metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(2,9-di­methyl-1,10-phenanthroline-κ2N,N′)(10,11,12,13-tetra­hydro­dipyrido[3,2-a:2′,3′-c]phenazine-κ2N4,N5)ruthenium(II) bis­­(perchlorate) dihydrate

aSchool of Public Health, Guangdong Pharmaceutical University, Guangzhou 510006, People's Republic of China, and bSchool of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, People's Republic of China
*Correspondence e-mail: lyjche@163.com

(Received 10 January 2010; accepted 23 January 2010; online 30 January 2010)

The title compound, [Ru(C14H12N2)2(C18H14N4)](ClO4)2·2H2O, consists of an RuII complex cation, two perchlorate anions and two uncoordinated water mol­ecules. The RuII ion is chelated by a 10,11,12,13-tetra­hydro­dipyrido[3,2-a:2′,3′-c]phenazine ligand and two 2,9-dimethyl-1,10-phenanthroline ligands in a distorted octa­hedral geometry. The two uncoord­inated water mol­ecules are disordered over five positions, with an occupancy factor of about 0.4 for each site. A supra­molecular structure is formed by weak ππ inter­actions between neighbouring mol­ecules, with centroid–centroid distances of 3.618 (2) and 3.749 (2) Å.

Related literature

For general background to ruthenium complexes, see: Abdur-Rashid et al. (2002[Abdur-Rashid, K., Clapham, S. E., Hadzovic, A., Harvey, J. N., Lough, A. J. & Morris, R. H. J. (2002). J. Am. Chem. Soc. 124, 15104-15118.]); Cocchietto & Sava (2000[Cocchietto, M. & Sava, G. (2000). Pharmacol. Toxicol. 87, 193-197.]); Juris et al. (1988[Juris, A., Balzani, V., Barigelletti, F., Campagna, S., Belser, P. & Vonzelewsky, A. (1988). Coord. Chem. Rev. 84, 85-277.]); Zorzet et al. (2001[Zorzet, S., Sorce, A., Casarsa, C., Cocchietto, M. & Sava, G. (2001). Met. Based Drugs, 8, 1-7.]). For the synthesis, see: Dickeson & Summers (1970[Dickeson, J. E. & Summers, L. A. (1970). Aust. J. Chem. 23, 1023-1027.]); Pellegrini & Aldrich-Wright (2003[Pellegrini, P. P. & Aldrich-Wright, J. R. (2003). Dalton Trans. pp. 176-183.]).

[Scheme 1]

Experimental

Crystal data
  • [Ru(C14H12N2)2(C18H14N4)](ClO4)2·2H2O

  • Mr = 1038.85

  • Monoclinic, C 2/c

  • a = 25.862 (7) Å

  • b = 24.442 (7) Å

  • c = 18.517 (5) Å

  • β = 126.229 (5)°

  • V = 9442 (5) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.51 mm−1

  • T = 291 K

  • 0.28 × 0.22 × 0.20 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.87, Tmax = 0.91

  • 21316 measured reflections

  • 9145 independent reflections

  • 7262 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.128

  • S = 1.06

  • 9145 reflections

  • 640 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 1.33 e Å−3

  • Δρmin = −1.19 e Å−3

Table 1
Selected bond lengths (Å)

Ru1—N1 2.068 (3)
Ru1—N2 2.061 (3)
Ru1—N5 2.094 (3)
Ru1—N6 2.108 (3)
Ru1—N7 2.106 (3)
Ru1—N8 2.108 (3)

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Ruthenium(II) complexes have been investigated extensively during the past two decades due to their rich photochemical and photophysical properties (Juris et al., 1988). Ruthenium complexes have been applied in many important fields, such as catalysis, antitumor drugs and DNA structural probe. [Ru(R-binap)(H)2(tmen)] (binap = bidentate phosphine; tmen = H2NCMe2CMe2NH2) can catalyze the hydrogenation of ketone (Abdur-Rashid et al., 2002). Complex ImH[trans-Ru(III)Cl4(DMSO)Im] (Im = imidazole; DMSO = dimethyl sulfoxide) was the first ruthenium complex to enter clinical trials against metastases (Cocchietto & Sava, 2000; Zorzet et al., 2001). In an attempt to obtain more insight into the structural properties of such ruthenium(II) complexes, we present here the crystal structure of the title complex.

The crystal structure of the title compound reveals that all the bond lengths and angles have normal values (Table 1). There are one RuII complex cation, two perchlorate anions and two uncoordinated water molecules per asymmetric unit (Fig. 1). The two uncoordinated water molecules are disordered over five different positions and theirs site occupancy factors are 0.392 (8), 0.410 (9), 0.388 (9), 0.402 (9), and 0.408 (9) for O1W, O2W, O3W, O4W, and O5W, respectively. The RuII ion is in a distorted octahedral environment, coordinated by N5, N6, N7, N8 from two 2,9-dimethyl-1,10-phenanthroline (dmp) ligands, and N1, N2 from one 10,11,12,13-tetrahydrodipyrido[3,2-a:2',3'-c]phenazine (dpqc) ligand (Fig. 1). The weak ππ interactions between the neighbouring molecules are occurred (Fig. 2). The perpendicular distance of Cg1···Cg1i from face to face is 3.50 (2) Å and the centroid–centroid distance of Cg1···Cg1i is 3.749 (2) Å [Cg1 is the centroid of C23, C24, C25, C26, C31 and C32 ring; symmetry code: (i) 1/2-x, 3/2-y, z]. The other perpendicular distance of Cg2···Cg2ii from face to face is 3.48 (2) Å and the centroid–centroid distance of Cg2···Cg2ii is 3.618 (2) Å [Cg2 is the centroid of C37, C38, C39, C40, C45 and C46 ring; symmetry code: (ii) -x, 2-y, -z]. Through ππ interactions, a supramolecular structure is formed. There are channels along the [1 0 1] direction filled with the uncoordinated water molecules and perchlorate anions (Fig. 3).

Related literature top

For general background to ruthenium complexes, see: Abdur-Rashid et al. (2002); Cocchietto & Sava (2000); Juris et al. (1988); Zorzet et al. (2001). For the synthesis, see: Dickeson & Summers (1970); Pellegrini & Aldrich-Wright (2003).

Experimental top

Ligand dpqc was prepared by a modified method reported in the literature (Dickeson & Summers, 1970). A mixture of phenanthroline-5,6-diamine (0.210 g, 1 mmol), 1,2-cyclohexanedione (0.112 g, 1 mmol) and glacial acetic acid (30 cm3) was refluxed with stirring for 6 h. The cooled solution was diluted with water and neutralized with concentrated aqueous ammonia. A pale yellow-green precipitate was obtained. The product was recrystallized from methanol to give pale yellow-green powders.

The title complex was synthesized by the modified method (Pellegrini & Aldrich-Wright, 2003). A mixture of cis-[Ru(dmp)2Cl2].2H2O (0.288 g, 0.5 mmol) and dpqc (0.161 g, 0.5 mmol) in EtOH (40 cm3) was refluxed under argon for 8 h to give a clear red solution. Upon cooling, a red precipitate was obtained by dropwise addition of saturated aqueous NaClO4 solution. The crude product was purified by column chromatography on a neutral alumina with CH3CN-toluene (v/v 3:1) as eluent. The mainly brown red band was collected. The solvent was removed under reduced pressure and a red powder was obtained. Red single crystals of the title complex suitable for X-ray crystallographic study were obtained from acetonitrile and ethanol (v/v 1:3) at room temperature.

Refinement top

In the asymmetric unit there are two disordered water molecules. They occupy five different positions and theirs site occupancy factors were refined with free variable and validated as 0.392 (8), 0.410 (9), 0.388 (9), 0.402 (9) and 0.408 (9) for O1W, O2W, O3W, O4W, and O5W, respectively.

H atoms on C atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 (CH), 0.97 (CH2) and 0.96 (CH3) Å and with Uiso(H) = 1.2(1.5 for methyl)Ueq(C). H atoms of water molecules were determined based on difference Fourier maps and possible hydrogen bonding scheme and refined as riding, with Uiso(H) = 1.2Ueq(O). The highest residual electron density was found 1.14 Å from O3W and the deepest hole 0.56 Å from Ru1.

Structure description top

Ruthenium(II) complexes have been investigated extensively during the past two decades due to their rich photochemical and photophysical properties (Juris et al., 1988). Ruthenium complexes have been applied in many important fields, such as catalysis, antitumor drugs and DNA structural probe. [Ru(R-binap)(H)2(tmen)] (binap = bidentate phosphine; tmen = H2NCMe2CMe2NH2) can catalyze the hydrogenation of ketone (Abdur-Rashid et al., 2002). Complex ImH[trans-Ru(III)Cl4(DMSO)Im] (Im = imidazole; DMSO = dimethyl sulfoxide) was the first ruthenium complex to enter clinical trials against metastases (Cocchietto & Sava, 2000; Zorzet et al., 2001). In an attempt to obtain more insight into the structural properties of such ruthenium(II) complexes, we present here the crystal structure of the title complex.

The crystal structure of the title compound reveals that all the bond lengths and angles have normal values (Table 1). There are one RuII complex cation, two perchlorate anions and two uncoordinated water molecules per asymmetric unit (Fig. 1). The two uncoordinated water molecules are disordered over five different positions and theirs site occupancy factors are 0.392 (8), 0.410 (9), 0.388 (9), 0.402 (9), and 0.408 (9) for O1W, O2W, O3W, O4W, and O5W, respectively. The RuII ion is in a distorted octahedral environment, coordinated by N5, N6, N7, N8 from two 2,9-dimethyl-1,10-phenanthroline (dmp) ligands, and N1, N2 from one 10,11,12,13-tetrahydrodipyrido[3,2-a:2',3'-c]phenazine (dpqc) ligand (Fig. 1). The weak ππ interactions between the neighbouring molecules are occurred (Fig. 2). The perpendicular distance of Cg1···Cg1i from face to face is 3.50 (2) Å and the centroid–centroid distance of Cg1···Cg1i is 3.749 (2) Å [Cg1 is the centroid of C23, C24, C25, C26, C31 and C32 ring; symmetry code: (i) 1/2-x, 3/2-y, z]. The other perpendicular distance of Cg2···Cg2ii from face to face is 3.48 (2) Å and the centroid–centroid distance of Cg2···Cg2ii is 3.618 (2) Å [Cg2 is the centroid of C37, C38, C39, C40, C45 and C46 ring; symmetry code: (ii) -x, 2-y, -z]. Through ππ interactions, a supramolecular structure is formed. There are channels along the [1 0 1] direction filled with the uncoordinated water molecules and perchlorate anions (Fig. 3).

For general background to ruthenium complexes, see: Abdur-Rashid et al. (2002); Cocchietto & Sava (2000); Juris et al. (1988); Zorzet et al. (2001). For the synthesis, see: Dickeson & Summers (1970); Pellegrini & Aldrich-Wright (2003).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity. The two disordered water molecules occupy five different positions, O1W, O2W, O3W, O4W and O5W.
[Figure 2] Fig. 2. A view of ππ interactions between the neighbouring molecules. H atoms have been omitted for clarity. [Symmetry codes: (i) 1/2-x, 3/2-y, z; (ii) -x, 2-y, -z; (iii) -1/2+x, 1/2+y, z.]
[Figure 3] Fig. 3. A view of the supramolecular channel structure down [101] direction.
Bis(2,9-dimethyl-1,10-phenanthroline-κ2N,N')(10,11,12,13- tetrahydrodipyrido[3,2-a:2',3'-c]phenazine- κ2N4,N5)ruthenium(II) bis(perchlorate) dihydrate top
Crystal data top
[Ru(C14H12N2)2(C18H14N4)](ClO4)2·2H2OF(000) = 4256
Mr = 1038.85Dx = 1.462 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 950 reflections
a = 25.862 (7) Åθ = 2.3–26.5°
b = 24.442 (7) ŵ = 0.51 mm1
c = 18.517 (5) ÅT = 291 K
β = 126.229 (5)°Block, red
V = 9442 (5) Å30.28 × 0.22 × 0.20 mm
Z = 8
Data collection top
Bruker SMART APEX CCD
diffractometer
9145 independent reflections
Radiation source: sealed tube7262 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
φ and ω scansθmax = 26.0°, θmin = 1.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 3124
Tmin = 0.87, Tmax = 0.91k = 2930
21316 measured reflectionsl = 2122
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.128H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.08P)2 + 1.99P]
where P = (Fo2 + 2Fc2)/3
9145 reflections(Δ/σ)max < 0.001
640 parametersΔρmax = 1.33 e Å3
1 restraintΔρmin = 1.19 e Å3
Crystal data top
[Ru(C14H12N2)2(C18H14N4)](ClO4)2·2H2OV = 9442 (5) Å3
Mr = 1038.85Z = 8
Monoclinic, C2/cMo Kα radiation
a = 25.862 (7) ŵ = 0.51 mm1
b = 24.442 (7) ÅT = 291 K
c = 18.517 (5) Å0.28 × 0.22 × 0.20 mm
β = 126.229 (5)°
Data collection top
Bruker SMART APEX CCD
diffractometer
9145 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
7262 reflections with I > 2σ(I)
Tmin = 0.87, Tmax = 0.91Rint = 0.028
21316 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0501 restraint
wR(F2) = 0.128H-atom parameters constrained
S = 1.06Δρmax = 1.33 e Å3
9145 reflectionsΔρmin = 1.19 e Å3
640 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.34039 (15)0.95304 (14)0.1570 (2)0.0265 (7)
H10.32300.93620.10210.032*
C20.39680 (15)0.98077 (12)0.1952 (2)0.0248 (6)
H20.41620.98280.16600.030*
C30.42516 (14)1.00603 (12)0.2782 (2)0.0230 (6)
H30.46341.02530.30530.028*
C40.39279 (14)1.00109 (14)0.3208 (2)0.0257 (7)
C50.41649 (14)1.02549 (12)0.4027 (2)0.0221 (6)
C60.38381 (14)1.01967 (12)0.44067 (19)0.0197 (6)
C70.32742 (13)0.98944 (12)0.39676 (19)0.0202 (6)
C80.29292 (15)0.97934 (14)0.4343 (2)0.0293 (7)
H80.30870.99220.49110.035*
C90.23564 (16)0.95010 (13)0.3846 (2)0.0284 (7)
H90.21220.94400.40720.034*
C100.21420 (15)0.93023 (14)0.3015 (2)0.0269 (7)
H100.17560.91110.26920.032*
C110.30372 (14)0.96503 (13)0.3149 (2)0.0256 (6)
C120.33640 (15)0.97086 (13)0.2769 (2)0.0253 (6)
C130.48347 (16)1.09070 (13)0.5105 (2)0.0295 (7)
C140.53606 (17)1.13189 (15)0.5449 (2)0.0361 (8)
H14A0.53531.14620.49550.043*
H14B0.57721.11430.58660.043*
C150.52801 (19)1.17815 (15)0.5913 (3)0.0391 (9)
H15A0.56431.20280.61760.047*
H15B0.48951.19860.54800.047*
C160.52340 (17)1.15688 (15)0.6621 (2)0.0338 (7)
H16A0.51931.18750.69170.041*
H16B0.56291.13790.70640.041*
C170.46627 (17)1.11736 (14)0.6269 (2)0.0306 (7)
H17A0.47631.09300.67490.037*
H17B0.42871.13850.60930.037*
C180.45097 (14)1.08379 (12)0.5484 (2)0.0232 (6)
C190.11611 (16)0.96086 (14)0.0851 (2)0.0325 (7)
H19A0.10680.95550.04250.049*
H19B0.07850.95310.14420.049*
H19C0.12900.99810.08230.049*
C200.16888 (15)0.92348 (13)0.0636 (2)0.0247 (6)
C210.18028 (16)0.91234 (14)0.1295 (2)0.0295 (7)
H210.15510.92970.18480.035*
C220.22522 (16)0.87833 (15)0.1136 (2)0.0328 (7)
H220.23370.87420.15550.039*
C230.26122 (14)0.84758 (13)0.0320 (2)0.0260 (7)
C240.30726 (14)0.80762 (15)0.0119 (2)0.0306 (7)
H240.31860.80250.05060.037*
C250.33534 (17)0.77638 (14)0.0632 (2)0.0315 (7)
H250.36450.74920.07450.038*
C260.31950 (14)0.78568 (12)0.1254 (2)0.0235 (6)
C270.34215 (15)0.75126 (13)0.1991 (2)0.0281 (7)
H270.37010.72270.21170.034*
C280.32210 (18)0.76055 (14)0.2525 (3)0.0372 (8)
H280.33530.73730.30020.045*
C290.28163 (16)0.80525 (13)0.2347 (2)0.0294 (7)
C300.26241 (17)0.81254 (14)0.2962 (3)0.0337 (8)
H30B0.29590.83120.34940.040*
H30C0.25520.77740.31190.040*
H30A0.22370.83370.26670.040*
C310.27856 (14)0.82747 (12)0.1108 (2)0.0236 (6)
C320.24751 (13)0.85874 (13)0.0299 (2)0.0233 (6)
C330.12338 (19)0.79828 (15)0.0501 (3)0.0431 (9)
H33A0.15440.81120.04150.065*
H33B0.09000.77900.00250.065*
H33C0.14380.77410.10070.065*
C340.09535 (16)0.84562 (14)0.0664 (2)0.0332 (8)
C350.03673 (16)0.83525 (16)0.0575 (3)0.0441 (10)
H350.01720.80110.03950.053*
C360.01039 (16)0.87696 (16)0.0764 (3)0.0398 (9)
H360.02530.87060.07570.048*
C370.03902 (15)0.93059 (14)0.0970 (2)0.0307 (7)
C380.01269 (15)0.97619 (15)0.1127 (2)0.0307 (7)
H380.02300.97110.11260.037*
C390.03840 (15)1.02695 (14)0.1278 (2)0.0305 (7)
H390.02181.05610.14060.037*
C400.09095 (15)1.03482 (13)0.1239 (2)0.0275 (7)
C410.11770 (17)1.08719 (14)0.1297 (3)0.0354 (8)
H410.10221.11820.14030.042*
C420.16591 (16)1.09204 (14)0.1199 (2)0.0288 (7)
H420.18141.12650.12070.035*
C430.19258 (14)1.04466 (13)0.1085 (2)0.0241 (6)
C440.24055 (16)1.05216 (14)0.0908 (2)0.0303 (7)
H44A0.28041.06350.14480.046*
H44B0.22591.07960.04560.046*
H44C0.24661.01820.07060.046*
C450.09540 (15)0.93645 (13)0.1032 (2)0.0237 (6)
C460.12114 (14)0.98929 (13)0.1149 (2)0.0223 (6)
Cl10.33340 (4)0.15639 (4)0.28808 (6)0.0418 (2)
Cl20.39352 (4)0.33611 (4)0.11989 (6)0.0400 (2)
N10.30797 (12)0.94835 (11)0.19321 (17)0.0231 (5)
N20.24546 (12)0.93662 (11)0.26341 (17)0.0228 (5)
N30.46872 (12)1.06006 (12)0.44001 (18)0.0275 (6)
N40.40222 (12)1.04887 (10)0.51642 (16)0.0220 (5)
N50.12519 (12)0.89381 (11)0.09329 (17)0.0217 (5)
N60.17299 (11)0.99366 (11)0.11172 (16)0.0218 (5)
N70.20461 (13)0.89915 (10)0.01584 (18)0.0226 (5)
N80.26208 (12)0.83945 (10)0.16727 (18)0.0225 (5)
O1W0.3498 (3)0.8384 (3)0.5030 (5)0.040 (2)0.392 (8)
H1WD0.37680.86300.53640.048*0.392 (8)
H1WC0.33700.82700.53330.048*0.392 (8)
O2W0.4328 (3)0.9140 (3)0.6056 (5)0.050 (2)0.410 (9)
H2WA0.42040.94520.56620.060*0.410 (9)
H2WB0.46030.91980.66980.060*0.410 (9)
O3W0.4565 (4)0.6672 (3)0.1768 (5)0.050 (3)0.388 (9)
H3WA0.48970.67520.17990.060*0.388 (9)
H3WB0.45840.63390.19150.060*0.388 (9)
O4W0.4616 (3)0.7646 (2)0.8166 (5)0.049 (3)0.402 (9)
H4WD0.46120.75770.77130.059*0.402 (9)
H4WC0.42620.77910.79950.059*0.402 (9)
O5W0.2432 (4)0.7111 (3)0.5185 (6)0.058 (3)0.408 (9)
H5WD0.27880.71990.56710.070*0.408 (9)
H5WA0.21400.71130.52640.070*0.408 (9)
O110.36730 (14)0.12927 (12)0.2590 (2)0.0524 (7)
O120.28994 (14)0.19350 (12)0.2330 (2)0.0541 (8)
O130.30154 (13)0.11268 (12)0.2990 (2)0.0502 (7)
O140.37913 (13)0.17688 (12)0.37388 (19)0.0484 (7)
O210.44873 (15)0.30330 (13)0.1473 (2)0.0587 (8)
O220.36080 (13)0.32210 (13)0.1550 (2)0.0485 (7)
O230.40737 (14)0.39303 (13)0.1303 (2)0.0569 (8)
O240.34700 (14)0.33037 (12)0.0261 (2)0.0531 (8)
Ru10.217470 (12)0.916700 (10)0.136870 (17)0.02439 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0229 (15)0.0325 (17)0.0266 (16)0.0001 (12)0.0161 (13)0.0040 (13)
C20.0279 (15)0.0173 (15)0.0252 (16)0.0026 (11)0.0135 (13)0.0041 (12)
C30.0208 (14)0.0180 (14)0.0285 (17)0.0008 (11)0.0136 (13)0.0046 (12)
C40.0215 (15)0.0319 (17)0.0255 (16)0.0035 (13)0.0149 (13)0.0017 (13)
C50.0212 (14)0.0196 (14)0.0215 (15)0.0038 (11)0.0104 (12)0.0041 (12)
C60.0249 (14)0.0184 (14)0.0147 (14)0.0043 (11)0.0110 (12)0.0029 (11)
C70.0222 (14)0.0216 (14)0.0147 (14)0.0086 (11)0.0097 (12)0.0050 (11)
C80.0275 (16)0.0361 (18)0.0254 (17)0.0011 (13)0.0164 (14)0.0044 (14)
C90.0309 (16)0.0257 (16)0.0250 (17)0.0096 (13)0.0144 (14)0.0049 (13)
C100.0216 (15)0.0328 (17)0.0242 (16)0.0031 (13)0.0124 (13)0.0013 (13)
C110.0223 (14)0.0287 (17)0.0172 (14)0.0031 (12)0.0070 (12)0.0041 (13)
C120.0251 (15)0.0283 (16)0.0175 (15)0.0036 (12)0.0097 (12)0.0017 (13)
C130.0294 (17)0.0229 (16)0.0286 (18)0.0013 (13)0.0129 (14)0.0011 (13)
C140.0310 (17)0.043 (2)0.0239 (17)0.0144 (15)0.0104 (14)0.0022 (15)
C150.039 (2)0.0291 (18)0.036 (2)0.0143 (15)0.0153 (17)0.0021 (15)
C160.0322 (17)0.0341 (19)0.0287 (18)0.0065 (14)0.0146 (15)0.0054 (14)
C170.0365 (18)0.0282 (17)0.0178 (15)0.0041 (14)0.0109 (14)0.0022 (13)
C180.0190 (14)0.0200 (15)0.0233 (16)0.0109 (11)0.0085 (12)0.0049 (12)
C190.0340 (18)0.0260 (17)0.0244 (17)0.0014 (14)0.0100 (14)0.0053 (13)
C200.0262 (15)0.0252 (15)0.0249 (16)0.0102 (12)0.0163 (13)0.0104 (13)
C210.0328 (17)0.0373 (19)0.0172 (15)0.0031 (14)0.0140 (14)0.0022 (13)
C220.0312 (17)0.0369 (19)0.0237 (17)0.0011 (14)0.0127 (14)0.0047 (14)
C230.0232 (15)0.0221 (15)0.0320 (17)0.0093 (12)0.0159 (13)0.0092 (13)
C240.0183 (15)0.045 (2)0.0253 (17)0.0008 (13)0.0112 (14)0.0006 (14)
C250.0314 (17)0.0264 (17)0.038 (2)0.0024 (13)0.0213 (16)0.0012 (14)
C260.0181 (14)0.0148 (14)0.0325 (17)0.0044 (11)0.0120 (13)0.0094 (12)
C270.0212 (15)0.0232 (16)0.0306 (17)0.0041 (12)0.0101 (13)0.0027 (13)
C280.045 (2)0.0245 (17)0.0316 (19)0.0066 (15)0.0172 (17)0.0041 (15)
C290.0352 (17)0.0167 (15)0.0314 (18)0.0011 (13)0.0170 (15)0.0008 (13)
C300.0297 (17)0.0250 (17)0.046 (2)0.0026 (13)0.0222 (17)0.0018 (15)
C310.0181 (14)0.0208 (15)0.0322 (17)0.0060 (11)0.0150 (13)0.0115 (12)
C320.0174 (14)0.0250 (15)0.0183 (14)0.0068 (11)0.0055 (12)0.0137 (12)
C330.0352 (19)0.0294 (19)0.056 (3)0.0111 (15)0.0223 (19)0.0197 (18)
C340.0239 (15)0.0317 (18)0.0357 (19)0.0109 (14)0.0130 (14)0.0163 (15)
C350.0169 (16)0.036 (2)0.062 (3)0.0065 (14)0.0137 (17)0.0127 (18)
C360.0186 (15)0.042 (2)0.045 (2)0.0050 (14)0.0114 (15)0.0104 (17)
C370.0190 (15)0.0312 (18)0.039 (2)0.0007 (13)0.0154 (14)0.0040 (15)
C380.0218 (15)0.040 (2)0.0242 (16)0.0059 (14)0.0104 (13)0.0008 (14)
C390.0225 (15)0.0364 (19)0.0323 (18)0.0060 (13)0.0159 (14)0.0051 (15)
C400.0284 (16)0.0290 (17)0.0277 (17)0.0071 (13)0.0180 (14)0.0001 (14)
C410.0334 (18)0.0218 (17)0.040 (2)0.0056 (13)0.0155 (16)0.0050 (14)
C420.0330 (17)0.0245 (16)0.0213 (16)0.0009 (13)0.0118 (13)0.0058 (13)
C430.0231 (15)0.0218 (15)0.0201 (15)0.0065 (12)0.0087 (12)0.0061 (12)
C440.0302 (17)0.0254 (17)0.0297 (18)0.0000 (13)0.0146 (14)0.0011 (14)
C450.0240 (15)0.0317 (16)0.0207 (15)0.0005 (13)0.0161 (12)0.0093 (13)
C460.0190 (13)0.0293 (16)0.0196 (15)0.0018 (12)0.0119 (12)0.0083 (12)
Cl10.0395 (5)0.0351 (5)0.0338 (5)0.0050 (4)0.0123 (4)0.0008 (4)
Cl20.0356 (4)0.0457 (5)0.0371 (5)0.0017 (4)0.0206 (4)0.0089 (4)
N10.0227 (12)0.0264 (14)0.0196 (13)0.0017 (10)0.0122 (10)0.0075 (10)
N20.0289 (13)0.0204 (12)0.0229 (13)0.0052 (10)0.0174 (11)0.0041 (10)
N30.0209 (13)0.0342 (15)0.0229 (14)0.0024 (11)0.0104 (11)0.0037 (12)
N40.0236 (12)0.0256 (13)0.0147 (12)0.0011 (10)0.0101 (10)0.0003 (10)
N50.0204 (12)0.0207 (13)0.0213 (13)0.0022 (10)0.0108 (10)0.0010 (10)
N60.0185 (12)0.0260 (13)0.0195 (13)0.0013 (10)0.0105 (10)0.0049 (10)
N70.0301 (13)0.0163 (12)0.0257 (14)0.0058 (10)0.0188 (11)0.0050 (10)
N80.0207 (12)0.0193 (13)0.0263 (14)0.0001 (10)0.0132 (11)0.0030 (10)
O1W0.033 (4)0.028 (4)0.051 (5)0.005 (3)0.020 (3)0.002 (3)
O2W0.027 (3)0.040 (4)0.048 (4)0.014 (3)0.003 (3)0.014 (3)
O3W0.046 (4)0.044 (5)0.048 (5)0.008 (3)0.021 (4)0.001 (3)
O4W0.045 (4)0.023 (3)0.071 (5)0.023 (3)0.030 (4)0.029 (3)
O5W0.047 (4)0.047 (5)0.069 (6)0.031 (3)0.027 (4)0.035 (4)
O110.0510 (17)0.0456 (17)0.0435 (17)0.0109 (13)0.0185 (14)0.0143 (13)
O120.0442 (16)0.0383 (15)0.0522 (18)0.0041 (12)0.0133 (14)0.0193 (13)
O130.0409 (15)0.0458 (17)0.0411 (16)0.0064 (13)0.0117 (13)0.0170 (13)
O140.0421 (15)0.0451 (16)0.0411 (16)0.0032 (12)0.0153 (13)0.0170 (13)
O210.0484 (17)0.0530 (19)0.058 (2)0.0214 (14)0.0222 (16)0.0207 (16)
O220.0397 (15)0.0542 (18)0.0471 (17)0.0048 (13)0.0232 (14)0.0085 (14)
O230.0426 (16)0.0523 (19)0.055 (2)0.0084 (14)0.0179 (15)0.0131 (15)
O240.0443 (16)0.0499 (17)0.0413 (17)0.0084 (13)0.0121 (14)0.0133 (14)
Ru10.02504 (15)0.02389 (15)0.02189 (15)0.00006 (10)0.01257 (12)0.00463 (10)
Geometric parameters (Å, º) top
C1—N11.353 (4)C29—N81.329 (4)
C1—C21.367 (4)C29—C301.498 (5)
C1—H10.9300C30—H30B0.9600
C2—C31.396 (4)C30—H30C0.9600
C2—H20.9300C30—H30A0.9600
C3—C41.456 (4)C31—N81.373 (4)
C3—H30.9300C31—C321.432 (5)
C4—C51.390 (4)C32—N71.390 (4)
C4—C121.390 (5)C33—C341.488 (5)
C5—N31.383 (4)C33—H33A0.9600
C5—C61.390 (4)C33—H33B0.9600
C6—N41.384 (4)C33—H33C0.9600
C6—C71.390 (4)C34—N51.333 (4)
C7—C111.390 (4)C34—C351.448 (5)
C7—C81.439 (4)C35—C361.380 (5)
C8—C91.393 (5)C35—H350.9300
C8—H80.9300C36—C371.442 (5)
C9—C101.381 (5)C36—H360.9300
C9—H90.9300C37—C451.401 (4)
C10—N21.359 (4)C37—C381.423 (5)
C10—H100.9300C38—C391.356 (5)
C11—C121.390 (4)C38—H380.9300
C11—N21.401 (4)C39—C401.417 (5)
C12—N11.378 (4)C39—H390.9300
C13—N31.349 (4)C40—C461.424 (4)
C13—C181.389 (5)C40—C411.428 (5)
C13—C141.498 (5)C41—C421.367 (5)
C14—C151.507 (6)C41—H410.9300
C14—H14A0.9700C42—C431.426 (4)
C14—H14B0.9700C42—H420.9300
C15—C161.478 (5)C43—N61.360 (4)
C15—H15A0.9700C43—C441.469 (5)
C15—H15B0.9700C44—H44A0.9600
C16—C171.550 (5)C44—H44B0.9600
C16—H16A0.9700C44—H44C0.9600
C16—H16B0.9700C45—N51.372 (4)
C17—C181.504 (5)C45—C461.410 (5)
C17—H17A0.9700C46—N61.381 (4)
C17—H17B0.9700Cl1—O121.331 (3)
C18—N41.336 (4)Cl1—O141.397 (3)
C19—C201.488 (5)Cl1—O111.434 (3)
C19—H19A0.9600Cl1—O131.435 (3)
C19—H19B0.9600Cl2—O221.380 (3)
C19—H19C0.9600Cl2—O241.419 (3)
C20—N71.329 (4)Cl2—O231.421 (3)
C20—C211.439 (4)Cl2—O211.443 (3)
C21—C221.313 (5)Ru1—N12.068 (3)
C21—H210.9300Ru1—N22.061 (3)
C22—C231.432 (5)Ru1—N52.094 (3)
C22—H220.9300Ru1—N62.108 (3)
C23—C241.409 (5)Ru1—N72.106 (3)
C23—C321.412 (4)Ru1—N82.108 (3)
C24—C251.359 (5)O1W—H1WD0.8499
C24—H240.9300O1W—H1WC0.8498
C25—C261.450 (5)O2W—H2WA0.9700
C25—H250.9300O2W—H2WB0.9700
C26—C311.379 (4)O3W—H3WA0.8498
C26—C271.403 (5)O3W—H3WB0.8499
C27—C281.379 (5)O4W—H4WD0.8499
C27—H270.9300O4W—H4WC0.8500
C28—C291.411 (5)O5W—H5WD0.8500
C28—H280.9300O5W—H5WA0.8500
N1—C1—C2124.8 (3)H30C—C30—H30A109.5
N1—C1—H1117.6N8—C31—C26123.9 (3)
C2—C1—H1117.6N8—C31—C32116.6 (3)
C1—C2—C3119.6 (3)C26—C31—C32119.4 (3)
C1—C2—H2120.2N7—C32—C23122.7 (3)
C3—C2—H2120.2N7—C32—C31117.9 (3)
C2—C3—C4117.6 (3)C23—C32—C31119.4 (3)
C2—C3—H3121.2C34—C33—H33A109.5
C4—C3—H3121.2C34—C33—H33B109.5
C5—C4—C12120.0 (3)H33A—C33—H33B109.5
C5—C4—C3122.1 (3)C34—C33—H33C109.5
C12—C4—C3117.9 (3)H33A—C33—H33C109.5
N3—C5—C4118.6 (3)H33B—C33—H33C109.5
N3—C5—C6121.1 (3)N5—C34—C35122.2 (3)
C4—C5—C6120.0 (3)N5—C34—C33121.3 (3)
N4—C6—C5120.8 (3)C35—C34—C33116.4 (3)
N4—C6—C7118.7 (3)C36—C35—C34118.8 (3)
C5—C6—C7120.0 (3)C36—C35—H35120.6
C6—C7—C11120.0 (3)C34—C35—H35120.6
C6—C7—C8123.0 (3)C35—C36—C37119.1 (3)
C11—C7—C8117.0 (3)C35—C36—H36120.5
C9—C8—C7119.4 (3)C37—C36—H36120.5
C9—C8—H8120.3C45—C37—C38120.2 (3)
C7—C8—H8120.3C45—C37—C36117.5 (3)
C10—C9—C8119.1 (3)C38—C37—C36122.3 (3)
C10—C9—H9120.5C39—C38—C37121.6 (3)
C8—C9—H9120.5C39—C38—H38119.2
N2—C10—C9124.6 (3)C37—C38—H38119.2
N2—C10—H10117.7C38—C39—C40118.8 (3)
C9—C10—H10117.7C38—C39—H39120.6
C12—C11—C7120.0 (3)C40—C39—H39120.6
C12—C11—N2116.0 (3)C39—C40—C46120.6 (3)
C7—C11—N2123.9 (3)C39—C40—C41123.7 (3)
N1—C12—C11116.6 (3)C46—C40—C41115.8 (3)
N1—C12—C4123.3 (3)C42—C41—C40120.4 (3)
C11—C12—C4120.0 (3)C42—C41—H41119.8
N3—C13—C18120.8 (3)C40—C41—H41119.8
N3—C13—C14116.8 (3)C41—C42—C43120.5 (3)
C18—C13—C14122.3 (3)C41—C42—H42119.7
C13—C14—C15110.5 (3)C43—C42—H42119.7
C13—C14—H14A109.5N6—C43—C42120.8 (3)
C15—C14—H14A109.5N6—C43—C44120.6 (3)
C13—C14—H14B109.5C42—C43—C44118.5 (3)
C15—C14—H14B109.5C43—C44—H44A109.5
H14A—C14—H14B108.1C43—C44—H44B109.5
C16—C15—C14110.6 (3)H44A—C44—H44B109.5
C16—C15—H15A109.5C43—C44—H44C109.5
C14—C15—H15A109.5H44A—C44—H44C109.5
C16—C15—H15B109.5H44B—C44—H44C109.5
C14—C15—H15B109.5N5—C45—C37123.5 (3)
H15A—C15—H15B108.1N5—C45—C46117.7 (3)
C15—C16—C17113.8 (3)C37—C45—C46118.7 (3)
C15—C16—H16A108.8N6—C46—C45116.5 (3)
C17—C16—H16A108.8N6—C46—C40123.9 (3)
C15—C16—H16B108.8C45—C46—C40119.5 (3)
C17—C16—H16B108.8O12—Cl1—O14113.04 (19)
H16A—C16—H16B107.7O12—Cl1—O11117.0 (2)
C18—C17—C16112.8 (3)O14—Cl1—O11107.34 (18)
C18—C17—H17A109.0O12—Cl1—O13108.69 (18)
C16—C17—H17A109.0O14—Cl1—O13106.09 (19)
C18—C17—H17B109.0O11—Cl1—O13103.79 (19)
C16—C17—H17B109.0O22—Cl2—O24103.87 (19)
H17A—C17—H17B107.8O22—Cl2—O23110.77 (19)
N4—C18—C13123.2 (3)O24—Cl2—O23103.07 (19)
N4—C18—C17114.7 (3)O22—Cl2—O21116.78 (19)
C13—C18—C17122.0 (3)O24—Cl2—O21108.8 (2)
C20—C19—H19A109.5O23—Cl2—O21112.3 (2)
C20—C19—H19B109.5C1—N1—C12116.7 (3)
H19A—C19—H19B109.5C1—N1—Ru1129.0 (2)
C20—C19—H19C109.5C12—N1—Ru1114.2 (2)
H19A—C19—H19C109.5C10—N2—C11115.7 (3)
H19B—C19—H19C109.5C10—N2—Ru1130.2 (2)
N7—C20—C21119.8 (3)C11—N2—Ru1113.85 (19)
N7—C20—C19119.9 (3)C13—N3—C5117.2 (3)
C21—C20—C19120.3 (3)C18—N4—C6116.6 (3)
C22—C21—C20121.8 (3)C34—N5—C45118.3 (3)
C22—C21—H21119.1C34—N5—Ru1131.0 (2)
C20—C21—H21119.1C45—N5—Ru1110.4 (2)
C21—C22—C23120.4 (3)C43—N6—C46118.0 (3)
C21—C22—H22119.8C43—N6—Ru1131.2 (2)
C23—C22—H22119.8C46—N6—Ru1109.8 (2)
C24—C23—C32119.8 (3)C20—N7—C32118.8 (3)
C24—C23—C22124.3 (3)C20—N7—Ru1131.0 (2)
C32—C23—C22115.9 (3)C32—N7—Ru1109.8 (2)
C25—C24—C23121.1 (3)C29—N8—C31117.6 (3)
C25—C24—H24119.4C29—N8—Ru1131.2 (2)
C23—C24—H24119.4C31—N8—Ru1110.8 (2)
C24—C25—C26119.5 (3)H1WD—O1W—H1WC103.0
C24—C25—H25120.3H2WA—O2W—H2WB118.8
C26—C25—H25120.3H3WA—O3W—H3WB109.5
C31—C26—C27117.7 (3)H4WD—O4W—H4WC109.5
C31—C26—C25120.4 (3)H5WD—O5W—H5WA109.5
C27—C26—C25121.8 (3)N2—Ru1—N178.80 (10)
C28—C27—C26118.7 (3)N2—Ru1—N593.20 (10)
C28—C27—H27120.6N1—Ru1—N5170.61 (10)
C26—C27—H27120.6N2—Ru1—N7170.56 (10)
C27—C28—C29120.1 (3)N1—Ru1—N791.88 (10)
C27—C28—H28120.0N5—Ru1—N796.22 (10)
C29—C28—H28120.0N2—Ru1—N679.60 (10)
N8—C29—C28121.6 (3)N1—Ru1—N694.86 (10)
N8—C29—C30121.7 (3)N5—Ru1—N678.72 (10)
C28—C29—C30116.6 (3)N7—Ru1—N6102.96 (10)
C29—C30—H30B109.5N2—Ru1—N897.99 (10)
C29—C30—H30C109.5N1—Ru1—N885.57 (10)
H30B—C30—H30C109.5N5—Ru1—N8100.53 (10)
C29—C30—H30A109.5N7—Ru1—N879.58 (10)
H30B—C30—H30A109.5N6—Ru1—N8177.40 (10)
N1—C1—C2—C31.0 (5)C11—C12—N1—C1178.7 (3)
C1—C2—C3—C40.4 (4)C4—C12—N1—C15.3 (5)
C2—C3—C4—C5178.9 (3)C11—C12—N1—Ru15.5 (4)
C2—C3—C4—C121.0 (4)C4—C12—N1—Ru1170.5 (2)
C12—C4—C5—N3173.1 (3)C9—C10—N2—C110.8 (5)
C3—C4—C5—N36.8 (5)C9—C10—N2—Ru1173.5 (2)
C12—C4—C5—C60.0 (5)C12—C11—N2—C10178.9 (3)
C3—C4—C5—C6179.9 (3)C7—C11—N2—C104.9 (4)
N3—C5—C6—N40.8 (4)C12—C11—N2—Ru15.8 (4)
C4—C5—C6—N4172.2 (3)C7—C11—N2—Ru1170.4 (2)
N3—C5—C6—C7173.0 (3)C18—C13—N3—C55.8 (5)
C4—C5—C6—C70.0 (4)C14—C13—N3—C5174.3 (3)
N4—C6—C7—C11172.4 (3)C4—C5—N3—C13168.3 (3)
C5—C6—C7—C110.0 (4)C6—C5—N3—C134.8 (4)
N4—C6—C7—C811.0 (4)C13—C18—N4—C61.3 (4)
C5—C6—C7—C8176.7 (3)C17—C18—N4—C6176.0 (3)
C6—C7—C8—C9178.0 (3)C5—C6—N4—C182.2 (4)
C11—C7—C8—C95.3 (4)C7—C6—N4—C18170.0 (3)
C7—C8—C9—C101.7 (5)C35—C34—N5—C457.4 (5)
C8—C9—C10—N20.6 (5)C33—C34—N5—C45177.1 (3)
C6—C7—C11—C120.0 (4)C35—C34—N5—Ru1166.0 (3)
C8—C7—C11—C12176.9 (3)C33—C34—N5—Ru19.5 (5)
C6—C7—C11—N2176.1 (3)C37—C45—N5—C347.9 (5)
C8—C7—C11—N27.1 (5)C46—C45—N5—C34168.1 (3)
C7—C11—C12—N1176.2 (3)C37—C45—N5—Ru1166.8 (3)
N2—C11—C12—N10.2 (4)C46—C45—N5—Ru117.2 (3)
C7—C11—C12—C40.0 (5)C42—C43—N6—C468.1 (4)
N2—C11—C12—C4176.4 (3)C44—C43—N6—C46170.3 (3)
C5—C4—C12—N1175.9 (3)C42—C43—N6—Ru1158.9 (2)
C3—C4—C12—N14.0 (5)C44—C43—N6—Ru122.7 (4)
C5—C4—C12—C110.0 (5)C45—C46—N6—C43169.8 (3)
C3—C4—C12—C11179.9 (3)C40—C46—N6—C436.4 (5)
N3—C13—C14—C15154.5 (3)C45—C46—N6—Ru120.6 (3)
C18—C13—C14—C1525.6 (5)C40—C46—N6—Ru1163.2 (3)
C13—C14—C15—C1654.4 (4)C21—C20—N7—C327.2 (4)
C14—C15—C16—C1759.8 (4)C19—C20—N7—C32171.1 (3)
C15—C16—C17—C1833.0 (4)C21—C20—N7—Ru1164.5 (2)
N3—C13—C18—N42.9 (5)C19—C20—N7—Ru117.2 (4)
C14—C13—C18—N4177.2 (3)C23—C32—N7—C208.9 (4)
N3—C13—C18—C17179.9 (3)C31—C32—N7—C20170.9 (3)
C14—C13—C18—C170.1 (5)C23—C32—N7—Ru1164.4 (2)
C16—C17—C18—N4179.6 (3)C31—C32—N7—Ru115.7 (3)
C16—C17—C18—C133.2 (4)C28—C29—N8—C314.9 (5)
N7—C20—C21—C220.3 (5)C30—C29—N8—C31175.7 (3)
C19—C20—C21—C22178.0 (3)C28—C29—N8—Ru1166.8 (3)
C20—C21—C22—C235.1 (5)C30—C29—N8—Ru112.5 (5)
C21—C22—C23—C24175.6 (3)C26—C31—N8—C297.1 (4)
C21—C22—C23—C323.4 (5)C32—C31—N8—C29168.8 (3)
C32—C23—C24—C255.2 (5)C26—C31—N8—Ru1166.3 (2)
C22—C23—C24—C25173.8 (3)C32—C31—N8—Ru117.8 (3)
C23—C24—C25—C262.4 (5)C10—N2—Ru1—N1179.0 (3)
C24—C25—C26—C313.0 (5)C11—N2—Ru1—N16.6 (2)
C24—C25—C26—C27173.6 (3)C10—N2—Ru1—N55.9 (3)
C31—C26—C27—C280.5 (4)C11—N2—Ru1—N5168.4 (2)
C25—C26—C27—C28176.2 (3)C10—N2—Ru1—N683.8 (3)
C26—C27—C28—C292.5 (5)C11—N2—Ru1—N690.5 (2)
C27—C28—C29—N80.3 (5)C10—N2—Ru1—N895.2 (3)
C27—C28—C29—C30179.7 (3)C11—N2—Ru1—N890.5 (2)
C27—C26—C31—N84.4 (4)C1—N1—Ru1—N2178.3 (3)
C25—C26—C31—N8178.9 (3)C12—N1—Ru1—N26.6 (2)
C27—C26—C31—C32171.5 (3)C1—N1—Ru1—N70.2 (3)
C25—C26—C31—C325.2 (4)C12—N1—Ru1—N7175.0 (2)
C24—C23—C32—N7177.3 (3)C1—N1—Ru1—N6103.3 (3)
C22—C23—C32—N73.6 (4)C12—N1—Ru1—N671.8 (2)
C24—C23—C32—C312.8 (4)C1—N1—Ru1—N879.2 (3)
C22—C23—C32—C31176.3 (3)C12—N1—Ru1—N8105.6 (2)
N8—C31—C32—N71.3 (4)C34—N5—Ru1—N2116.3 (3)
C26—C31—C32—N7177.5 (3)C45—N5—Ru1—N257.4 (2)
N8—C31—C32—C23178.5 (3)C34—N5—Ru1—N762.9 (3)
C26—C31—C32—C232.4 (4)C45—N5—Ru1—N7123.3 (2)
N5—C34—C35—C361.0 (6)C34—N5—Ru1—N6164.9 (3)
C33—C34—C35—C36176.7 (4)C45—N5—Ru1—N621.3 (2)
C34—C35—C36—C375.0 (6)C34—N5—Ru1—N817.6 (3)
C35—C36—C37—C454.5 (6)C45—N5—Ru1—N8156.2 (2)
C35—C36—C37—C38176.8 (4)C20—N7—Ru1—N1106.1 (3)
C45—C37—C38—C394.6 (5)C32—N7—Ru1—N166.2 (2)
C36—C37—C38—C39176.8 (4)C20—N7—Ru1—N569.2 (3)
C37—C38—C39—C402.8 (5)C32—N7—Ru1—N5118.6 (2)
C38—C39—C40—C467.5 (5)C20—N7—Ru1—N610.6 (3)
C38—C39—C40—C41173.5 (3)C32—N7—Ru1—N6161.61 (19)
C39—C40—C41—C42176.0 (3)C20—N7—Ru1—N8168.8 (3)
C46—C40—C41—C424.9 (5)C32—N7—Ru1—N818.96 (19)
C40—C41—C42—C433.4 (5)C43—N6—Ru1—N294.9 (3)
C41—C42—C43—N63.4 (5)C46—N6—Ru1—N272.9 (2)
C41—C42—C43—C44175.0 (3)C43—N6—Ru1—N117.2 (3)
C38—C37—C45—N5176.7 (3)C46—N6—Ru1—N1150.6 (2)
C36—C37—C45—N52.0 (5)C43—N6—Ru1—N5169.7 (3)
C38—C37—C45—C467.3 (5)C46—N6—Ru1—N522.49 (19)
C36—C37—C45—C46174.0 (3)C43—N6—Ru1—N775.9 (3)
N5—C45—C46—N62.5 (4)C46—N6—Ru1—N7116.4 (2)
C37—C45—C46—N6173.8 (3)C29—N8—Ru1—N221.4 (3)
N5—C45—C46—C40178.9 (3)C31—N8—Ru1—N2150.76 (19)
C37—C45—C46—C402.7 (5)C29—N8—Ru1—N199.5 (3)
C39—C40—C46—N6179.2 (3)C31—N8—Ru1—N172.7 (2)
C41—C40—C46—N60.1 (5)C29—N8—Ru1—N573.3 (3)
C39—C40—C46—C454.7 (5)C31—N8—Ru1—N5114.5 (2)
C41—C40—C46—C45176.2 (3)C29—N8—Ru1—N7167.8 (3)
C2—C1—N1—C123.7 (5)C31—N8—Ru1—N720.00 (19)
C2—C1—N1—Ru1171.3 (2)

Experimental details

Crystal data
Chemical formula[Ru(C14H12N2)2(C18H14N4)](ClO4)2·2H2O
Mr1038.85
Crystal system, space groupMonoclinic, C2/c
Temperature (K)291
a, b, c (Å)25.862 (7), 24.442 (7), 18.517 (5)
β (°) 126.229 (5)
V3)9442 (5)
Z8
Radiation typeMo Kα
µ (mm1)0.51
Crystal size (mm)0.28 × 0.22 × 0.20
Data collection
DiffractometerBruker SMART APEX CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.87, 0.91
No. of measured, independent and
observed [I > 2σ(I)] reflections
21316, 9145, 7262
Rint0.028
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.128, 1.06
No. of reflections9145
No. of parameters640
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.33, 1.19

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Ru1—N12.068 (3)Ru1—N62.108 (3)
Ru1—N22.061 (3)Ru1—N72.106 (3)
Ru1—N52.094 (3)Ru1—N82.108 (3)
 

Acknowledgements

This work was supported by the Science and Technology Foundation of Guangdong Province (2009B030803057) and Guangdong Pharmaceutical University.

References

First citationAbdur-Rashid, K., Clapham, S. E., Hadzovic, A., Harvey, J. N., Lough, A. J. & Morris, R. H. J. (2002). J. Am. Chem. Soc. 124, 15104–15118.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCocchietto, M. & Sava, G. (2000). Pharmacol. Toxicol. 87, 193–197.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDickeson, J. E. & Summers, L. A. (1970). Aust. J. Chem. 23, 1023–1027.  CrossRef CAS Web of Science Google Scholar
First citationJuris, A., Balzani, V., Barigelletti, F., Campagna, S., Belser, P. & Vonzelewsky, A. (1988). Coord. Chem. Rev. 84, 85–277.  CrossRef CAS Web of Science Google Scholar
First citationPellegrini, P. P. & Aldrich-Wright, J. R. (2003). Dalton Trans. pp. 176–183.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZorzet, S., Sorce, A., Casarsa, C., Cocchietto, M. & Sava, G. (2001). Met. Based Drugs, 8, 1–7.  CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds