metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[[(μ-2,2′-bi­pyrimidine-κ4N1,N1′:N3,N3′)(μ-sulfato-κ2O:O′)zinc(II)] monohydrate]

aChemistry Department, Francis Marion University, Florence, South Carolina 29502, USA, and bDepartment of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, USA
*Correspondence e-mail: jkelley@fmarion.edu

(Received 10 December 2009; accepted 13 January 2010; online 30 January 2010)

In the title compound, {[Zn(SO4)(C8H6N4)]·H2O}n, the ZnII atom is in a distorted octa­hedral environment. The ZnII atoms are bridged by both 2,2′-bipyrimidine and sulfate ligands, thus forming a three-dimensional polymeric metal–organic solid that contains uncoordinated water mol­ecules in the inter­stitial space. O—H⋯O hydrogen bonding consolidates the crystal structure.

Related literature

For general background to metal-organic polymers with 2,2′-bipyrimidine ligands, see: De Munno et al. (1995[De Munno, G., Ruiz, R., Lloret, F., Faus, J., Sessoli, R. & Julve, M. (1995). Inorg. Chem. 34, 408-411.]); Kawata et al. (1998[Kawata, S., Kitagawa, S., Enomoto, M., Kumagai, H. & Katada, M. (1998). Inorg. Chim. Acta, 283, 80-90.]); Marshall et al. (2000[Marshall, S. R., Incarvito, C. D., Manson, J. L., Rheingold, A. L. & Miller, J. S. (2000). Inorg. Chem. 39, 1969-1973.]); Wang et al. (2007[Wang, C.-C., Kuo, C.-T., Yang, J.-C., Lee, G.-H., Shih, W.-J. & Sheu, H.-S. (2007). Cryst. Growth Des. 7, 1476-1482.]). For a related structure, see: De Munno & Julve (1994[De Munno, G. & Julve, M. (1994). Acta Cryst. C50, 1034-1037.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(SO4)(C8H6N4)]·H2O

  • Mr = 337.61

  • Monoclinic, P 21 /c

  • a = 8.9935 (3) Å

  • b = 13.9783 (5) Å

  • c = 9.8459 (4) Å

  • β = 117.007 (1)°

  • V = 1102.79 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.44 mm−1

  • T = 294 K

  • 0.20 × 0.15 × 0.08 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.874, Tmax = 1.000

  • 12167 measured reflections

  • 2254 independent reflections

  • 2087 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.023

  • wR(F2) = 0.063

  • S = 1.05

  • 2254 reflections

  • 180 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.52 e Å−3

Table 1
Selected bond lengths (Å)

Zn1—N1 2.2646 (16)
Zn1—N2i 2.1228 (15)
Zn1—N3 2.1403 (17)
Zn1—N4ii 2.2852 (16)
Zn1—O1 2.0302 (14)
Zn1—O2iii 2.0371 (14)
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) -x+1, -y+1, -z; (iii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5A⋯O3 0.78 (2) 2.07 (2) 2.838 (3) 166 (3)
O5—H5B⋯O2iv 0.78 (2) 2.11 (2) 2.883 (2) 173 (3)
Symmetry code: (iv) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Metal-organic polymers utilizing the 2,2'-bipyrimidine (bpm) ligand are being studied due to the ability of bpm to produce interesting and potentially useful materials (Kawata et al., 1998; Marshall et al., 2000; Wang et al., 2007). Such features are often associated with the ability of this ligand to link metal centers through the bis-bidentate coordination mode (De Munno et al., 1995). Herein we report the crystal structure of the title compound, (I), that is a three-dimensional metal-organic framework where bpm binds ZnII atoms in this fashion.

The crystal structure of (I), which incidentally is isostructural with [Cu(bpm)(SO4)].H2O (Kawata et al., 1998), is a three-dimensional polymeric solid with an asymmetric unit consisting of one ZnII atom, two half-bpm ligands, a sulfate ligand, and one lattice water. The ZnII atom resides in a distorted octahedral environment composed of four N donors from a pair of equivalent bpm ligands, and two O atoms from two equivalent sulfate anions (Fig. 1). All of the Zn—N and Zn—O bond distances are in a normal range (Table 1).

The bpm ligand bridges ZnII atoms in a bis-bidentate fashion, producing undulating chains running along the [101] direction. Further, the sulfate ligand serves to bridge neighboring chains, thus forming a three-dimensional microporous solid. The pores are occupied by lattice waters that are hydrogen bonded to uncoordinated O2 and O3 atoms of nearby sulfate anions (Table 2 and Fig. 2).

It is also interesting to note that the crystal structure of (I) differs from that of [Zn2(µ-bpm)(H2O)8](SO4)2.2H2O (II) (De Munno & Julve, 1994), which contains the same chemical components as (I), but was synthesized under different synthetic conditions (see below).

Related literature top

For general background to metal-organic polymers with 2,2'-bipyrimidine ligands, see: De Munno et al. (1995); Kawata et al. (1998); Marshall et al. (2000); Wang et al. (2007). For a related structure, see: De Munno & Julve (1994).

Experimental top

All starting chemicals were purchased from commercial sources and used as received. An aqueous solution of zinc sulfate heptahydrate (0.10 mmol, 10 ml) was slowly added to 10 ml of an ethanolic solution composed of bpm (0.050 mmol) and 4,4'-bipyridine (bpy) (0.050 mmol). Colorless, plate-like crystals formed within several weeks after slow evaporation of all the solvent under ambient conditions. Although bpy was not incorporated into the crystal structure of (I), it was required for synthesis of the crystalline product, as no such crystals were formed without it with all other conditions being the same. The synthesis in water alone using only zinc sulfate heptahydrate and bpm was reported to produce (II), as previously mentioned.

Refinement top

H atoms bonded to C atoms were placed in geometrically idealized positions and refined as riding atoms, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C). H atoms of water molecule were located from a difference Fourier map and refined isotropically, with their O—H distances restrained to 0.84 (2) Å.

Structure description top

Metal-organic polymers utilizing the 2,2'-bipyrimidine (bpm) ligand are being studied due to the ability of bpm to produce interesting and potentially useful materials (Kawata et al., 1998; Marshall et al., 2000; Wang et al., 2007). Such features are often associated with the ability of this ligand to link metal centers through the bis-bidentate coordination mode (De Munno et al., 1995). Herein we report the crystal structure of the title compound, (I), that is a three-dimensional metal-organic framework where bpm binds ZnII atoms in this fashion.

The crystal structure of (I), which incidentally is isostructural with [Cu(bpm)(SO4)].H2O (Kawata et al., 1998), is a three-dimensional polymeric solid with an asymmetric unit consisting of one ZnII atom, two half-bpm ligands, a sulfate ligand, and one lattice water. The ZnII atom resides in a distorted octahedral environment composed of four N donors from a pair of equivalent bpm ligands, and two O atoms from two equivalent sulfate anions (Fig. 1). All of the Zn—N and Zn—O bond distances are in a normal range (Table 1).

The bpm ligand bridges ZnII atoms in a bis-bidentate fashion, producing undulating chains running along the [101] direction. Further, the sulfate ligand serves to bridge neighboring chains, thus forming a three-dimensional microporous solid. The pores are occupied by lattice waters that are hydrogen bonded to uncoordinated O2 and O3 atoms of nearby sulfate anions (Table 2 and Fig. 2).

It is also interesting to note that the crystal structure of (I) differs from that of [Zn2(µ-bpm)(H2O)8](SO4)2.2H2O (II) (De Munno & Julve, 1994), which contains the same chemical components as (I), but was synthesized under different synthetic conditions (see below).

For general background to metal-organic polymers with 2,2'-bipyrimidine ligands, see: De Munno et al. (1995); Kawata et al. (1998); Marshall et al. (2000); Wang et al. (2007). For a related structure, see: De Munno & Julve (1994).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Coordination environment of ZnII atom in (I). Displacement ellipsoids are shown at the 50% probability level. H atoms and water molecule have been omitted for clarity. [Symmetry codes: (i) 2-x, 1-y, 1-z; (ii) 1-x, 1-y, -z; (iii) x, 3/2-y, -1/2+z.]
[Figure 2] Fig. 2. Polyhedral and wireframe representation of the crystal packing in (I). All H atoms except those of water have been omitted for clarity. Hydrogen bonds are represented by dashed lines.
Poly[[(µ-2,2'-bipyrimidine- κ4N1,N1':N3,N3')(µ-sulfato- κ2O:O')zinc(II)] monohydrate] top
Crystal data top
[Zn(SO4)(C8H6N4)]·H2OF(000) = 680
Mr = 337.61Dx = 2.033 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6452 reflections
a = 8.9935 (3) Åθ = 2.5–26.4°
b = 13.9783 (5) ŵ = 2.44 mm1
c = 9.8459 (4) ÅT = 294 K
β = 117.007 (1)°Prism, colorless
V = 1102.79 (7) Å30.20 × 0.15 × 0.08 mm
Z = 4
Data collection top
Bruker SMART APEX CCD
diffractometer
2254 independent reflections
Radiation source: fine-focus sealed tube2087 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
φ and ω scansθmax = 26.4°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1111
Tmin = 0.874, Tmax = 1.000k = 1717
12167 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023Hydrogen site location: mixed
wR(F2) = 0.063H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0366P)2 + 0.505P]
where P = (Fo2 + 2Fc2)/3
2254 reflections(Δ/σ)max = 0.001
180 parametersΔρmax = 0.40 e Å3
1 restraintΔρmin = 0.52 e Å3
Crystal data top
[Zn(SO4)(C8H6N4)]·H2OV = 1102.79 (7) Å3
Mr = 337.61Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.9935 (3) ŵ = 2.44 mm1
b = 13.9783 (5) ÅT = 294 K
c = 9.8459 (4) Å0.20 × 0.15 × 0.08 mm
β = 117.007 (1)°
Data collection top
Bruker SMART APEX CCD
diffractometer
2254 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2087 reflections with I > 2σ(I)
Tmin = 0.874, Tmax = 1.000Rint = 0.030
12167 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0231 restraint
wR(F2) = 0.063H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.40 e Å3
2254 reflectionsΔρmin = 0.52 e Å3
180 parameters
Special details top

Refinement. Water molecule O—H bonds restrained to be approximately equal.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.77696 (3)0.609668 (15)0.23367 (2)0.01838 (9)
S10.81536 (6)0.72465 (3)0.52650 (5)0.01914 (12)
C10.9291 (2)0.47924 (13)0.5096 (2)0.0177 (4)
C20.8397 (3)0.38425 (14)0.6454 (2)0.0243 (4)
H20.86150.34490.72850.029*
C30.6764 (3)0.40060 (15)0.5389 (3)0.0268 (5)
H30.58780.37220.54780.032*
C40.6501 (2)0.46036 (15)0.4197 (2)0.0243 (4)
H40.54120.47350.34780.029*
C50.4422 (2)0.53564 (13)0.0071 (2)0.0180 (4)
C60.1759 (2)0.58714 (15)0.0698 (2)0.0247 (4)
H60.06150.58020.12960.030*
C70.2350 (3)0.66300 (16)0.0306 (2)0.0274 (4)
H70.16260.70780.03810.033*
C80.4051 (3)0.66992 (15)0.1193 (2)0.0261 (4)
H80.44800.72020.18820.031*
N10.77690 (19)0.50046 (12)0.40355 (18)0.0195 (3)
N20.96733 (19)0.42423 (12)0.63088 (18)0.0185 (3)
N30.5106 (2)0.60557 (11)0.10833 (19)0.0210 (4)
N40.2798 (2)0.52321 (12)0.08307 (18)0.0203 (3)
O10.78154 (19)0.72359 (10)0.36342 (16)0.0271 (3)
O20.81664 (19)0.82843 (10)0.56562 (16)0.0263 (3)
O30.6819 (2)0.67544 (12)0.54284 (19)0.0374 (4)
O40.97797 (19)0.68377 (12)0.62188 (17)0.0337 (4)
O50.7510 (2)0.55805 (14)0.7998 (2)0.0384 (4)
H5A0.747 (3)0.5945 (17)0.738 (3)0.034 (8)*
H5B0.769 (4)0.5931 (19)0.867 (3)0.046 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.01726 (14)0.01966 (14)0.01514 (13)0.00064 (8)0.00468 (10)0.00031 (8)
S10.0218 (2)0.0193 (2)0.0160 (2)0.00226 (18)0.00831 (19)0.00235 (18)
C10.0188 (9)0.0163 (9)0.0171 (9)0.0000 (7)0.0073 (7)0.0026 (7)
C20.0248 (10)0.0255 (11)0.0250 (10)0.0019 (8)0.0135 (9)0.0039 (8)
C30.0202 (10)0.0308 (12)0.0317 (11)0.0050 (8)0.0138 (9)0.0002 (9)
C40.0169 (9)0.0268 (11)0.0256 (10)0.0000 (8)0.0066 (8)0.0002 (8)
C50.0192 (9)0.0183 (9)0.0155 (9)0.0007 (7)0.0071 (7)0.0018 (7)
C60.0184 (9)0.0281 (11)0.0252 (10)0.0034 (8)0.0079 (8)0.0051 (9)
C70.0266 (10)0.0267 (11)0.0306 (11)0.0079 (8)0.0145 (9)0.0026 (9)
C80.0304 (11)0.0213 (10)0.0254 (10)0.0026 (8)0.0116 (9)0.0033 (8)
N10.0160 (7)0.0211 (8)0.0185 (8)0.0004 (6)0.0053 (6)0.0003 (7)
N20.0180 (8)0.0199 (8)0.0171 (8)0.0005 (6)0.0075 (6)0.0003 (6)
N30.0203 (8)0.0204 (9)0.0195 (8)0.0003 (6)0.0066 (7)0.0006 (6)
N40.0180 (7)0.0218 (8)0.0189 (8)0.0007 (6)0.0064 (6)0.0013 (6)
O10.0408 (9)0.0226 (8)0.0170 (7)0.0002 (6)0.0124 (6)0.0035 (6)
O20.0393 (8)0.0204 (7)0.0207 (7)0.0009 (6)0.0150 (6)0.0040 (6)
O30.0378 (9)0.0417 (10)0.0404 (9)0.0170 (7)0.0245 (8)0.0086 (8)
O40.0314 (8)0.0363 (9)0.0263 (8)0.0089 (7)0.0067 (7)0.0002 (7)
O50.0487 (11)0.0327 (10)0.0320 (9)0.0069 (8)0.0167 (8)0.0042 (8)
Geometric parameters (Å, º) top
Zn1—N12.2646 (16)C3—C41.371 (3)
Zn1—N2i2.1228 (15)C3—H30.9300
Zn1—N32.1403 (17)C4—N11.343 (3)
Zn1—N4ii2.2852 (16)C4—H40.9300
Zn1—O12.0302 (14)C5—N31.331 (2)
Zn1—O2iii2.0371 (14)C5—N41.332 (2)
S1—O41.4491 (15)C5—C5ii1.492 (4)
S1—O31.4547 (15)C6—N41.341 (3)
S1—O11.4924 (14)C6—C71.381 (3)
S1—O21.4996 (15)C6—H60.9300
C1—N11.324 (2)C7—C81.378 (3)
C1—N21.327 (2)C7—H70.9300
C1—C1i1.489 (4)C8—N31.346 (3)
C2—N21.341 (3)C8—H80.9300
C2—C31.382 (3)O5—H5A0.78 (2)
C2—H20.9300O5—H5B0.78 (2)
O1—Zn1—O2iii102.53 (6)N1—C4—C3121.99 (18)
O1—Zn1—N2i94.20 (6)N1—C4—H4119.0
O2iii—Zn1—N2i93.77 (6)C3—C4—H4119.0
O1—Zn1—N394.66 (6)N3—C5—N4126.10 (17)
O2iii—Zn1—N396.09 (6)N3—C5—C5ii117.1 (2)
N2i—Zn1—N3165.00 (6)N4—C5—C5ii116.8 (2)
O1—Zn1—N194.05 (6)N4—C6—C7121.50 (18)
O2iii—Zn1—N1160.92 (6)N4—C6—H6119.2
N2i—Zn1—N175.46 (6)C7—C6—H6119.2
N3—Zn1—N191.85 (6)C8—C7—C6117.60 (18)
O1—Zn1—N4ii168.69 (6)C8—C7—H7121.2
O2iii—Zn1—N4ii83.58 (6)C6—C7—H7121.2
N2i—Zn1—N4ii94.89 (6)N3—C8—C7121.46 (19)
N3—Zn1—N4ii75.07 (6)N3—C8—H8119.3
N1—Zn1—N4ii81.74 (6)C7—C8—H8119.3
O4—S1—O3112.49 (10)C1—N1—C4116.24 (17)
O4—S1—O1110.24 (9)C1—N1—Zn1112.75 (12)
O3—S1—O1109.82 (9)C4—N1—Zn1130.81 (13)
O4—S1—O2109.10 (9)C1—N2—C2116.91 (16)
O3—S1—O2109.85 (9)C1—N2—Zn1i117.30 (12)
O1—S1—O2105.07 (8)C2—N2—Zn1i125.12 (14)
N1—C1—N2126.29 (17)C5—N3—C8116.61 (17)
N1—C1—C1i116.8 (2)C5—N3—Zn1117.85 (13)
N2—C1—C1i117.0 (2)C8—N3—Zn1125.50 (14)
N2—C2—C3121.07 (19)C5—N4—C6116.72 (17)
N2—C2—H2119.5C5—N4—Zn1ii113.14 (12)
C3—C2—H2119.5C6—N4—Zn1ii130.12 (14)
C4—C3—C2117.47 (18)S1—O1—Zn1128.37 (9)
C4—C3—H3121.3S1—O2—Zn1iv129.47 (9)
C2—C3—H3121.3H5A—O5—H5B100 (3)
N2—C2—C3—C41.1 (3)C7—C8—N3—C50.4 (3)
C2—C3—C4—N11.4 (3)C7—C8—N3—Zn1178.11 (15)
N4—C6—C7—C81.2 (3)O1—Zn1—N3—C5176.93 (14)
C6—C7—C8—N30.4 (3)O2iii—Zn1—N3—C579.91 (14)
N2—C1—N1—C41.5 (3)N2i—Zn1—N3—C550.9 (3)
C1i—C1—N1—C4178.1 (2)N1—Zn1—N3—C582.71 (14)
N2—C1—N1—Zn1173.85 (15)N4ii—Zn1—N3—C51.76 (13)
C1i—C1—N1—Zn16.5 (3)O1—Zn1—N3—C85.40 (17)
C3—C4—N1—C10.2 (3)O2iii—Zn1—N3—C897.75 (17)
C3—C4—N1—Zn1174.55 (15)N2i—Zn1—N3—C8131.4 (2)
O1—Zn1—N1—C185.87 (13)N1—Zn1—N3—C899.63 (17)
O2iii—Zn1—N1—C164.6 (2)N4ii—Zn1—N3—C8179.43 (18)
N2i—Zn1—N1—C17.42 (12)N3—C5—N4—C60.3 (3)
N3—Zn1—N1—C1179.32 (13)C5ii—C5—N4—C6179.8 (2)
N4ii—Zn1—N1—C1104.70 (13)N3—C5—N4—Zn1ii178.55 (15)
O1—Zn1—N1—C488.67 (18)C5ii—C5—N4—Zn1ii1.5 (2)
O2iii—Zn1—N1—C4120.8 (2)C7—C6—N4—C51.1 (3)
N2i—Zn1—N1—C4178.04 (18)C7—C6—N4—Zn1ii179.05 (15)
N3—Zn1—N1—C46.14 (18)O4—S1—O1—Zn157.96 (14)
N4ii—Zn1—N1—C480.76 (18)O3—S1—O1—Zn166.53 (14)
N1—C1—N2—C21.8 (3)O2—S1—O1—Zn1175.38 (10)
C1i—C1—N2—C2177.8 (2)O2iii—Zn1—O1—S1158.01 (11)
N1—C1—N2—Zn1i172.93 (15)N2i—Zn1—O1—S163.20 (12)
C1i—C1—N2—Zn1i6.7 (3)N3—Zn1—O1—S1104.68 (12)
C3—C2—N2—C10.4 (3)N1—Zn1—O1—S112.49 (12)
C3—C2—N2—Zn1i170.74 (15)N4ii—Zn1—O1—S180.2 (3)
N4—C5—N3—C80.5 (3)O4—S1—O2—Zn1iv84.54 (13)
C5ii—C5—N3—C8179.5 (2)O3—S1—O2—Zn1iv39.20 (15)
N4—C5—N3—Zn1178.36 (14)O1—S1—O2—Zn1iv157.27 (10)
C5ii—C5—N3—Zn11.6 (3)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y+1, z; (iii) x, y+3/2, z1/2; (iv) x, y+3/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···O30.78 (2)2.07 (2)2.838 (3)166 (3)
O5—H5B···O2iv0.78 (2)2.11 (2)2.883 (2)173 (3)
Symmetry code: (iv) x, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Zn(SO4)(C8H6N4)]·H2O
Mr337.61
Crystal system, space groupMonoclinic, P21/c
Temperature (K)294
a, b, c (Å)8.9935 (3), 13.9783 (5), 9.8459 (4)
β (°) 117.007 (1)
V3)1102.79 (7)
Z4
Radiation typeMo Kα
µ (mm1)2.44
Crystal size (mm)0.20 × 0.15 × 0.08
Data collection
DiffractometerBruker SMART APEX CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.874, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
12167, 2254, 2087
Rint0.030
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.063, 1.05
No. of reflections2254
No. of parameters180
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.40, 0.52

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1999), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Zn1—N12.2646 (16)Zn1—N4ii2.2852 (16)
Zn1—N2i2.1228 (15)Zn1—O12.0302 (14)
Zn1—N32.1403 (17)Zn1—O2iii2.0371 (14)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y+1, z; (iii) x, y+3/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···O30.78 (2)2.07 (2)2.838 (3)166 (3)
O5—H5B···O2iv0.78 (2)2.11 (2)2.883 (2)173 (3)
Symmetry code: (iv) x, y+3/2, z+1/2.
 

Acknowledgements

Financial support from the National Science Foundation, awards CHE-0714555 and CHE-0714439, is gratefully acknowledged.

References

First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDe Munno, G. & Julve, M. (1994). Acta Cryst. C50, 1034–1037.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDe Munno, G., Ruiz, R., Lloret, F., Faus, J., Sessoli, R. & Julve, M. (1995). Inorg. Chem. 34, 408–411.  CSD CrossRef CAS Web of Science Google Scholar
First citationKawata, S., Kitagawa, S., Enomoto, M., Kumagai, H. & Katada, M. (1998). Inorg. Chim. Acta, 283, 80–90.  Web of Science CSD CrossRef CAS Google Scholar
First citationMarshall, S. R., Incarvito, C. D., Manson, J. L., Rheingold, A. L. & Miller, J. S. (2000). Inorg. Chem. 39, 1969–1973.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, C.-C., Kuo, C.-T., Yang, J.-C., Lee, G.-H., Shih, W.-J. & Sheu, H.-S. (2007). Cryst. Growth Des. 7, 1476–1482.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds