metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

{2-[(2-Acetyl­hydrazin-1-yl­­idene)methyl-κ2N1,O]-6-meth­oxy­phenolato-κO1}(nitrato-κO)copper(II) monohydrate

aDépartement de Chimie, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Senegal, bICSN-CNRS, Laboratoire de Cristallochimie, 1 Avenue de la Terasse, 91198 Gif-sur-Yvette, France, and cANBioPhi FRE 3207 CNRS, Université de Paris 13, 74 Rue Marcel Cachin, 93017 Bobigny, France
*Correspondence e-mail: mlgayeastou@yahoo.fr

(Received 21 December 2009; accepted 6 January 2010; online 9 January 2010)

In the title complex, [Cu(C10H11N2O3)(NO3)]·H2O, prepared from the Schiff base N′-(3-meth­oxy-2-oxidobenzyl­idene)­acetohydrazide, the CuII atom is coordinated by two O atoms and one N atom from the ligand and one O atom from a nitrate group in a distorted square-planar geometry. The CuII atom has a weak inter­action with another O atom of the nitrate group. The two O atoms of the tridentate Schiff base ligand are in a trans arrangement. O—H⋯O and N—H⋯O hydrogen bonds involving the uncoordinated water mol­ecule are observed.

Related literature

For related structures, see: Ainscough et al. (1998[Ainscough, E. W., Brodie, A. M., Dobbs, A. J., Ranford, J. D. & Waters, J. M. (1998). Inorg. Chim. Acta, 267, 27-38.]); Koh et al. (1998[Koh, L. L., Kon, O. L., Loh, K. W., Long, Y. C., Ranford, J. D., Tan, A. I. L. C. & Tjan, Y. Y. (1998). J. Inorg. Biochem. 72, 155-162.]); Tamboura et al. (2009[Tamboura, F. B., Gaye, M., Sall, A. S., Barry, A. H. & Bah, Y. (2009). Acta Cryst. E65, m160-m161.]); You & Zhu (2004[You, Z.-L. & Zhu, H.-L. (2004). Acta Cryst. E60, m1079-m1080.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C10H11N2O3)(NO3)]·H2O

  • Mr = 350.77

  • Monoclinic, P 21 /c

  • a = 9.274 (2) Å

  • b = 10.455 (4) Å

  • c = 13.726 (4) Å

  • β = 95.16 (5)°

  • V = 1325.5 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.69 mm−1

  • T = 293 K

  • 0.40 × 0.28 × 0.20 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) Tmin = 0.56, Tmax = 0.72

  • 5500 measured reflections

  • 3046 independent reflections

  • 2493 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.090

  • S = 1.05

  • 3046 reflections

  • 192 parameters

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.44 e Å−3

Table 1
Selected bond lengths (Å)

Cu1—N1 1.9134 (18)
Cu1—O1 1.8798 (15)
Cu1—O3 1.9730 (16)
Cu1—O4 1.9663 (16)
Cu1—O6 2.559 (2)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2N⋯O7 0.86 1.95 2.801 (3) 174
O7—H1O⋯O1i 0.92 2.40 3.271 (3) 159
O7—H1O⋯O2i 0.92 2.42 3.050 (3) 126
O7—H2O⋯O5ii 0.92 2.08 2.984 (3) 167
Symmetry codes: (i) x-1, y, z; (ii) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In the title complex, the CuII ion adopts a four-coordinated geometry with the Schiff base coordinated to the metal ion as a uninegative charged tridentate ligand via the carbonyl O atom, the azomethine N atom and the phenolate O atom. The fourth coordination position is occupied by an O atom of the nitrate group. The CuII ion has a weak interaction with another O atom (O6) of the nitrate (Table 1). The bond distances of Cu—N and Cu—O are similar to the other Cu analogue with the same tridentate ligand (Ainscough et al., 1998). The Cu—O(NO3) distance is similar to the observed value for the complex [Cu(L)NO3] [L = 1-(pyridin-2-ylmethyliminomethyl)naphtalen-2-olato] (You & Zhu, 2004). The two O donor atoms of the ligand are in a trans arrangement with an O—Cu—O angle of 173.76 (6)°. The angles around Cu are in a range of 81.49 (7)–173.76 (6)° and sum of the angles at Cu is 360.4°, suggesting that the geometry around the Cu atom is distorted square-planar (Fig. 1).

Related literature top

For related structures, see: Ainscough et al. (1998); Koh et al. (1998); Tamboura et al. (2009); You & Zhu (2004).

Experimental top

All purchased chemicals and solvents were reagent grade and used without further purification. The solid-state IR spectra were recorded from KBr discs on a Nicolet spectrophotometer. To a mixture of the ligand (0.211 g, 1.0 mmol) and 20 ml of ethanol was added dropwise a solution of copper nitrate dihydrate (0.242 g, 2.0 mmol) in 10 ml of ethanol. The resulting mixture was stirred under reflux for 2 h. After cooling the solution was filtered and the filtrate was left for slow evaporation. Green crystals of the title compound were obtained in good yield (0.290 g, 82.7%). IR (cm-1): 3403, 1604, 1578, 1445, 1291, 1248, 1082, 1004, 331, 273. Melting point 196±1°C. Analysis, calculated for C10H13CuN3O7: C 34.24, H 3.74, N 11.98%; found: C 34.26, H 3.73, N 16.15%. Single crystals suitable for X-ray analysis were obtained from slow evaporation of a methanol solution of the product.

Refinement top

Water H atoms and amine H atoms of the Schiff base ligand were located from a difference Fourier map and refined as riding atoms with Uiso(H) = 1.2Ueq(N,O). Other H atoms were placed geometrically and refined with a riding model, with C—H = 0.93 (CH) and 0.96 (CH3) Å and with Uiso(H) = 1.2(1.5 for methyl)Ueq(C).

Structure description top

In the title complex, the CuII ion adopts a four-coordinated geometry with the Schiff base coordinated to the metal ion as a uninegative charged tridentate ligand via the carbonyl O atom, the azomethine N atom and the phenolate O atom. The fourth coordination position is occupied by an O atom of the nitrate group. The CuII ion has a weak interaction with another O atom (O6) of the nitrate (Table 1). The bond distances of Cu—N and Cu—O are similar to the other Cu analogue with the same tridentate ligand (Ainscough et al., 1998). The Cu—O(NO3) distance is similar to the observed value for the complex [Cu(L)NO3] [L = 1-(pyridin-2-ylmethyliminomethyl)naphtalen-2-olato] (You & Zhu, 2004). The two O donor atoms of the ligand are in a trans arrangement with an O—Cu—O angle of 173.76 (6)°. The angles around Cu are in a range of 81.49 (7)–173.76 (6)° and sum of the angles at Cu is 360.4°, suggesting that the geometry around the Cu atom is distorted square-planar (Fig. 1).

For related structures, see: Ainscough et al. (1998); Koh et al. (1998); Tamboura et al. (2009); You & Zhu (2004).

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
{2-[(2-Acetylhydrazin-1-ylidene)methyl-κ2N1,O]- 6-methoxyphenolato-κO1}(nitrato-κO)copper(II) monohydrate top
Crystal data top
[Cu(C10H11N2O3)(NO3)]·H2OF(000) = 716
Mr = 350.77Dx = 1.758 Mg m3
Monoclinic, P21/cMelting point: 469 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71070 Å
a = 9.274 (2) ÅCell parameters from 12725 reflections
b = 10.455 (4) Åθ = 1.0–27.5°
c = 13.726 (4) ŵ = 1.69 mm1
β = 95.16 (5)°T = 293 K
V = 1325.5 (7) Å3Prism, green
Z = 40.40 × 0.28 × 0.20 mm
Data collection top
Nonius KappaCCD
diffractometer
3046 independent reflections
Radiation source: fine-focus sealed tube2493 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
φ and ω scansθmax = 27.5°, θmin = 2.5°
Absorption correction: multi-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
h = 1212
Tmin = 0.56, Tmax = 0.72k = 1312
5500 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.090H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0515P)2 + 0.2512P]
where P = (Fo2 + 2Fc2)/3
3046 reflections(Δ/σ)max = 0.001
192 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.44 e Å3
Crystal data top
[Cu(C10H11N2O3)(NO3)]·H2OV = 1325.5 (7) Å3
Mr = 350.77Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.274 (2) ŵ = 1.69 mm1
b = 10.455 (4) ÅT = 293 K
c = 13.726 (4) Å0.40 × 0.28 × 0.20 mm
β = 95.16 (5)°
Data collection top
Nonius KappaCCD
diffractometer
3046 independent reflections
Absorption correction: multi-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
2493 reflections with I > 2σ(I)
Tmin = 0.56, Tmax = 0.72Rint = 0.021
5500 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.090H-atom parameters constrained
S = 1.05Δρmax = 0.33 e Å3
3046 reflectionsΔρmin = 0.44 e Å3
192 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.09934 (3)0.23847 (2)0.104081 (19)0.03448 (11)
O10.20916 (16)0.08774 (13)0.10007 (12)0.0391 (3)
O20.39441 (16)0.09065 (15)0.07532 (13)0.0489 (4)
O30.02563 (16)0.38826 (14)0.12039 (12)0.0417 (4)
O40.25659 (17)0.34556 (16)0.06197 (12)0.0464 (4)
O50.40681 (19)0.48337 (19)0.13003 (19)0.0784 (7)
O60.2791 (2)0.3648 (2)0.21931 (14)0.0662 (5)
O70.45344 (19)0.13264 (18)0.18452 (13)0.0589 (5)
H1O0.53710.11480.14550.071*
H2O0.43180.07720.23580.071*
N10.07247 (18)0.14998 (17)0.13266 (12)0.0321 (4)
N20.1848 (2)0.23436 (17)0.14647 (14)0.0362 (4)
H2N0.26940.20920.15910.043*
N30.31622 (19)0.39954 (18)0.13960 (18)0.0477 (5)
C10.1588 (2)0.02931 (19)0.10347 (14)0.0323 (4)
C20.0145 (2)0.0638 (2)0.11923 (14)0.0336 (4)
C30.0258 (3)0.1947 (2)0.11989 (16)0.0404 (5)
H30.12100.21630.12880.048*
C40.0720 (3)0.2894 (2)0.10779 (16)0.0435 (5)
H40.04380.37470.10870.052*
C50.2160 (3)0.2570 (2)0.09391 (17)0.0405 (5)
H50.28330.32140.08650.049*
C60.2581 (2)0.1313 (2)0.09123 (15)0.0351 (4)
C70.0955 (2)0.0287 (2)0.13384 (15)0.0360 (5)
H70.18760.00020.14470.043*
C80.5026 (3)0.1853 (3)0.0650 (2)0.0549 (6)
H8A0.52030.23180.12510.082*
H8B0.59040.14460.04940.082*
H8C0.46990.24320.01340.082*
C90.1505 (2)0.3575 (2)0.13847 (15)0.0371 (5)
C100.2645 (3)0.4550 (2)0.14953 (19)0.0504 (6)
H10A0.22740.52000.19440.076*
H10B0.34700.41490.17420.076*
H10C0.29290.49310.08710.076*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.03077 (17)0.02852 (15)0.04481 (18)0.00120 (9)0.00701 (11)0.00130 (10)
O10.0317 (8)0.0291 (7)0.0572 (9)0.0018 (6)0.0082 (7)0.0017 (6)
O20.0358 (9)0.0386 (9)0.0730 (11)0.0047 (7)0.0088 (8)0.0013 (8)
O30.0378 (8)0.0344 (8)0.0534 (9)0.0008 (6)0.0068 (7)0.0025 (7)
O40.0435 (9)0.0413 (9)0.0556 (10)0.0083 (7)0.0114 (7)0.0026 (7)
O50.0368 (10)0.0432 (11)0.154 (2)0.0105 (8)0.0007 (12)0.0053 (12)
O60.0606 (12)0.0783 (14)0.0591 (12)0.0034 (10)0.0021 (10)0.0132 (10)
O70.0467 (10)0.0621 (12)0.0672 (12)0.0145 (8)0.0010 (9)0.0066 (9)
N10.0288 (8)0.0329 (9)0.0349 (9)0.0014 (7)0.0042 (7)0.0006 (7)
N20.0283 (9)0.0406 (10)0.0404 (10)0.0032 (7)0.0065 (8)0.0008 (7)
N30.0280 (9)0.0326 (10)0.0819 (16)0.0059 (8)0.0016 (10)0.0071 (10)
C10.0359 (11)0.0303 (10)0.0300 (10)0.0017 (8)0.0009 (8)0.0011 (8)
C20.0366 (11)0.0336 (10)0.0304 (10)0.0023 (8)0.0030 (8)0.0009 (8)
C30.0422 (13)0.0352 (12)0.0439 (12)0.0087 (9)0.0051 (10)0.0011 (10)
C40.0575 (15)0.0283 (10)0.0442 (12)0.0059 (10)0.0011 (11)0.0021 (9)
C50.0499 (14)0.0320 (11)0.0386 (12)0.0059 (9)0.0008 (10)0.0000 (8)
C60.0358 (11)0.0354 (11)0.0335 (10)0.0018 (9)0.0011 (8)0.0005 (8)
C70.0315 (11)0.0403 (12)0.0364 (11)0.0064 (8)0.0033 (9)0.0012 (9)
C80.0411 (13)0.0506 (15)0.0730 (17)0.0135 (11)0.0048 (12)0.0068 (13)
C90.0374 (12)0.0396 (11)0.0337 (11)0.0045 (9)0.0007 (8)0.0009 (9)
C100.0473 (14)0.0481 (14)0.0555 (14)0.0140 (11)0.0023 (11)0.0005 (11)
Geometric parameters (Å, º) top
Cu1—N11.9134 (18)C1—C21.422 (3)
Cu1—O11.8798 (15)C1—C61.428 (3)
Cu1—O31.9730 (16)C2—C31.419 (3)
Cu1—O41.9663 (16)C2—C71.433 (3)
Cu1—O62.559 (2)C3—C41.363 (4)
O1—C11.312 (2)C3—H30.9300
O2—C61.370 (3)C4—C51.407 (3)
O2—C81.425 (3)C4—H40.9300
O3—C91.248 (3)C5—C61.373 (3)
O4—N31.286 (3)C5—H50.9300
O5—N31.229 (3)C7—H70.9300
O6—N31.231 (3)C8—H8A0.9600
O7—H1O0.92C8—H8B0.9600
O7—H2O0.92C8—H8C0.9600
N1—C71.286 (3)C9—C101.486 (3)
N1—N21.391 (2)C10—H10A0.9600
N2—C91.333 (3)C10—H10B0.9600
N2—H2N0.8600C10—H10C0.9600
O1—Cu1—N193.67 (7)C4—C3—C2121.4 (2)
O1—Cu1—O492.90 (7)C4—C3—H3119.3
N1—Cu1—O4171.47 (7)C2—C3—H3119.3
O1—Cu1—O3173.76 (6)C3—C4—C5119.5 (2)
N1—Cu1—O381.49 (7)C3—C4—H4120.3
O4—Cu1—O392.30 (7)C5—C4—H4120.3
O1—Cu1—O697.25 (7)C6—C5—C4120.7 (2)
O3—Cu1—O682.93 (7)C6—C5—H5119.7
O4—Cu1—O655.16 (7)C4—C5—H5119.7
N1—Cu1—O6129.12 (7)O2—C6—C5124.8 (2)
C1—O1—Cu1125.84 (13)O2—C6—C1113.64 (18)
C6—O2—C8117.93 (18)C5—C6—C1121.6 (2)
C9—O3—Cu1112.53 (14)N1—C7—C2122.85 (19)
N3—O4—Cu1106.34 (13)N1—C7—H7118.6
H1O—O7—H2O115.6C2—C7—H7118.6
C7—N1—N2119.75 (18)O2—C8—H8A109.5
C7—N1—Cu1128.43 (15)O2—C8—H8B109.5
N2—N1—Cu1111.66 (13)H8A—C8—H8B109.5
C9—N2—N1114.45 (17)O2—C8—H8C109.5
C9—N2—H2N122.8H8A—C8—H8C109.5
N1—N2—H2N122.8H8B—C8—H8C109.5
O5—N3—O6123.6 (2)O3—C9—N2119.85 (19)
O5—N3—O4118.1 (2)O3—C9—C10121.7 (2)
O6—N3—O4118.24 (19)N2—C9—C10118.4 (2)
O1—C1—C2125.80 (19)C9—C10—H10A109.5
O1—C1—C6117.19 (18)C9—C10—H10B109.5
C2—C1—C6117.01 (18)H10A—C10—H10B109.5
C3—C2—C1119.86 (19)C9—C10—H10C109.5
C3—C2—C7117.3 (2)H10A—C10—H10C109.5
C1—C2—C7122.82 (19)H10B—C10—H10C109.5
N1—Cu1—O1—C17.99 (17)C1—C2—C3—C41.5 (3)
O4—Cu1—O1—C1166.57 (17)C7—C2—C3—C4179.2 (2)
N1—Cu1—O3—C91.29 (15)C2—C3—C4—C50.3 (3)
O4—Cu1—O3—C9172.83 (15)C3—C4—C5—C60.8 (4)
O1—Cu1—O4—N3101.08 (13)C8—O2—C6—C52.9 (3)
O3—Cu1—O4—N375.48 (14)C8—O2—C6—C1178.26 (19)
O1—Cu1—N1—C77.63 (19)C4—C5—C6—O2178.0 (2)
O3—Cu1—N1—C7176.33 (18)C4—C5—C6—C10.7 (3)
O1—Cu1—N1—N2177.15 (13)O1—C1—C6—O21.3 (3)
O3—Cu1—N1—N21.11 (13)C2—C1—C6—O2179.32 (18)
C7—N1—N2—C9176.51 (19)O1—C1—C6—C5179.8 (2)
Cu1—N1—N2—C90.8 (2)C2—C1—C6—C50.4 (3)
Cu1—O4—N3—O5171.45 (16)N2—N1—C7—C2179.38 (18)
Cu1—O4—N3—O68.3 (2)Cu1—N1—C7—C24.5 (3)
Cu1—O1—C1—C25.8 (3)C3—C2—C7—N1178.50 (19)
Cu1—O1—C1—C6174.91 (14)C1—C2—C7—N10.8 (3)
O1—C1—C2—C3179.18 (19)Cu1—O3—C9—N21.2 (3)
C6—C1—C2—C31.5 (3)Cu1—O3—C9—C10177.50 (16)
O1—C1—C2—C70.1 (3)N1—N2—C9—O30.3 (3)
C6—C1—C2—C7179.19 (18)N1—N2—C9—C10178.48 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···O70.861.952.801 (3)174
O7—H1O···O1i0.922.403.271 (3)159
O7—H1O···O2i0.922.423.050 (3)126
O7—H2O···O5ii0.922.082.984 (3)167
Symmetry codes: (i) x1, y, z; (ii) x, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Cu(C10H11N2O3)(NO3)]·H2O
Mr350.77
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)9.274 (2), 10.455 (4), 13.726 (4)
β (°) 95.16 (5)
V3)1325.5 (7)
Z4
Radiation typeMo Kα
µ (mm1)1.69
Crystal size (mm)0.40 × 0.28 × 0.20
Data collection
DiffractometerNonius KappaCCD
Absorption correctionMulti-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
Tmin, Tmax0.56, 0.72
No. of measured, independent and
observed [I > 2σ(I)] reflections
5500, 3046, 2493
Rint0.021
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.090, 1.05
No. of reflections3046
No. of parameters192
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.44

Computer programs: COLLECT (Nonius, 1998), DENZO/SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Selected bond lengths (Å) top
Cu1—N11.9134 (18)Cu1—O41.9663 (16)
Cu1—O11.8798 (15)Cu1—O62.559 (2)
Cu1—O31.9730 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···O70.861.952.801 (3)174
O7—H1O···O1i0.922.403.271 (3)159
O7—H1O···O2i0.922.423.050 (3)126
O7—H2O···O5ii0.922.082.984 (3)167
Symmetry codes: (i) x1, y, z; (ii) x, y1/2, z+1/2.
 

Acknowledgements

The authors thank the Agence Universitaire de la Francophonie for financial support (AUF-PSCI No. 6314PS804).

References

First citationAinscough, E. W., Brodie, A. M., Dobbs, A. J., Ranford, J. D. & Waters, J. M. (1998). Inorg. Chim. Acta, 267, 27–38.  CSD CrossRef CAS Web of Science Google Scholar
First citationKoh, L. L., Kon, O. L., Loh, K. W., Long, Y. C., Ranford, J. D., Tan, A. I. L. C. & Tjan, Y. Y. (1998). J. Inorg. Biochem. 72, 155–162.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTamboura, F. B., Gaye, M., Sall, A. S., Barry, A. H. & Bah, Y. (2009). Acta Cryst. E65, m160–m161.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYou, Z.-L. & Zhu, H.-L. (2004). Acta Cryst. E60, m1079–m1080.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds