.4 (2)N4—C12—C4119.47 (18)
O3—N6—C15118.2 (2)N4—C12—H12120.3
C2—C1—C5129.17 (19)C4—C12—H12120.3
C2—C1—S1111.39 (15)N5—C13—C14118.84 (18)
C5—C1—S1119.43 (16)N5—C13—C18121.25 (18)
C1—C2—C3113.04 (19)C14—C13—C18119.9 (2)
C1—C2—H2123.5C15—C14—C13118.01 (19)
C3—C2—H2123.5C15—C14—H14121.0
C4—C3—C2112.95 (19)C13—C14—H14121.0
C4—C3—H3123.5C14—C15—C16123.8 (2)
C2—C3—H3123.5C14—C15—N6118.30 (19)
C3—C4—C12128.36 (19)C16—C15—N6117.9 (2)
C3—C4—S1111.45 (15)C15—C16—C17117.0 (2)
C12—C4—S1120.17 (16)C15—C16—H16121.5
N1—C5—C1118.30 (19)C17—C16—H16121.5
N1—C5—H5120.9C18—C17—C16121.3 (2)
C1—C5—H5120.9C18—C17—H17119.4
N2—C6—C11121.80 (19)C16—C17—H17119.4
N2—C6—C7118.27 (19)C17—C18—C13119.98 (19)
C11—C6—C7119.9 (2)C17—C18—H18120.0
C8—C7—C6117.9 (2)C13—C18—H18120.0
C8—C7—H7121.1
C5—N1—N2—C6179.76 (19)N3—C8—C9—C10179.9 (2)
C12—N4—N5—C13170.79 (19)C8—C9—C10—C111.1 (3)
C4—S1—C1—C20.37 (17)C9—C10—C11—C60.8 (3)
C4—S1—C1—C5179.95 (17)N2—C6—C11—C10179.8 (2)
C5—C1—C2—C3179.9 (2)C7—C6—C11—C100.6 (3)
S1—C1—C2—C30.4 (2)N5—N4—C12—C4176.44 (18)
C1—C2—C3—C40.2 (3)C3—C4—C12—N4173.0 (2)
C2—C3—C4—C12178.6 (2)S1—C4—C12—N48.6 (3)
C2—C3—C4—S10.1 (2)N4—N5—C13—C14165.61 (18)
C1—S1—C4—C30.26 (17)N4—N5—C13—C1814.5 (3)
C1—S1—C4—C12178.90 (17)N5—C13—C14—C15178.8 (2)
N2—N1—C5—C1178.75 (17)C18—C13—C14—C151.1 (3)
C2—C1—C5—N1180.0 (2)C13—C14—C15—C160.2 (3)
S1—C1—C5—N10.5 (3)C13—C14—C15—N6179.7 (2)
N1—N2—C6—C1112.2 (3)O4—N6—C15—C1415.1 (3)
N1—N2—C6—C7168.57 (18)O3—N6—C15—C14164.4 (2)
N2—C6—C7—C8179.20 (19)O4—N6—C15—C16164.5 (2)
C11—C6—C7—C81.5 (3)O3—N6—C15—C1616.0 (3)
C6—C7—C8—C91.2 (3)C14—C15—C16—C170.8 (4)
C6—C7—C8—N3178.75 (18)N6—C15—C16—C17178.7 (2)
O1—N3—C8—C919.0 (3)C15—C16—C17—C181.0 (4)
O2—N3—C8—C9161.5 (2)C16—C17—C18—C130.1 (3)
O1—N3—C8—C7161.0 (2)N5—C13—C18—C17178.9 (2)
O2—N3—C8—C718.6 (3)C14—C13—C18—C170.9 (3)
C7—C8—C9—C100.1 (3)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the S1,C1–C4 ring.
D—H···AD—HH···AD···AD—H···A
N2—H2n···O2i0.89 (2)2.27 (2)3.103 (2)156 (2)
C2—H2···O3ii0.952.463.278 (3)145
C18—H18···O4iii0.952.483.241 (3)137
C12—H12···Cg1iv0.952.583.323 (2)135
Symmetry codes: (i) x+1, y+1, z+2; (ii) x1, y, z+1; (iii) x, y, z+1; (iv) x, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formulaC18H14N6O4S
Mr410.41
Crystal system, space groupMonoclinic, P21/c
Temperature (K)120
a, b, c (Å)11.1790 (5), 20.6993 (9), 8.0334 (2)
β (°) 100.513 (2)
V3)1827.70 (12)
Z4
Radiation typeMo Kα
µ (mm1)0.22
Crystal size (mm)0.62 × 0.10 × 0.06
Data collection
DiffractometerKappaCCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2007)
Tmin, Tmax0.668, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
21780, 4183, 3001
Rint0.071
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.133, 1.08
No. of reflections4183
No. of parameters268
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.27, 0.34

Computer programs: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the S1,C1–C4 ring.
D—H···AD—HH···AD···AD—H···A
N2—H2n···O2i0.89 (2)2.27 (2)3.103 (2)156 (2)
C2—H2···O3ii0.952.463.278 (3)145
C18—H18···O4iii0.952.483.241 (3)137
C12—H12···Cg1iv0.952.583.323 (2)135
Symmetry codes: (i) x+1, y+1, z+2; (ii) x1, y, z+1; (iii) x, y, z+1; (iv) x, y+3/2, z1/2.
 

Footnotes

Additional correspondence author, e-mail: j.wardell@abdn.ac.uk.

Acknowledgements

The use of the EPSRC X-ray crystallographic service at the University of Southampton, England, and the valuable assistance of the staff there is gratefully acknowledged. JLW acknowledges support from CAPES (Brazil).

References

First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationCampaigne, E. (1984). Comprehensive Heterocyclic Chemistry, Vol. 4, edited by A. R. Katritzky & C. W. Rees, pp. 863–934. Oxford: Pergamon.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFerreira de Lima, M., de Souza, M. V. N., Tiekink, E. R. T., Wardell, J. L. & Wardell, S. M. S. V. (2009). Acta Cryst. E65, o3203.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationKleemann, A., Engel, J. B., Kutscher, B. & Reichert, D. (2006). In Pharmaceutical Substances. New York, Stuttgart: Georg Thieme Verlag.  Google Scholar
First citationKwon, O.-P., Jazbinsek, M., Seo, J.-I., Kim, P.-J., Yun, H., Lee, Y. S. & Gunter, P. (2009). J. Phys. Chem. C, 113, 15405–15411.  Web of Science CrossRef CAS Google Scholar
First citationLourenço, M. C. S., Vicente, F. R., Henriques, M., das, G. M. de O., Candéa, A. L. P., Gonçalves, R. S. B., Nogueira, T. C. M., Ferreira, M. de L. & de Souza, M. V. N. (2007). Bioorg. Med. Chem. Lett. 17, 6895–6898.  PubMed Google Scholar
First citationMellado, O. G. & Cortes, E. C. (2009). Mex. Pat. Appl. CODEN: MXXXA3 MX 2007012608 A 20090413.  Google Scholar
First citationMichaleviciute, A., Buika, G., Grazulevicius, J. V., Tran-Van, F., Chevrot, C. & Jankauskas, V. (2007). Mol. Cryst. Liq. Cryst. 468, 459–470.  Web of Science CrossRef CAS Google Scholar
First citationMichaleviciute, A., Lygaitis, R., Grazulevicius, J. V., Buika, G., Jankauskas, V., Undzenas, A. & Fataraite, E. (2009). Synth. Met. 159, 223–227.  Web of Science CrossRef CAS Google Scholar
First citationNogueira, T. C. M., de Souza, M. V. N., Wardell, J. L., Wardell, S. M. S. V. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o177.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSatyanarayana, V. S. V., Sreevani, P., Sivakumar, A. & Vijayakumar, V. (2008). ARKIVOC, pp. 221–233.  Google Scholar
First citationSheldrick, G. M. (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSonar, V. N. & Crooks, P. A. (2009). J. Enz. Inhib. Med. Chem. 24, 117–124  Web of Science CrossRef CAS Google Scholar
First citationVaysse, M. & Pastour, P. (1964). Compt. Rend. 259, 2657–2659.  CAS Google Scholar
First citationWardell, S. M. S. V., de Lima, G. M., Tiekink, E. R. T. & Wardell, J. L. (2010). Acta Cryst. E66, o271–o272.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWardell, J. L., Low, J. N. & Glidewell, C. (2007). Acta Cryst. E63, o1848–o1850.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds