metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

cis-Aqua­bis­(2,2′-bi­pyridine-κ2N,N′)fluoridochromium(III) bis­­(perchlorate) dihydrate

aDepartment of Chemistry, University of Copenhagen, Universitetsparken 5, DK.2100 Copenhagen Ø, Denmark
*Correspondence e-mail: birk@kiku.dk

(Received 21 December 2009; accepted 3 January 2010; online 9 January 2010)

The title mixed aqua–fluoride complex, [CrF(C10H8N2)2(H2O)](ClO4)2·2H2O, has been synthesized by aqua­tion of the corresponding difluoride complex using lanthan­ide(III) ions as F acceptors. The complex crystallizes with a CrIII ion at the center of a distorted octa­hedral coordination polyhedron with a cis arrangement of ligands. The crystal packing shows a hydrogen-bonding pattern involving water mol­ecules, the coordinated F atom and the perchlorate anions

Related literature

For related difluoride complexes, see: Birk et al. (2008[Birk, T., Bendix, J. & Weihe, H. (2008). Acta Cryst. E64, m369-m370.]); Brenčič et al. (1987[Brenčič, J. V., Leban, I. & Polanc, I. (1987). Z. Anorg. Allg. Chem. 551, 109-115.]); Brenčič & Leban (1981[Brenčič, J. V. & Leban, I. (1981). Z. Anorg. Allg. Chem. 480, 213-219.]); DeJovine et al. (1974[DeJovine, J., Mason, W. R. & Vaughn, J. W. (1974). Inorg. Chem. 13, 66-73.]); Delavar & Staples (1981[Delavar, M. & Staples, P. J. (1981). J. Chem. Soc. Dalton Trans. pp. 981-985.]); Kavitha et al. (2005[Kavitha, S. J., Panchanatheswaran, K., Low, J. N. & Glidewell, C. (2005). Acta Cryst. E61, m1965-m1967.]); Vaughn et al. (1968[Vaughn, J. W., Stvan, O. J. & Magnuson, V. E. (1968). Inorg. Chem. 7, 736-741.]); Vaughn & Seiler (1979[Vaughn, J. W. & Seiler, G. J. (1979). Inorg. Chem. 18, 1509-1511.]); Yamaguchi-Terasaki et al. (2007[Yamaguchi-Terasaki, Y., Fujihara, T., Nagasawa, A. & Kaizaki, S. (2007). Acta Cryst. E63, m593-m595.]). For related structures, see: Casellato et al. (1986[Casellato, U., Graziani, R., Maccarrone, G. & Bilio, G. M. (1986). J. Crystallogr. Spectrosc. Res. 16, 695-702.]); Liu (2009[Liu, H.-X. (2009). Acta Cryst. E65, m1093.]). For details of the synthesis, see: Glerup et al. (1970[Glerup, J., Josephsen, J., Michelsen, K., Pedersen, E. & Schäffer, C. E. (1970). Acta Chem. Scand. 24, 247-254.]).

[Scheme 1]

Experimental

Crystal data
  • [CrF(C10H8N2)2(H2O)](ClO4)2·2H2O

  • Mr = 636.32

  • Triclinic, [P \overline 1]

  • a = 9.577 (1) Å

  • b = 11.4050 (6) Å

  • c = 11.8150 (11) Å

  • α = 77.273 (6)°

  • β = 79.427 (9)°

  • γ = 83.590 (5)°

  • V = 1234.01 (19) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.76 mm−1

  • T = 122 K

  • 0.41 × 0.24 × 0.14 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: Gaussian (Coppens, 1970[Coppens, P. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 255-270. Copenhagen: Munksgaard.]) Tmin = 0.805, Tmax = 0.925

  • 27824 measured reflections

  • 5691 independent reflections

  • 5244 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.070

  • S = 1.03

  • 5691 reflections

  • 352 parameters

  • H-atom parameters constrained

  • Δρmax = 0.55 e Å−3

  • Δρmin = −0.42 e Å−3

Table 1
Selected bond lengths (Å)

Cr1—F1 1.8614 (8)
Cr1—O1 1.9579 (10)
Cr1—N1 2.0501 (12)
Cr1—N2 2.0456 (12)
Cr1—N3 2.0545 (12)
Cr1—N4 2.0571 (12)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯F1i 0.83 1.73 2.5482 (13) 174
O1—H1B⋯O2ii 0.83 1.73 2.5548 (15) 176
O2—H2A⋯O3 0.90 1.89 2.7887 (18) 179
O2—H2B⋯O5 0.84 2.14 2.9380 (17) 158
O3—H3A⋯O10iii 0.91 2.00 2.890 (2) 167
O3—H3B⋯O8 0.87 2.19 3.050 (2) 168
O3—H3B⋯O9 0.87 2.48 3.123 (2) 132
Symmetry codes: (i) -x+1, -y, -z+2; (ii) -x+1, -y+1, -z+1; (iii) -x, -y+1, -z+1.

Table 3
M—F bond distances (Å) for related cis/trans-[M(L)2F2]+ complexes

(I) (II) (III) (IV) (V)
1.8621 (10) 1.8541 (10) 1.887 (6) 1.887 (5) 1.7389 (15)
1.8444 (10) 1.8409 (10) 1.878 (6) 1.868 (4) 1.7232 (15)
Notes: (I)[link] cis-[Cr(phen)2F2]ClO4·H2O (Birk et al., 2008[Birk, T., Bendix, J. & Weihe, H. (2008). Acta Cryst. E64, m369-m370.]); (II) cis-[Cr(bipy)2F2]ClO4·H2O (Yamaguchi-Terasaki et al., 2007[Yamaguchi-Terasaki, Y., Fujihara, T., Nagasawa, A. & Kaizaki, S. (2007). Acta Cryst. E63, m593-m595.]); (III) trans-[Cr(en)2F2]ClO4 (Brenčič & Leban, 1981[Brenčič, J. V. & Leban, I. (1981). Z. Anorg. Allg. Chem. 480, 213-219.]); (IV) cis-[Cr(en)2F2]ClO4·NaClO4·H2O (Brenčič et al., 1987[Brenčič, J. V., Leban, I. & Polanc, I. (1987). Z. Anorg. Allg. Chem. 551, 109-115.]); (V) cis-[V(bipy)2F2]BF4 (Kavitha et al., 2005[Kavitha, S. J., Panchanatheswaran, K., Low, J. N. & Glidewell, C. (2005). Acta Cryst. E61, m1965-m1967.]). en = ethane-1,2-diamine; bipy = 2,2′-bipyridine; phen = 1,10-phenanthroline.

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: COLLECT; data reduction: EVALCCD (Duisenberg et al., 2003[Duisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220-229.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Water and fluoride are both hard donor ligands favoring the same central ions. Nevertheless, no transition metal complexes of the general type cis-[M(L)2(H2O)F]2+ with L being a bidentate ligand such as 2,2'-bipyridine (bipy), 1,10-phenanthroline (phen) or ethane-1,2-diamine (en) have previously been characterized by X-ray diffraction. This report presents the synthesis and crystal structure of such a system exemplified by the title complex cis-[Cr(bipy)2(H2O)F](ClO4)2.2H2O.

All trivalent lanthanid ions, Ln3+ are known to be hard Lewis acids. This Lewis acidity gives rise to favorable bond formation with ligands containing oxygen and fluorine ligator atoms. The interactions between lanthanid ions and coordinated fluoride have not received much attention compared to the plethora of oxygen bridged systems reported. We have initiated a study on the reactivity of lanthanid ions towards coordinated fluoride ligands to assess if new fluoride contaning complexes can be synthesized this way. In the context of these studies, we found that the title complex, as well as the corresponding phen complex, can be synthesized by a lanthanid ion assisted aquation of the difluoride complex cis-[Cr(bipy)2F2]ClO4. The normal aquation reaction is performed in strong acid and has been studied preparatively and kinetic for difluoride complexes as trans-[Cr(en)2F2]+ and cis-[Cr(bipy)2F2]+ (DeJovine et al., 1974; Delavar & Staples, 1981; Vaughn et al., 1968; Vaughn & Seiler, 1979). However, the present synthetic approach is more general, as it can be applied also to systems with an acid-labile auxillary ligand sphere.

The most important structural element in the title compound is the cis arrangement of ligators in a distorted octahedral coordination polyhedron around the central CrIII ion (Fig. 1). Distortion from ideal geometry is dictated by the nearly fixed bite angles of the two bipy ligands [79.51 (5) and 79.24 (5)°]. This pattern is also seen in the structurally related difluoride complexes cis-[V(bipy)2F2]BF4 (Kavitha et al., 2005) and cis-[Cr(bipy)F2]ClO4.H2O (Yamaguchi-Terasaki et al., 2007). The Cr1—F1 bond distance of 1.8614 (8) Å (Table 1) is in accordance with the structurally characterized difluoride complexes, as shown in Table 3. The Cr1—O1 bond distance of 1.9579 (10)Å is shorter than what is seen in both the tricationic, diaqua complex cis-[Cr(bipy)2(H2O)2](NO3)3 [2.00 (1) and 1.98 (1) Å] (Casellato et al., 1986), as well as in the uncharged [Cr(bipy)(H2O)F3].2H2O [1.979 (2) Å] (Liu, 2009). In the structure of cis-[Cr(bipy)2F2]+, a trans influence leading to the Cr—N bond distances trans to the fluorido ligand being longer that the corresponding cis distances was identified by Yamaguchi-Terasaki et al. (2007). This situation was also found in cis-[Cr(phen)2F2]+ (Birk et al., 2008), but is not discernible in the structure reported here.

The crystal packing in the title complex (Fig. 2) shows a hydrogen bonding pattern involving water molecules, coordinated F atom and perchlorate anions (Table 2).

Related literature top

For related difluoride complexes, see: Birk et al. (2008); Brenčič et al. (1987); Brenčič & Leban (1981); DeJovine et al. (1974); Delavar & Staples (1981); Kavitha et al. (2005); Vaughn et al. (1968); Vaughn & Seiler (1979); Yamaguchi-Terasaki et al. (2007). For related structures, see: Casellato et al. (1986); Liu (2009). For details of the synthesis, see: Glerup et al. (1970).

Experimental top

Safety remark: Perchlorate complexes of metal ions are potentially explosive. The title complex burns with high intensity when ignited in a gas flame. According to Delavar & Staples (1981), the corresponding phen complex is explosive.

All chemicals were used as received. cis-[Cr(bipy)2F2]ClO4 was synthesized by reflux of trans-difluorotetrakis(pyridine)chromium(III) perchlorate and bipy in 2-methoxyethanol according to the published method (Glerup et al., 1970).

Nd2O3 (0.251 g, 0.746 mmol) was dissolved in 0.5 ml HClO4 (60%) by gentle heating giving a pink solution to which was added a mixture of cis-[Cr(bipy)2F2]ClO4 (1.011 g, 2.015 mmol) in acteonitrile (60 ml) and water (20 ml). Mixing gave rise to a slight color change from purple to red. The solution was placed in a water bath (~70°C) and was stirred for 30–35 min. The resulting muddy red suspension was solidified by cooling to room temperature. Extraction with a mixture of acetonitrile and water (2:1, 30 ml) gave an orange turbid solution which was separated into a clear solution and white precipitate by centrifugation. Slow evaporation gave an orange crystalline product which contained crystals of suitable quality for X-ray diffraction. The product was isolated by filtering, washed with ice water and dried in air (yield 1.073 g, 83.7%). Analysis, calculated for C20H22Cl2CrFN4O11: C 37.75, H 3.48, N 8.80%; found: C 37.97, H 3.41, N 8.70%.

The corresponding phen complex, cis-[Cr(phen)2(H2O)F](ClO4)2.H2O can be synthesized from cis-[Cr(phen)2F2]ClO4 (1.034 g, 1.88 mmol) by a similar procedure (yield 0.781 g, 60.7%). Analysis, calculated for C24H22Cl2CrFN4O11: C 42.12, H 3.24, N 8.19%; found: C 42.07, H 2.73, N 8.02%.

Refinement top

The aromatic H atoms were placed in geometrically idealized positions and refined as riding atoms, with C—H = 0.95 Å and with Uiso(H) = 1.2Ueq(C). H atoms of water molecules were identified in a difference Fourier map and refined as riding with Uiso(H) = 1.2Ueq(O).

Structure description top

Water and fluoride are both hard donor ligands favoring the same central ions. Nevertheless, no transition metal complexes of the general type cis-[M(L)2(H2O)F]2+ with L being a bidentate ligand such as 2,2'-bipyridine (bipy), 1,10-phenanthroline (phen) or ethane-1,2-diamine (en) have previously been characterized by X-ray diffraction. This report presents the synthesis and crystal structure of such a system exemplified by the title complex cis-[Cr(bipy)2(H2O)F](ClO4)2.2H2O.

All trivalent lanthanid ions, Ln3+ are known to be hard Lewis acids. This Lewis acidity gives rise to favorable bond formation with ligands containing oxygen and fluorine ligator atoms. The interactions between lanthanid ions and coordinated fluoride have not received much attention compared to the plethora of oxygen bridged systems reported. We have initiated a study on the reactivity of lanthanid ions towards coordinated fluoride ligands to assess if new fluoride contaning complexes can be synthesized this way. In the context of these studies, we found that the title complex, as well as the corresponding phen complex, can be synthesized by a lanthanid ion assisted aquation of the difluoride complex cis-[Cr(bipy)2F2]ClO4. The normal aquation reaction is performed in strong acid and has been studied preparatively and kinetic for difluoride complexes as trans-[Cr(en)2F2]+ and cis-[Cr(bipy)2F2]+ (DeJovine et al., 1974; Delavar & Staples, 1981; Vaughn et al., 1968; Vaughn & Seiler, 1979). However, the present synthetic approach is more general, as it can be applied also to systems with an acid-labile auxillary ligand sphere.

The most important structural element in the title compound is the cis arrangement of ligators in a distorted octahedral coordination polyhedron around the central CrIII ion (Fig. 1). Distortion from ideal geometry is dictated by the nearly fixed bite angles of the two bipy ligands [79.51 (5) and 79.24 (5)°]. This pattern is also seen in the structurally related difluoride complexes cis-[V(bipy)2F2]BF4 (Kavitha et al., 2005) and cis-[Cr(bipy)F2]ClO4.H2O (Yamaguchi-Terasaki et al., 2007). The Cr1—F1 bond distance of 1.8614 (8) Å (Table 1) is in accordance with the structurally characterized difluoride complexes, as shown in Table 3. The Cr1—O1 bond distance of 1.9579 (10)Å is shorter than what is seen in both the tricationic, diaqua complex cis-[Cr(bipy)2(H2O)2](NO3)3 [2.00 (1) and 1.98 (1) Å] (Casellato et al., 1986), as well as in the uncharged [Cr(bipy)(H2O)F3].2H2O [1.979 (2) Å] (Liu, 2009). In the structure of cis-[Cr(bipy)2F2]+, a trans influence leading to the Cr—N bond distances trans to the fluorido ligand being longer that the corresponding cis distances was identified by Yamaguchi-Terasaki et al. (2007). This situation was also found in cis-[Cr(phen)2F2]+ (Birk et al., 2008), but is not discernible in the structure reported here.

The crystal packing in the title complex (Fig. 2) shows a hydrogen bonding pattern involving water molecules, coordinated F atom and perchlorate anions (Table 2).

For related difluoride complexes, see: Birk et al. (2008); Brenčič et al. (1987); Brenčič & Leban (1981); DeJovine et al. (1974); Delavar & Staples (1981); Kavitha et al. (2005); Vaughn et al. (1968); Vaughn & Seiler (1979); Yamaguchi-Terasaki et al. (2007). For related structures, see: Casellato et al. (1986); Liu (2009). For details of the synthesis, see: Glerup et al. (1970).

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: COLLECT (Nonius, 1998); data reduction: EVALCCD (Duisenberg et al., 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability.
[Figure 2] Fig. 2. The crystal packing in the title compound. Displacement ellipsoids are drawn at the 50% probability. H atoms except those of water molecules have been omitted for clarity.
cis-Aquabis(2,2'-bipyridine-κ2N,N')fluoridochromium(III) bis(perchlorate) dihydrate top
Crystal data top
[CrF(C10H8N2)2(H2O)](ClO4)2·2H2OZ = 2
Mr = 636.32F(000) = 650
Triclinic, P1Dx = 1.712 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.577 (1) ÅCell parameters from 19362 reflections
b = 11.4050 (6) Åθ = 1.8–27.6°
c = 11.8150 (11) ŵ = 0.76 mm1
α = 77.273 (6)°T = 122 K
β = 79.427 (9)°Block, orange
γ = 83.590 (5)°0.41 × 0.24 × 0.14 mm
V = 1234.01 (19) Å3
Data collection top
Nonius KappaCCD
diffractometer
5691 independent reflections
Radiation source: fine-focus sealed tube5244 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ω and φ scansθmax = 27.6°, θmin = 1.8°
Absorption correction: gaussian
(Coppens, 1970)
h = 1212
Tmin = 0.805, Tmax = 0.925k = 1411
27824 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.070H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0294P)2 + 1.0724P]
where P = (Fo2 + 2Fc2)/3
5691 reflections(Δ/σ)max = 0.001
352 parametersΔρmax = 0.55 e Å3
0 restraintsΔρmin = 0.42 e Å3
Crystal data top
[CrF(C10H8N2)2(H2O)](ClO4)2·2H2Oγ = 83.590 (5)°
Mr = 636.32V = 1234.01 (19) Å3
Triclinic, P1Z = 2
a = 9.577 (1) ÅMo Kα radiation
b = 11.4050 (6) ŵ = 0.76 mm1
c = 11.8150 (11) ÅT = 122 K
α = 77.273 (6)°0.41 × 0.24 × 0.14 mm
β = 79.427 (9)°
Data collection top
Nonius KappaCCD
diffractometer
5691 independent reflections
Absorption correction: gaussian
(Coppens, 1970)
5244 reflections with I > 2σ(I)
Tmin = 0.805, Tmax = 0.925Rint = 0.021
27824 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0260 restraints
wR(F2) = 0.070H-atom parameters constrained
S = 1.03Δρmax = 0.55 e Å3
5691 reflectionsΔρmin = 0.42 e Å3
352 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cr10.35121 (2)0.123062 (19)0.848099 (18)0.00991 (6)
Cl20.01627 (4)0.74580 (3)0.50375 (3)0.02144 (9)
N30.35227 (12)0.26595 (10)0.70747 (10)0.0118 (2)
N10.22015 (12)0.21617 (10)0.96126 (10)0.0126 (2)
N20.15621 (12)0.08156 (10)0.82758 (10)0.0126 (2)
N40.47511 (12)0.04749 (10)0.71710 (10)0.0127 (2)
O90.15767 (16)0.70270 (13)0.45676 (13)0.0404 (3)
C110.27881 (15)0.37340 (13)0.70730 (13)0.0157 (3)
H110.22490.38890.77910.019*
C100.13318 (16)0.00256 (13)0.76532 (12)0.0166 (3)
H100.21270.04080.72850.020*
C50.07893 (15)0.21767 (12)0.95836 (12)0.0138 (3)
C60.04290 (15)0.14086 (12)0.88386 (12)0.0136 (3)
C160.51342 (15)0.12642 (12)0.61489 (12)0.0134 (3)
O80.07727 (16)0.74614 (14)0.42147 (13)0.0422 (4)
C120.27874 (16)0.46239 (13)0.60644 (14)0.0191 (3)
H120.22660.53790.60920.023*
C10.26327 (16)0.27937 (13)1.03060 (12)0.0164 (3)
H10.36220.27851.03220.020*
C130.35579 (17)0.43951 (14)0.50168 (13)0.0201 (3)
H130.35460.49810.43080.024*
C200.54167 (15)0.06375 (13)0.73489 (13)0.0162 (3)
H200.51300.11920.80610.019*
C40.02135 (16)0.28464 (15)1.02335 (14)0.0215 (3)
H40.11960.28671.01870.026*
O110.02074 (14)0.86579 (11)0.52039 (12)0.0325 (3)
C20.16777 (17)0.34562 (14)1.09959 (14)0.0213 (3)
H20.20050.38831.14900.026*
C140.43510 (16)0.32978 (14)0.50111 (13)0.0183 (3)
H140.49030.31310.43020.022*
C180.69355 (16)0.01741 (14)0.54925 (14)0.0203 (3)
H180.77030.03920.49250.024*
C90.00262 (17)0.01809 (14)0.75276 (13)0.0205 (3)
H90.01620.07420.70780.025*
C150.43247 (14)0.24527 (12)0.60527 (12)0.0132 (3)
C80.11776 (17)0.04497 (15)0.80722 (14)0.0229 (3)
H80.21180.03400.79840.028*
C70.09549 (16)0.12434 (14)0.87471 (13)0.0195 (3)
H70.17390.16670.91400.023*
O100.03306 (19)0.66919 (14)0.61505 (13)0.0487 (4)
C170.62360 (16)0.09676 (14)0.52947 (13)0.0180 (3)
H170.65060.15350.45880.022*
C30.02397 (17)0.34882 (15)1.09551 (15)0.0247 (3)
H30.04320.39441.14160.030*
C190.65089 (16)0.09956 (13)0.65221 (14)0.0191 (3)
H190.69570.17890.66580.023*
Cl400.60695 (4)0.35453 (3)0.15860 (3)0.01724 (8)
O40.61978 (13)0.29094 (12)0.06429 (11)0.0284 (3)
O50.45771 (12)0.37385 (12)0.20582 (11)0.0296 (3)
O60.67943 (14)0.28330 (12)0.25003 (11)0.0322 (3)
O70.66883 (17)0.46781 (12)0.11571 (13)0.0397 (3)
F10.36386 (9)0.01840 (7)0.96103 (7)0.01657 (17)
O20.37076 (13)0.62663 (10)0.21825 (10)0.0241 (2)
H2A0.27920.60970.23480.029*
H2B0.41160.56290.19870.029*
O30.08500 (14)0.57629 (12)0.26794 (11)0.0298 (3)
H3A0.07220.50220.31480.036*
H3B0.04910.62220.31740.036*
O10.52507 (10)0.17280 (9)0.88317 (9)0.0153 (2)
H1A0.56200.12680.93570.018*
H1B0.56290.23600.85030.018*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cr10.00962 (10)0.01015 (11)0.00923 (10)0.00046 (7)0.00176 (7)0.00038 (8)
Cl20.0299 (2)0.01514 (16)0.01916 (17)0.00224 (13)0.00580 (14)0.00367 (13)
N30.0114 (5)0.0123 (5)0.0118 (5)0.0013 (4)0.0029 (4)0.0014 (4)
N10.0133 (5)0.0134 (5)0.0104 (5)0.0010 (4)0.0017 (4)0.0013 (4)
N20.0130 (5)0.0134 (5)0.0106 (5)0.0018 (4)0.0022 (4)0.0003 (4)
N40.0117 (5)0.0124 (5)0.0137 (5)0.0012 (4)0.0017 (4)0.0024 (4)
O90.0434 (8)0.0351 (7)0.0369 (7)0.0189 (6)0.0020 (6)0.0098 (6)
C110.0157 (6)0.0138 (6)0.0169 (7)0.0003 (5)0.0027 (5)0.0024 (5)
C100.0188 (7)0.0169 (7)0.0143 (6)0.0024 (5)0.0019 (5)0.0037 (5)
C50.0136 (6)0.0150 (6)0.0122 (6)0.0015 (5)0.0020 (5)0.0010 (5)
C60.0135 (6)0.0147 (6)0.0116 (6)0.0014 (5)0.0019 (5)0.0005 (5)
C160.0132 (6)0.0142 (6)0.0135 (6)0.0024 (5)0.0031 (5)0.0030 (5)
O80.0470 (8)0.0426 (8)0.0440 (8)0.0172 (7)0.0238 (7)0.0032 (6)
C120.0193 (7)0.0132 (6)0.0235 (7)0.0005 (5)0.0063 (6)0.0007 (6)
C10.0174 (7)0.0180 (7)0.0145 (6)0.0028 (5)0.0035 (5)0.0034 (5)
C130.0237 (7)0.0173 (7)0.0173 (7)0.0033 (6)0.0069 (6)0.0047 (5)
C200.0167 (7)0.0129 (6)0.0187 (7)0.0010 (5)0.0034 (5)0.0025 (5)
C40.0147 (7)0.0274 (8)0.0234 (8)0.0011 (6)0.0016 (6)0.0101 (6)
O110.0370 (7)0.0230 (6)0.0415 (7)0.0011 (5)0.0069 (6)0.0164 (5)
C20.0241 (8)0.0235 (7)0.0192 (7)0.0025 (6)0.0030 (6)0.0108 (6)
C140.0212 (7)0.0194 (7)0.0131 (7)0.0034 (6)0.0017 (5)0.0004 (5)
C180.0157 (7)0.0249 (8)0.0206 (7)0.0010 (6)0.0002 (6)0.0093 (6)
C90.0234 (8)0.0226 (7)0.0182 (7)0.0079 (6)0.0048 (6)0.0058 (6)
C150.0129 (6)0.0139 (6)0.0131 (6)0.0028 (5)0.0023 (5)0.0020 (5)
C80.0164 (7)0.0304 (8)0.0242 (8)0.0076 (6)0.0048 (6)0.0062 (6)
C70.0132 (7)0.0251 (7)0.0205 (7)0.0025 (6)0.0015 (5)0.0058 (6)
O100.0745 (11)0.0352 (8)0.0266 (7)0.0070 (7)0.0050 (7)0.0049 (6)
C170.0164 (7)0.0208 (7)0.0156 (7)0.0025 (5)0.0006 (5)0.0033 (5)
C30.0224 (8)0.0286 (8)0.0247 (8)0.0030 (6)0.0003 (6)0.0149 (7)
C190.0175 (7)0.0161 (7)0.0244 (8)0.0031 (5)0.0040 (6)0.0074 (6)
Cl400.01915 (17)0.01732 (16)0.01546 (16)0.00394 (12)0.00042 (12)0.00447 (12)
O40.0287 (6)0.0368 (7)0.0245 (6)0.0081 (5)0.0006 (5)0.0180 (5)
O50.0193 (6)0.0376 (7)0.0300 (6)0.0045 (5)0.0003 (5)0.0095 (5)
O60.0287 (6)0.0422 (7)0.0226 (6)0.0053 (5)0.0068 (5)0.0023 (5)
O70.0553 (9)0.0245 (6)0.0397 (8)0.0214 (6)0.0010 (7)0.0043 (6)
F10.0164 (4)0.0153 (4)0.0157 (4)0.0020 (3)0.0043 (3)0.0034 (3)
O20.0263 (6)0.0159 (5)0.0277 (6)0.0039 (4)0.0016 (5)0.0003 (4)
O30.0345 (7)0.0294 (6)0.0262 (6)0.0073 (5)0.0015 (5)0.0100 (5)
O10.0143 (5)0.0140 (5)0.0170 (5)0.0037 (4)0.0067 (4)0.0031 (4)
Geometric parameters (Å, º) top
Cr1—F11.8614 (8)C13—C141.390 (2)
Cr1—O11.9579 (10)C13—H130.9500
Cr1—N12.0501 (12)C20—C191.386 (2)
Cr1—N22.0456 (12)C20—H200.9500
Cr1—N32.0545 (12)C4—C31.390 (2)
Cr1—N42.0571 (12)C4—H40.9500
Cl2—O111.4311 (12)C2—C31.383 (2)
Cl2—O81.4369 (14)C2—H20.9500
Cl2—O101.4400 (14)C14—C151.3841 (19)
Cl2—O91.4421 (14)C14—H140.9500
N3—C111.3431 (18)C18—C191.388 (2)
N3—C151.3595 (18)C18—C171.388 (2)
N1—C11.3460 (18)C18—H180.9500
N1—C51.3573 (18)C9—C81.383 (2)
N2—C101.3408 (18)C9—H90.9500
N2—C61.3589 (18)C8—C71.387 (2)
N4—C201.3458 (18)C8—H80.9500
N4—C161.3548 (18)C7—H70.9500
C11—C121.385 (2)C17—H170.9500
C11—H110.9500C3—H30.9500
C10—C91.387 (2)C19—H190.9500
C10—H100.9500Cl40—O71.4316 (13)
C5—C41.385 (2)Cl40—O41.4382 (12)
C5—C61.4764 (19)Cl40—O61.4392 (12)
C6—C71.386 (2)Cl40—O51.4470 (12)
C16—C171.388 (2)O2—H2A0.8959
C16—C151.4769 (19)O2—H2B0.8435
C12—C131.381 (2)O3—H3A0.9096
C12—H120.9500O3—H3B0.8684
C1—C21.384 (2)O1—H1A0.8255
C1—H10.9500O1—H1B0.8276
F1—Cr1—O190.26 (4)N1—C1—H1119.0
F1—Cr1—N289.57 (4)C2—C1—H1119.0
O1—Cr1—N2172.88 (5)C12—C13—C14119.24 (13)
F1—Cr1—N194.23 (4)C12—C13—H13120.4
O1—Cr1—N193.41 (5)C14—C13—H13120.4
N2—Cr1—N179.51 (5)N4—C20—C19121.80 (13)
F1—Cr1—N3172.26 (4)N4—C20—H20119.1
O1—Cr1—N390.13 (4)C19—C20—H20119.1
N2—Cr1—N390.99 (5)C5—C4—C3119.00 (14)
N1—Cr1—N393.46 (5)C5—C4—H4120.5
F1—Cr1—N493.04 (4)C3—C4—H4120.5
O1—Cr1—N488.50 (5)C3—C2—C1119.02 (14)
N2—Cr1—N498.62 (5)C3—C2—H2120.5
N1—Cr1—N4172.47 (5)C1—C2—H2120.5
N3—Cr1—N479.24 (5)C15—C14—C13119.05 (14)
O11—Cl2—O8109.72 (9)C15—C14—H14120.5
O11—Cl2—O10109.32 (9)C13—C14—H14120.5
O8—Cl2—O10110.21 (10)C19—C18—C17119.71 (14)
O11—Cl2—O9108.75 (9)C19—C18—H18120.1
O8—Cl2—O9108.89 (9)C17—C18—H18120.1
O10—Cl2—O9109.91 (9)C8—C9—C10118.43 (14)
C11—N3—C15118.59 (12)C8—C9—H9120.8
C11—N3—Cr1126.26 (10)C10—C9—H9120.8
C15—N3—Cr1115.12 (9)N3—C15—C14121.69 (13)
C1—N1—C5119.17 (12)N3—C15—C16114.74 (12)
C1—N1—Cr1125.61 (10)C14—C15—C16123.57 (13)
C5—N1—Cr1115.10 (9)C9—C8—C7119.79 (14)
C10—N2—C6119.20 (12)C9—C8—H8120.1
C10—N2—Cr1125.76 (10)C7—C8—H8120.1
C6—N2—Cr1115.04 (9)C6—C7—C8118.95 (14)
C20—N4—C16119.50 (12)C6—C7—H7120.5
C20—N4—Cr1124.11 (10)C8—C7—H7120.5
C16—N4—Cr1114.77 (9)C16—C17—C18118.73 (14)
N3—C11—C12122.47 (13)C16—C17—H17120.6
N3—C11—H11118.8C18—C17—H17120.6
C12—C11—H11118.8C2—C3—C4119.37 (14)
N2—C10—C9122.31 (14)C2—C3—H3120.3
N2—C10—H10118.8C4—C3—H3120.3
C9—C10—H10118.8C20—C19—C18118.75 (14)
N1—C5—C4121.45 (13)C20—C19—H19120.6
N1—C5—C6114.70 (12)C18—C19—H19120.6
C4—C5—C6123.83 (13)O7—Cl40—O4109.83 (8)
N2—C6—C7121.27 (13)O7—Cl40—O6109.51 (9)
N2—C6—C5115.05 (12)O4—Cl40—O6109.40 (8)
C7—C6—C5123.61 (13)O7—Cl40—O5110.01 (9)
N4—C16—C17121.47 (13)O4—Cl40—O5108.98 (8)
N4—C16—C15114.56 (12)O6—Cl40—O5109.10 (8)
C17—C16—C15123.93 (13)H2A—O2—H2B101.9
C13—C12—C11118.88 (14)H3A—O3—H3B100.6
C13—C12—H12120.6Cr1—O1—H1A116.4
C11—C12—H12120.6Cr1—O1—H1B125.2
N1—C1—C2121.96 (14)H1A—O1—H1B118.3
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···F1i0.831.732.5482 (13)174
O1—H1B···O2ii0.831.732.5548 (15)176
O2—H2A···O30.901.892.7887 (18)179
O2—H2B···O50.842.142.9380 (17)158
O3—H3A···O10iii0.912.002.890 (2)167
O3—H3B···O80.872.193.050 (2)168
O3—H3B···O90.872.483.123 (2)132
Symmetry codes: (i) x+1, y, z+2; (ii) x+1, y+1, z+1; (iii) x, y+1, z+1.

Experimental details

Crystal data
Chemical formula[CrF(C10H8N2)2(H2O)](ClO4)2·2H2O
Mr636.32
Crystal system, space groupTriclinic, P1
Temperature (K)122
a, b, c (Å)9.577 (1), 11.4050 (6), 11.8150 (11)
α, β, γ (°)77.273 (6), 79.427 (9), 83.590 (5)
V3)1234.01 (19)
Z2
Radiation typeMo Kα
µ (mm1)0.76
Crystal size (mm)0.41 × 0.24 × 0.14
Data collection
DiffractometerNonius KappaCCD
Absorption correctionGaussian
(Coppens, 1970)
Tmin, Tmax0.805, 0.925
No. of measured, independent and
observed [I > 2σ(I)] reflections
27824, 5691, 5244
Rint0.021
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.070, 1.03
No. of reflections5691
No. of parameters352
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.55, 0.42

Computer programs: COLLECT (Nonius, 1998), EVALCCD (Duisenberg et al., 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

Selected bond lengths (Å) top
Cr1—F11.8614 (8)Cr1—N22.0456 (12)
Cr1—O11.9579 (10)Cr1—N32.0545 (12)
Cr1—N12.0501 (12)Cr1—N42.0571 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···F1i0.831.732.5482 (13)174
O1—H1B···O2ii0.831.732.5548 (15)176
O2—H2A···O30.901.892.7887 (18)179
O2—H2B···O50.842.142.9380 (17)158
O3—H3A···O10iii0.912.002.890 (2)167
O3—H3B···O80.872.193.050 (2)168
O3—H3B···O90.872.483.123 (2)132
Symmetry codes: (i) x+1, y, z+2; (ii) x+1, y+1, z+1; (iii) x, y+1, z+1.
M—F bond distances (Å) for related cis/trans-[M(L)2F2]+ complexes top
(I)(II)(III)(IV)(V)
1.8621 (10)1.8541 (10)1.887 (6)1.887 (5)1.7389 (15)
1.8444 (10)1.8409 (10)1.878 (6)1.868 (4)1.7232 (15)
Notes: (I) cis-[Cr(phen)2F2]ClO4.H2O (Birk et al., 2008); (II) cis-[Cr(bipy)2F2]ClO4.H2O (Yamaguchi-Terasaki et al., 2007); (III) trans-[Cr(en)2F2]ClO4 (Brenčič & Leban, 1981); (IV) cis-[Cr(en)2F2]ClO4.NaClO4.H2O (Brenčič et al., 1987); (V) cis-[V(bipy)2F2]BF4 (Kavitha et al., 2005). en = ethane-1,2-diamine; bipy = 2,2'-bipyridine; phen = 1,10-phenanthroline.
 

Acknowledgements

The authors are gratful to Mr Flemming Hansen (Centre of Crystallographic Studies, University of Copenhagen) for collecting the X-ray diffraction data.

References

First citationBirk, T., Bendix, J. & Weihe, H. (2008). Acta Cryst. E64, m369–m370.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBrenčič, J. V. & Leban, I. (1981). Z. Anorg. Allg. Chem. 480, 213–219.  Google Scholar
First citationBrenčič, J. V., Leban, I. & Polanc, I. (1987). Z. Anorg. Allg. Chem. 551, 109–115.  Google Scholar
First citationCasellato, U., Graziani, R., Maccarrone, G. & Bilio, G. M. (1986). J. Crystallogr. Spectrosc. Res. 16, 695–702.  CSD CrossRef CAS Web of Science Google Scholar
First citationCoppens, P. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 255–270. Copenhagen: Munksgaard.  Google Scholar
First citationDeJovine, J., Mason, W. R. & Vaughn, J. W. (1974). Inorg. Chem. 13, 66–73.  CrossRef CAS Web of Science Google Scholar
First citationDelavar, M. & Staples, P. J. (1981). J. Chem. Soc. Dalton Trans. pp. 981–985.  CrossRef Web of Science Google Scholar
First citationDuisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220–229.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGlerup, J., Josephsen, J., Michelsen, K., Pedersen, E. & Schäffer, C. E. (1970). Acta Chem. Scand. 24, 247–254.  CrossRef CAS Web of Science Google Scholar
First citationKavitha, S. J., Panchanatheswaran, K., Low, J. N. & Glidewell, C. (2005). Acta Cryst. E61, m1965–m1967.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLiu, H.-X. (2009). Acta Cryst. E65, m1093.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVaughn, J. W. & Seiler, G. J. (1979). Inorg. Chem. 18, 1509–1511.  CrossRef CAS Web of Science Google Scholar
First citationVaughn, J. W., Stvan, O. J. & Magnuson, V. E. (1968). Inorg. Chem. 7, 736–741.  CrossRef CAS Web of Science Google Scholar
First citationYamaguchi-Terasaki, Y., Fujihara, T., Nagasawa, A. & Kaizaki, S. (2007). Acta Cryst. E63, m593–m595.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds