metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Diacridinium tetra­kis(thio­cyanato-κS)platinate(II)

aSchool of Applied Chemical Engineering, The Research Institute of Catalysis, Chonnam National University, Gwangju 500-757, Republic of Korea
*Correspondence e-mail: hakwang@chonnam.ac.kr

(Received 12 January 2010; accepted 20 January 2010; online 23 January 2010)

The asymmetric unit of the title compound, (C13H10N)2[Pt(NCS)4], contains a protonated acridine molecule and one half of a [Pt(NCS)4]2− anion. In the complex anion, the PtII ion is located on an inversion centre and is four-coordinated in a slightly distorted square-planar environment by four S atoms from four thio­cyanate ligands. The compound displays numerous inter­molecular ππ inter­actions between six-membered rings, with a shortest centroid–centroid distance of 3.682 (3) Å. The component ions inter­act by means of inter­molecular N—H⋯N hydrogen bonds.

Related literature

For related acridinium compounds, see: Hafiz (2006[Hafiz, H. R. (2006). Phys. Stat. Sol. (A), 203, 878-885.]); Veldhuizen et al. (1997[Veldhuizen, Y. S. J., Smeets, W. J. J., Veldman, N., Spek, A. L., Faulmann, C., Auban-Senzier, P., Jérome, D., Paulus, P. M., Haasnoot, J. G. & Reedijk, J. (1997). Inorg. Chem. 36, 4930-4937.]). For the crystal structures of [M(NCS)4]2− [M = Pt(II), Pd(II)] complexes, see: Aoki et al. (1999[Aoki, K., Hu, N.-H., Tokuno, T., Adeyemo, A. O. & Williams, G. N. (1999). Inorg. Chim. Acta, 290, 145-152.]); Deplano et al. (2004[Deplano, P., Mercuri, M. L., Marchiò, L., Pilia, L., Salidu, M., Serpe, A. & Tronci, E. (2004). Inorg. Chim. Acta, 357, 1608-1612.]); Rohde et al. (2000[Rohde, J.-U., von Malottki, B. & Preetz, W. (2000). Z. Anorg. Allg. Chem. 626, 905-910.]).

[Scheme 1]

Experimental

Crystal data
  • (C13H10N)2[Pt(NCS)4]

  • Mr = 787.85

  • Monoclinic, P 21 /c

  • a = 6.8358 (8) Å

  • b = 11.9833 (15) Å

  • c = 17.737 (2) Å

  • β = 93.618 (2)°

  • V = 1450.0 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 5.16 mm−1

  • T = 293 K

  • 0.11 × 0.10 × 0.10 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.463, Tmax = 1.000

  • 8278 measured reflections

  • 2968 independent reflections

  • 2003 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.068

  • S = 1.03

  • 2968 reflections

  • 187 parameters

  • H-atom parameters constrained

  • Δρmax = 0.89 e Å−3

  • Δρmin = −0.50 e Å−3

Table 1
Selected bond lengths (Å)

Pt1—S1 2.3236 (17)
Pt1—S2 2.3254 (17)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯N1i 0.86 1.97 2.829 (6) 177
Symmetry code: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The asymmetric unit of the title compound contains a protonated acridine cation and one half of a [Pt(NCS)4]2- anionic complex (Fig. 1). In the complex, the PtII ion is located on an inversion centre at the special position (1, 1/2, 1/2) and is four-coordinated in a slightly distorted square-planar environment by four S atoms from four NCS- ligands. The Pt—S bond lengths are nearly equivalent [2.3236 (17) and 2.3254 (17) Å] (Table 1). The cis S—Pt—S bond angles are 88.82 (6) and 91.18 (6)°. The thiocyanate anions are almost linear displaying S—C—N bond angles of 175.7 (6) and 176.9 (6)°. The S atoms coordinate to the Pt atom with nearly tetrahedral Pt—S—C bond angles of 105.9 (2) and 104.4 (2)°. The compound displays numerous intermolecular ππ interactions between six-membered rings, with a shortest centroid–centroid distance of 3.682 (3) Å. The component ions interact by means of intermolecular N—H···N hydrogen bonds (Fig. 2 and Table 2).

Related literature top

For related acridinium compounds, see: Hafiz (2006); Veldhuizen et al. (1997). For the crystal structures of [M(NCS)4]2- [M = Pt(II), Pd(II)] complexes, see: Aoki et al. (1999); Deplano et al. (2004); Rohde et al. (2000).

Experimental top

To a solution of K2PtCl6 (0.2002 g, 0.412 mmol) in H2O (20 ml) was added KNCS (0.3998 g, 4.114 mmol) and refluxed for 1 h. After cooling of the reaction mixture to room temperature, acridine (0.1479 g, 0.825 mmol) was added and refluxed for 3 h. The precipitate obtained was separated by filtration, washed with H2O and dried at 50 °C, to give an orange powder (0.1894 g). Crystals suitable for X-ray analysis were obtained by slow evaporation from a MeOH solution.

Refinement top

H atoms were positioned geometrically and allowed to ride on their respective parent atoms [C—H = 0.93, N—H = 0.86 Å and Uiso(H) = 1.2Ueq(C, N)].

Structure description top

The asymmetric unit of the title compound contains a protonated acridine cation and one half of a [Pt(NCS)4]2- anionic complex (Fig. 1). In the complex, the PtII ion is located on an inversion centre at the special position (1, 1/2, 1/2) and is four-coordinated in a slightly distorted square-planar environment by four S atoms from four NCS- ligands. The Pt—S bond lengths are nearly equivalent [2.3236 (17) and 2.3254 (17) Å] (Table 1). The cis S—Pt—S bond angles are 88.82 (6) and 91.18 (6)°. The thiocyanate anions are almost linear displaying S—C—N bond angles of 175.7 (6) and 176.9 (6)°. The S atoms coordinate to the Pt atom with nearly tetrahedral Pt—S—C bond angles of 105.9 (2) and 104.4 (2)°. The compound displays numerous intermolecular ππ interactions between six-membered rings, with a shortest centroid–centroid distance of 3.682 (3) Å. The component ions interact by means of intermolecular N—H···N hydrogen bonds (Fig. 2 and Table 2).

For related acridinium compounds, see: Hafiz (2006); Veldhuizen et al. (1997). For the crystal structures of [M(NCS)4]2- [M = Pt(II), Pd(II)] complexes, see: Aoki et al. (1999); Deplano et al. (2004); Rohde et al. (2000).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound, with displacement ellipsoids drawn at the 30% probability level. [Symmetry code: (a) 2-x, 1-y, 1-z.]
[Figure 2] Fig. 2. View of the unit-cell contents of the title compound. Hydrogen-bond interactions are drawn with dashed lines.
Diacridinium tetrakis(thiocyanato-κS)platinate(II) top
Crystal data top
(C13H10N)2[Pt(NCS)4]F(000) = 768
Mr = 787.85Dx = 1.804 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 720 reflections
a = 6.8358 (8) Åθ = 2.3–20.2°
b = 11.9833 (15) ŵ = 5.16 mm1
c = 17.737 (2) ÅT = 293 K
β = 93.618 (2)°Block, orange
V = 1450.0 (3) Å30.11 × 0.10 × 0.10 mm
Z = 2
Data collection top
Bruker SMART 1000 CCD
diffractometer
2968 independent reflections
Radiation source: fine-focus sealed tube2003 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
φ and ω scansθmax = 26.4°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 88
Tmin = 0.463, Tmax = 1.000k = 1414
8278 measured reflectionsl = 1122
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.068H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0175P)2]
where P = (Fo2 + 2Fc2)/3
2968 reflections(Δ/σ)max < 0.001
187 parametersΔρmax = 0.89 e Å3
0 restraintsΔρmin = 0.50 e Å3
Crystal data top
(C13H10N)2[Pt(NCS)4]V = 1450.0 (3) Å3
Mr = 787.85Z = 2
Monoclinic, P21/cMo Kα radiation
a = 6.8358 (8) ŵ = 5.16 mm1
b = 11.9833 (15) ÅT = 293 K
c = 17.737 (2) Å0.11 × 0.10 × 0.10 mm
β = 93.618 (2)°
Data collection top
Bruker SMART 1000 CCD
diffractometer
2968 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2003 reflections with I > 2σ(I)
Tmin = 0.463, Tmax = 1.000Rint = 0.039
8278 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.068H-atom parameters constrained
S = 1.03Δρmax = 0.89 e Å3
2968 reflectionsΔρmin = 0.50 e Å3
187 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pt11.00000.50000.50000.05422 (12)
S10.8814 (3)0.44333 (14)0.38044 (9)0.0807 (5)
S21.2773 (2)0.56944 (17)0.44661 (10)0.0862 (6)
N10.6764 (7)0.2432 (4)0.3972 (3)0.0747 (16)
N21.1409 (9)0.6690 (5)0.3098 (3)0.095 (2)
C10.7597 (8)0.3255 (5)0.3932 (3)0.0609 (16)
C21.1910 (9)0.6278 (5)0.3653 (4)0.0686 (19)
N30.2844 (5)0.5161 (3)0.0610 (3)0.0497 (11)
H30.29170.58520.07400.060*
C30.2417 (6)0.4939 (5)0.0132 (3)0.0454 (12)
C40.2091 (7)0.5803 (5)0.0660 (4)0.0569 (15)
H40.21990.65460.05130.068*
C50.1610 (8)0.5522 (6)0.1395 (4)0.0666 (18)
H50.13650.60830.17510.080*
C60.1481 (8)0.4401 (7)0.1621 (4)0.0730 (18)
H60.11610.42330.21260.088*
C70.1808 (8)0.3563 (6)0.1124 (4)0.0708 (19)
H70.17220.28260.12880.085*
C80.2283 (7)0.3802 (5)0.0354 (3)0.0515 (14)
C90.2682 (7)0.2991 (5)0.0195 (4)0.0611 (17)
H90.26640.22450.00510.073*
C100.3109 (7)0.3256 (5)0.0957 (3)0.0521 (14)
C110.3508 (8)0.2451 (5)0.1531 (4)0.0675 (18)
H110.34960.16960.14110.081*
C120.3904 (9)0.2780 (6)0.2253 (4)0.077 (2)
H120.41960.22490.26260.092*
C130.3877 (8)0.3919 (6)0.2445 (4)0.0752 (19)
H130.41160.41260.29480.090*
C140.3509 (8)0.4722 (5)0.1915 (3)0.0614 (17)
H140.34880.54710.20520.074*
C150.3163 (7)0.4401 (5)0.1159 (3)0.0473 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pt10.0612 (2)0.04675 (18)0.0540 (2)0.00893 (17)0.00227 (16)0.00275 (19)
S10.1100 (14)0.0712 (11)0.0591 (11)0.0381 (11)0.0097 (10)0.0064 (10)
S20.0712 (12)0.1146 (15)0.0721 (12)0.0280 (11)0.0007 (10)0.0130 (12)
N10.090 (4)0.052 (3)0.081 (4)0.013 (3)0.005 (3)0.006 (3)
N20.105 (5)0.113 (5)0.069 (4)0.034 (4)0.008 (4)0.014 (4)
C10.071 (4)0.054 (4)0.056 (4)0.001 (3)0.011 (3)0.003 (3)
C20.072 (5)0.068 (5)0.067 (5)0.029 (4)0.020 (4)0.017 (4)
N30.043 (2)0.048 (3)0.058 (3)0.004 (2)0.007 (2)0.004 (3)
C30.032 (3)0.053 (3)0.053 (3)0.000 (3)0.011 (2)0.006 (3)
C40.042 (3)0.060 (4)0.069 (4)0.001 (3)0.005 (3)0.003 (4)
C50.043 (3)0.092 (5)0.066 (5)0.006 (3)0.010 (3)0.011 (4)
C60.062 (4)0.097 (5)0.060 (4)0.006 (4)0.009 (4)0.015 (5)
C70.054 (4)0.073 (5)0.086 (5)0.005 (3)0.015 (4)0.027 (4)
C80.039 (3)0.058 (4)0.060 (4)0.005 (3)0.015 (3)0.013 (3)
C90.044 (3)0.048 (4)0.093 (5)0.003 (3)0.021 (4)0.011 (4)
C100.042 (3)0.056 (4)0.060 (4)0.006 (3)0.009 (3)0.001 (3)
C110.053 (4)0.051 (4)0.099 (6)0.010 (3)0.012 (4)0.011 (4)
C120.073 (5)0.081 (5)0.078 (5)0.010 (4)0.014 (4)0.027 (5)
C130.062 (4)0.102 (6)0.062 (4)0.009 (4)0.006 (4)0.008 (5)
C140.060 (4)0.063 (4)0.061 (4)0.005 (3)0.003 (3)0.003 (3)
C150.038 (3)0.048 (3)0.057 (4)0.003 (3)0.009 (3)0.001 (3)
Geometric parameters (Å, º) top
Pt1—S12.3236 (17)C6—H60.9300
Pt1—S22.3254 (17)C7—C81.414 (7)
S1—C11.661 (6)C7—H70.9300
S2—C21.676 (7)C8—C91.390 (7)
N1—C11.143 (6)C9—C101.400 (7)
N2—C21.135 (7)C9—H90.9300
N3—C151.341 (6)C10—C111.417 (7)
N3—C31.357 (6)C10—C151.417 (7)
N3—H30.8600C11—C121.350 (8)
C3—C41.403 (7)C11—H110.9300
C3—C81.419 (7)C12—C131.408 (8)
C4—C51.367 (7)C12—H120.9300
C4—H40.9300C13—C141.358 (7)
C5—C61.403 (9)C13—H130.9300
C5—H50.9300C14—C151.402 (7)
C6—C71.345 (8)C14—H140.9300
S1i—Pt1—S1180.0C6—C7—H7120.0
S1i—Pt1—S291.18 (6)C8—C7—H7120.0
S1—Pt1—S288.82 (6)C9—C8—C7123.9 (6)
S1i—Pt1—S2i88.82 (6)C9—C8—C3118.1 (5)
S1—Pt1—S2i91.18 (6)C7—C8—C3118.0 (6)
S2—Pt1—S2i180.0C8—C9—C10122.5 (5)
C1—S1—Pt1105.9 (2)C8—C9—H9118.8
C2—S2—Pt1104.4 (2)C10—C9—H9118.8
N1—C1—S1175.7 (6)C9—C10—C11123.9 (6)
N2—C2—S2176.9 (7)C9—C10—C15117.6 (6)
C15—N3—C3125.9 (5)C11—C10—C15118.4 (6)
C15—N3—H3117.1C12—C11—C10120.1 (6)
C3—N3—H3117.1C12—C11—H11120.0
N3—C3—C4121.2 (5)C10—C11—H11120.0
N3—C3—C8117.6 (5)C11—C12—C13120.5 (6)
C4—C3—C8121.2 (5)C11—C12—H12119.8
C5—C4—C3118.3 (6)C13—C12—H12119.8
C5—C4—H4120.9C14—C13—C12121.7 (6)
C3—C4—H4120.9C14—C13—H13119.2
C4—C5—C6121.0 (6)C12—C13—H13119.2
C4—C5—H5119.5C13—C14—C15118.7 (6)
C6—C5—H5119.5C13—C14—H14120.6
C7—C6—C5121.5 (6)C15—C14—H14120.6
C7—C6—H6119.2N3—C15—C14121.2 (5)
C5—C6—H6119.2N3—C15—C10118.3 (5)
C6—C7—C8120.0 (6)C14—C15—C10120.6 (6)
S2—Pt1—S1—C1145.5 (2)C7—C8—C9—C10178.7 (5)
S2i—Pt1—S1—C134.5 (2)C3—C8—C9—C103.3 (8)
S1i—Pt1—S2—C2140.0 (2)C8—C9—C10—C11179.5 (5)
S1—Pt1—S2—C240.0 (2)C8—C9—C10—C151.2 (8)
C15—N3—C3—C4179.4 (4)C9—C10—C11—C12179.9 (5)
C15—N3—C3—C80.3 (7)C15—C10—C11—C120.8 (8)
N3—C3—C4—C5178.1 (5)C10—C11—C12—C131.6 (9)
C8—C3—C4—C50.9 (7)C11—C12—C13—C141.8 (10)
C3—C4—C5—C61.2 (8)C12—C13—C14—C150.4 (9)
C4—C5—C6—C70.5 (9)C3—N3—C15—C14177.1 (5)
C5—C6—C7—C80.4 (9)C3—N3—C15—C101.8 (7)
C6—C7—C8—C9178.7 (5)C13—C14—C15—N3178.2 (5)
C6—C7—C8—C30.7 (8)C13—C14—C15—C102.9 (8)
N3—C3—C8—C92.8 (7)C9—C10—C15—N31.3 (7)
C4—C3—C8—C9178.1 (5)C11—C10—C15—N3178.0 (5)
N3—C3—C8—C7179.0 (4)C9—C10—C15—C14177.6 (5)
C4—C3—C8—C70.0 (7)C11—C10—C15—C143.1 (7)
Symmetry code: (i) x+2, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···N1ii0.861.972.829 (6)177
Symmetry code: (ii) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula(C13H10N)2[Pt(NCS)4]
Mr787.85
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)6.8358 (8), 11.9833 (15), 17.737 (2)
β (°) 93.618 (2)
V3)1450.0 (3)
Z2
Radiation typeMo Kα
µ (mm1)5.16
Crystal size (mm)0.11 × 0.10 × 0.10
Data collection
DiffractometerBruker SMART 1000 CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.463, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
8278, 2968, 2003
Rint0.039
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.068, 1.03
No. of reflections2968
No. of parameters187
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.89, 0.50

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009).

Selected bond lengths (Å) top
Pt1—S12.3236 (17)Pt1—S22.3254 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···N1i0.861.972.829 (6)176.9
Symmetry code: (i) x+1, y+1/2, z+1/2.
 

Acknowledgements

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2009–0074570).

References

First citationAoki, K., Hu, N.-H., Tokuno, T., Adeyemo, A. O. & Williams, G. N. (1999). Inorg. Chim. Acta, 290, 145–152.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDeplano, P., Mercuri, M. L., Marchiò, L., Pilia, L., Salidu, M., Serpe, A. & Tronci, E. (2004). Inorg. Chim. Acta, 357, 1608–1612.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHafiz, H. R. (2006). Phys. Stat. Sol. (A), 203, 878–885.  Web of Science CrossRef CAS Google Scholar
First citationRohde, J.-U., von Malottki, B. & Preetz, W. (2000). Z. Anorg. Allg. Chem. 626, 905–910.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVeldhuizen, Y. S. J., Smeets, W. J. J., Veldman, N., Spek, A. L., Faulmann, C., Auban-Senzier, P., Jérome, D., Paulus, P. M., Haasnoot, J. G. & Reedijk, J. (1997). Inorg. Chem. 36, 4930–4937.  CSD CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds