organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-Chloro­benzo­thia­zole-2-spiro-3′-indolin-2′-one

aDepartment of Physics, Faculty of Arts and Sciences, Erciyes University, 38039 Kayseri, Turkey, bDepartment of Pharmaceutical Chemistry, Faculty of Pharmacy, stanbul University, 34116 Beyazıt–stanbul, Turkey, and cDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, 55139 Samsun, Turkey
*Correspondence e-mail: akkurt@erciyes.edu.tr

(Received 16 December 2009; accepted 11 January 2010; online 20 January 2010)

The title compound, C14H9ClN2OS, crystallizes with two unique mol­ecules, A and B, in the asymmetric unit. The five-membered rings of the benzothia­zole groups in both mol­ecules adopt an envelope conformation [puckering parameters: q2 = 0.242 (1) Å and φ2 = 217.5 (4)° for A, and q2 = 0.234 (1) Å and φ2 = 37.7 (4)° for B]. The five-membered rings of the indolinone groups in both mol­ecules are also not planar, with a twisted conformation [puckering parameters are q2 = 0.112 (2) Å and φ2 = 126.3 (8)° for A, and q2 = 0.108 (2) Å and φ2 = 306.4 (9)° for B]. In the crystal structure, there are inter­molecular N—H⋯O, N—H⋯S and C—H⋯O hydrogen-bonding inter­actions, forming the layers propagating normal to c.

Related literature

For general background to and applications of 1H-indole-2,3-dione derivatives, see: Alam & Nawwar (2002[Alam, Y. A. & Nawwar, G. A. M. (2002). Heteroat. Chem. 13, 207-210.]); Cho et al. (2008[Cho, Y., Loerger, T. R. & Sacchettini, J. C. (2008). J. Med. Chem. 51, 5984-5992.]); Da-Silva et al. (2001[Da-Silva, J. F. M., Garden, S. J. & Pinto, A. C. (2001). J. Braz. Chem. Soc. 12, 273-324.]); Dandia et al. (1990[Dandia, A., Khanna, S. & Joshi, K. C. (1990). J. Indian Chem. Soc. 67, 824-826.]); Hall et al. (2009[Hall, M. D., Salam, N. K., Hellawell, J. L., Fales, H. M., Kensler, C. B., Ludwig, J. A., Szakács, G., Hibbs, D. E. & Gottesman, M. M. (2009). J. Med. Chem. 52, 3191-3204.]); Joshi et al. (1990[Joshi, K. C., Dandia, A. & Khanna, S. (1990). Indian J. Chem. Soc. Sect. B, 29, 824-829.]); Kumar et al. (2008[Kumar, R. R., Perumal, S., Senthilkumar, P., Yogeeswari, P. & Sriram, D. (2008). J. Med. Chem. 51, 5731-5735.]); Quenelle et al. (2006[Quenelle, D. C., Keith, K. A. & Kern, K. E. R. (2006). Antiviral Res. 71, 24-30.]); Vine et al. (2007[Vine, K. L., Locke, J. M., Ranson, M., Pyne, S. G. & Bremner, J. B. (2007). Bioorg. Med. Chem. 15, 931-938.], 2009[Vine, K. L., Matesic, L., Locke, J. M., Ranson, M. & Skropeta, D. (2009). Anti-Cancer Agents Med. Chem. 9, 397-414.]); Ćaleta et al. (2009[Ćaleta, I., Kralj, M., Marjanović, M., Bertoša, B., Tomić, S., Pavlović, G., Pavelić, K. & Karminski-Zamola, G. (2009). J. Med. Chem. 52, 1744-1756.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C14H9ClN2OS

  • Mr = 288.75

  • Monoclinic, P 21 /c

  • a = 12.8421 (6) Å

  • b = 9.1159 (3) Å

  • c = 22.1553 (9) Å

  • β = 97.051 (3)°

  • V = 2574.1 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.45 mm−1

  • T = 295 K

  • 0.77 × 0.49 × 0.19 mm

Data collection
  • Stoe IPDS 2 diffractometer

  • Absorption correction: integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.723, Tmax = 0.919

  • 23976 measured reflections

  • 5271 independent reflections

  • 3987 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.080

  • S = 1.01

  • 5271 reflections

  • 359 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O2i 0.90 (3) 1.95 (3) 2.840 (2) 171 (2)
N2—H2A⋯S1ii 0.90 (2) 2.61 (2) 3.506 (1) 177 (2)
N3—H3A⋯O1iii 0.89 (2) 1.99 (2) 2.867 (2) 166 (2)
N4—H4A⋯S2iv 0.89 (2) 2.63 (2) 3.511 (1) 176 (2)
C3—H3⋯O1v 0.93 2.53 3.418 (2) 161
Symmetry codes: (i) x, y-1, z; (ii) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) x, y+1, z; (iv) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

1H-Indole-2,3-dione is a synthetically versatile molecule which has led to an array of derivatives displaying a broad spectrum of biological properties including anticancer, antiviral, antituberculosis and antibacterial activities (Vine et al., 2007, 2009; Quenelle et al., 2006). Investigation of the structure-activity relationships in 2-indolinones revealed that cyclization to thiazolines and spiroindolinones are associated with increased activity against a range of human cancer cell lines, various bacteria and viruses (Hall et al., 2009; Kumar et al., 2008). A large number of 2-arylbenzothiazoles have been prepared because of their wide pharmacological potential. This important class of compounds has significant anticancer and antimicrobial properties (Ćaleta et al.,2009; Cho et al., 2008). The reactivity of 1H-indole-2,3-dione towards 2-aminothiophenol has been the subject of a number of reports and some of the products obtained are quite interesting. The first results reported that 1H-indole-2,3-dione furnished benzothiazinone, indolobenzothiazide and spiro benzothiazole when the reaction was carried out in dry xylene in the presence of anhydrous zinc chloride under reflux. On the other hand, the reaction of 1-methyl-1H-indole-2,3-dione with 2-amino thiophenol under the same conditions furnished solely the spiro compound (Joshi et al., 1990; Dandia et al., 1990; Da-Silva et al., 2001). In addition, there is one report on the reaction of 1H-indole-2,3-dione with 2-aminothiophenol in ethanol yielding a single spirobenzothiazole (Alam & Nawwar, 2002). Promoted by the above observations and in continuation of our study on the indolinone derivatives, we synthesized the title compound (3) by incorporating the benzothiazole moiety. Thus spectroscopic and X-ray diffraction studies were carried out on (3) to determine the spiro benzothiazole structure.

Fig. 1 shows the two crystallographically independent molecules in the asymmetric unit. Bond lengths in both molecules are within normal ranges (Allen et al., 1987). The five-membered rings S1/N2/C8/C9/C14 and S2/N4/C22/C23/C28 of the benzothiazole groups in both molecules A and B [A: S1/Cl1/O1/N1/N2/C1–C14 and B: S2/Cl2/O2/N3/N4/C15–C28] adopt an envelope conformation with atom C8 at the flap for molecule A [puckering parameters are q2 = 0.242 (1) Å and φ2= 217.5 (4)° (Cremer & Pople, 1975)] and with atom C22 at the flap for molecule B [puckering parameters are q2 = 0.234 (1) Å and φ2= 37.7 (4)°]. The five-membered rings N1/C1/C2/C7/C8 and N3/C15/C20—C22 of the indolinone groups in both molecules A and B also are not planar, with twisted C7—C8 and C21—C22 bonds, respectively, [puckering parameters are q2 = 0.112 (2) Å and φ2 = 126.3 (8)° for A, and q2 = 0.108 (2) Å and φ2 = 306.4 (9)° for B]..

The torsion angles N1—C7—C8—N2, C2–C8–N2–C14 in A and N3—C21—C22—N4, C20—C22—N4—C28 in B are 141.0 (1)°, 148.5 (1)° and -140.3 (1) °, -147.8 (1)°, respectivley. Thus, they adopt +anti-clinal (+ac) and -anti-clinal (-ac) conformations, for molecules A and B, repectively.

The crystal packing is stabilized by intermolecular N—H···O, N—H···S and C—H···O hydrogen bonding interactions, forming the layers of molecules which are paralel to the (001) planes (Table 1 and Fig. 2).

Related literature top

For general background to and applications of 1H-indole-2,3-dione derivatives, see: Alam & Nawwar (2002); Cho et al. (2008); Da-Silva et al. (2001); Dandia et al. (1990); Hall et al. (2009); Joshi et al. (1990); Kumar et al. (2008); Quenelle et al. (2006); Vine et al. (2007, 2009); Ćaleta et al. (2009). For bond-length data, see: Allen et al. (1987). For puckering parameters, see: Cremer & Pople (1975).

Experimental top

To a solution of 1H-indole-2,3-dione 1 (3.5 mmol) in absolute ethanol (15 ml) was added 2-aminothiophenol 2 (3.5 mmol). The mixture was heated under reflux for 5 h. The solid thus obtained (3) was filtered, dried and recrystallized from ethanol (Alam & Nawwar, 2002). Yield: 86%; m.p.: 514 K; IR (KBr) ν (cm-1): 3281, 3149 (N—H), 1728(C=O); 1H-NMR (DMSO-d6, 500 MHz) δ (p.p.m.): 6.50 (1H, d, J = 0.96 Hz, C13—H), 6.62 (1H, dd, J = 8.30, 2.44 Hz, C11—H), 6.84 (1H, d, J = 7.81 Hz, C6—H), 7.03 (1H, d, J = 8.30 Hz, C10—H), 7.05 (1H, dt, J =7.81 Hz, C4—H), 7.29 (1H, dt, J = 7.81 Hz, C5—H), 7.55 (1H, d, J = 2.92 Hz, C3—H), 7.56 (1H, s, N2—H), 10.39 (1H, s, N1—H); 13C-NMR (HSQC) (125 MHz)(DMSO-d6/TMS) δ (p.p.m.): 75.64 (C8), 108.40 (C13), 118.52 (C11), 110.88 (C6), 122.70 (C10), 123.28 (C4), 123.99 (C2), 126.38 (C3), 129.86(C9), 130.92 (C12), 131.43 (C5), 142.03 (C1), 149.43 (C14), 176.53 (C7). MS (ESI+) m/z (%): 289 (MH+, 35), 287 (100). Analysis calculated for C14H9ClN2OS: C 58.23, H 3.14, N 9.70%. Found: C 58.06, H 3.14, N 9.52%.

Refinement top

H atoms bound to N atoms were located from a difference Fourier map and refined freely. H atoms bound to C atoms were positioned geometrically with C—H = 0.93 Å and refined using a riding model with Uiso(H) = 1.2Ueq(C).

Structure description top

1H-Indole-2,3-dione is a synthetically versatile molecule which has led to an array of derivatives displaying a broad spectrum of biological properties including anticancer, antiviral, antituberculosis and antibacterial activities (Vine et al., 2007, 2009; Quenelle et al., 2006). Investigation of the structure-activity relationships in 2-indolinones revealed that cyclization to thiazolines and spiroindolinones are associated with increased activity against a range of human cancer cell lines, various bacteria and viruses (Hall et al., 2009; Kumar et al., 2008). A large number of 2-arylbenzothiazoles have been prepared because of their wide pharmacological potential. This important class of compounds has significant anticancer and antimicrobial properties (Ćaleta et al.,2009; Cho et al., 2008). The reactivity of 1H-indole-2,3-dione towards 2-aminothiophenol has been the subject of a number of reports and some of the products obtained are quite interesting. The first results reported that 1H-indole-2,3-dione furnished benzothiazinone, indolobenzothiazide and spiro benzothiazole when the reaction was carried out in dry xylene in the presence of anhydrous zinc chloride under reflux. On the other hand, the reaction of 1-methyl-1H-indole-2,3-dione with 2-amino thiophenol under the same conditions furnished solely the spiro compound (Joshi et al., 1990; Dandia et al., 1990; Da-Silva et al., 2001). In addition, there is one report on the reaction of 1H-indole-2,3-dione with 2-aminothiophenol in ethanol yielding a single spirobenzothiazole (Alam & Nawwar, 2002). Promoted by the above observations and in continuation of our study on the indolinone derivatives, we synthesized the title compound (3) by incorporating the benzothiazole moiety. Thus spectroscopic and X-ray diffraction studies were carried out on (3) to determine the spiro benzothiazole structure.

Fig. 1 shows the two crystallographically independent molecules in the asymmetric unit. Bond lengths in both molecules are within normal ranges (Allen et al., 1987). The five-membered rings S1/N2/C8/C9/C14 and S2/N4/C22/C23/C28 of the benzothiazole groups in both molecules A and B [A: S1/Cl1/O1/N1/N2/C1–C14 and B: S2/Cl2/O2/N3/N4/C15–C28] adopt an envelope conformation with atom C8 at the flap for molecule A [puckering parameters are q2 = 0.242 (1) Å and φ2= 217.5 (4)° (Cremer & Pople, 1975)] and with atom C22 at the flap for molecule B [puckering parameters are q2 = 0.234 (1) Å and φ2= 37.7 (4)°]. The five-membered rings N1/C1/C2/C7/C8 and N3/C15/C20—C22 of the indolinone groups in both molecules A and B also are not planar, with twisted C7—C8 and C21—C22 bonds, respectively, [puckering parameters are q2 = 0.112 (2) Å and φ2 = 126.3 (8)° for A, and q2 = 0.108 (2) Å and φ2 = 306.4 (9)° for B]..

The torsion angles N1—C7—C8—N2, C2–C8–N2–C14 in A and N3—C21—C22—N4, C20—C22—N4—C28 in B are 141.0 (1)°, 148.5 (1)° and -140.3 (1) °, -147.8 (1)°, respectivley. Thus, they adopt +anti-clinal (+ac) and -anti-clinal (-ac) conformations, for molecules A and B, repectively.

The crystal packing is stabilized by intermolecular N—H···O, N—H···S and C—H···O hydrogen bonding interactions, forming the layers of molecules which are paralel to the (001) planes (Table 1 and Fig. 2).

For general background to and applications of 1H-indole-2,3-dione derivatives, see: Alam & Nawwar (2002); Cho et al. (2008); Da-Silva et al. (2001); Dandia et al. (1990); Hall et al. (2009); Joshi et al. (1990); Kumar et al. (2008); Quenelle et al. (2006); Vine et al. (2007, 2009); Ćaleta et al. (2009). For bond-length data, see: Allen et al. (1987). For puckering parameters, see: Cremer & Pople (1975).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The title compound (3), with the atom-numbering scheme, intramolecular H-bonds and 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. The packing and hydrogen bonding of the title compound (3) down the b axis. H atoms not involved in hydrogen bonding have been omitted.
5-Chlorobenzothiazole-2-spiro-3'-indolin-2'-one top
Crystal data top
C14H9ClN2OSF(000) = 1184
Mr = 288.75Dx = 1.490 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 33214 reflections
a = 12.8421 (6) Åθ = 1.6–28.0°
b = 9.1159 (3) ŵ = 0.45 mm1
c = 22.1553 (9) ÅT = 295 K
β = 97.051 (3)°Prism, yellow
V = 2574.1 (2) Å30.77 × 0.49 × 0.19 mm
Z = 8
Data collection top
Stoe IPDS 2
diffractometer
5271 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus3987 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.031
Detector resolution: 6.67 pixels mm-1θmax = 26.5°, θmin = 1.9°
ω scansh = 1416
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
k = 1111
Tmin = 0.723, Tmax = 0.919l = 2727
23976 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.080H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0445P)2 + 0.0864P]
where P = (Fo2 + 2Fc2)/3
5271 reflections(Δ/σ)max < 0.001
359 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C14H9ClN2OSV = 2574.1 (2) Å3
Mr = 288.75Z = 8
Monoclinic, P21/cMo Kα radiation
a = 12.8421 (6) ŵ = 0.45 mm1
b = 9.1159 (3) ÅT = 295 K
c = 22.1553 (9) Å0.77 × 0.49 × 0.19 mm
β = 97.051 (3)°
Data collection top
Stoe IPDS 2
diffractometer
5271 independent reflections
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
3987 reflections with I > 2σ(I)
Tmin = 0.723, Tmax = 0.919Rint = 0.031
23976 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.080H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.17 e Å3
5271 reflectionsΔρmin = 0.19 e Å3
359 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.21534 (5)0.20753 (8)0.44750 (3)0.0897 (3)
S10.14151 (3)0.34132 (4)0.29015 (2)0.0398 (1)
O10.15538 (9)0.02243 (11)0.29802 (5)0.0468 (4)
N10.20968 (12)0.04018 (14)0.20602 (7)0.0459 (5)
N20.02266 (11)0.17509 (14)0.25719 (6)0.0386 (4)
C10.17319 (13)0.13376 (17)0.15826 (7)0.0439 (5)
C20.09339 (13)0.22368 (16)0.17481 (7)0.0407 (5)
C30.04229 (16)0.32123 (18)0.13402 (8)0.0528 (6)
C40.0736 (2)0.3287 (2)0.07608 (9)0.0684 (8)
C50.1542 (2)0.2413 (2)0.06049 (9)0.0682 (8)
C60.20529 (17)0.1426 (2)0.10113 (9)0.0581 (7)
C70.15275 (12)0.05484 (15)0.25322 (7)0.0384 (5)
C80.08181 (12)0.19188 (15)0.24007 (7)0.0371 (4)
C90.04814 (13)0.31467 (15)0.34106 (7)0.0400 (5)
C100.04669 (15)0.3771 (2)0.39753 (8)0.0538 (6)
C110.03608 (18)0.3447 (2)0.43046 (9)0.0603 (7)
C120.11329 (15)0.2499 (2)0.40578 (8)0.0541 (6)
C130.11335 (13)0.18672 (17)0.34914 (8)0.0446 (5)
C140.03182 (12)0.22070 (15)0.31617 (7)0.0366 (4)
Cl20.71172 (5)0.55718 (7)0.05591 (3)0.0844 (2)
S20.35504 (3)0.42746 (4)0.21381 (2)0.0400 (1)
O20.34292 (10)0.79114 (12)0.20783 (5)0.0470 (4)
N30.29057 (12)0.72689 (14)0.30029 (7)0.0456 (4)
N40.52018 (11)0.59219 (14)0.24673 (6)0.0388 (4)
C150.32736 (13)0.63104 (16)0.34761 (8)0.0441 (5)
C160.29684 (17)0.6217 (2)0.40483 (9)0.0589 (7)
C170.3485 (2)0.5204 (2)0.44442 (9)0.0689 (8)
C180.4273 (2)0.4313 (2)0.42740 (9)0.0665 (8)
C190.45735 (15)0.44084 (18)0.36933 (8)0.0505 (6)
C200.40570 (13)0.54115 (16)0.32944 (7)0.0406 (5)
C210.34576 (12)0.71277 (15)0.25252 (7)0.0381 (5)
C220.41620 (12)0.57500 (14)0.26426 (7)0.0363 (4)
C230.44832 (13)0.45380 (15)0.16277 (7)0.0405 (5)
C240.44918 (16)0.3916 (2)0.10620 (8)0.0535 (6)
C250.53209 (18)0.4225 (2)0.07331 (9)0.0616 (7)
C260.60934 (15)0.5167 (2)0.09761 (8)0.0535 (6)
C270.60988 (13)0.58121 (17)0.15439 (8)0.0443 (5)
C280.52871 (12)0.54685 (15)0.18761 (7)0.0368 (4)
H1A0.257 (2)0.032 (3)0.2053 (10)0.081 (7)*
H2A0.0558 (16)0.091 (2)0.2451 (8)0.056 (5)*
H30.011500.380300.144800.0630*
H40.040000.393200.047500.0820*
H50.174500.249200.021700.0820*
H60.259400.084100.090400.0700*
H100.100200.439900.413500.0650*
H110.039200.386400.468500.0720*
H130.166700.123200.333600.0530*
H3A0.2402 (19)0.794 (2)0.3016 (9)0.070 (6)*
H4A0.5540 (16)0.674 (2)0.2583 (8)0.050 (5)*
H160.243800.680900.416500.0710*
H170.329800.511900.483500.0830*
H180.460400.364500.455100.0800*
H190.510400.381700.357700.0610*
H240.395100.329800.090200.0640*
H250.535100.379900.035400.0740*
H270.663000.645400.169600.0530*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0863 (5)0.1113 (5)0.0817 (4)0.0106 (4)0.0518 (4)0.0006 (3)
S10.0346 (2)0.0328 (2)0.0528 (2)0.0029 (2)0.0087 (2)0.0030 (2)
O10.0451 (7)0.0386 (5)0.0585 (7)0.0065 (5)0.0138 (6)0.0070 (5)
N10.0440 (8)0.0377 (7)0.0591 (9)0.0076 (6)0.0185 (7)0.0010 (6)
N20.0303 (7)0.0369 (6)0.0492 (8)0.0010 (5)0.0073 (6)0.0045 (6)
C10.0438 (9)0.0372 (7)0.0527 (9)0.0045 (7)0.0143 (7)0.0059 (7)
C20.0425 (9)0.0345 (7)0.0462 (9)0.0026 (6)0.0095 (7)0.0031 (6)
C30.0586 (12)0.0463 (9)0.0536 (10)0.0033 (8)0.0075 (9)0.0017 (7)
C40.0886 (18)0.0634 (12)0.0530 (11)0.0042 (11)0.0074 (11)0.0111 (9)
C50.0888 (17)0.0686 (12)0.0511 (11)0.0163 (12)0.0241 (11)0.0036 (9)
C60.0643 (13)0.0544 (10)0.0604 (11)0.0060 (9)0.0272 (10)0.0081 (9)
C70.0326 (8)0.0307 (7)0.0530 (9)0.0008 (6)0.0092 (7)0.0022 (6)
C80.0336 (8)0.0315 (7)0.0468 (8)0.0016 (6)0.0080 (7)0.0016 (6)
C90.0371 (9)0.0345 (7)0.0487 (9)0.0003 (6)0.0060 (7)0.0005 (6)
C100.0572 (12)0.0538 (9)0.0505 (10)0.0064 (9)0.0072 (8)0.0098 (8)
C110.0680 (14)0.0663 (12)0.0488 (10)0.0010 (10)0.0163 (9)0.0085 (9)
C120.0537 (12)0.0582 (10)0.0543 (10)0.0052 (9)0.0225 (9)0.0079 (8)
C130.0369 (9)0.0421 (8)0.0561 (10)0.0020 (7)0.0109 (8)0.0049 (7)
C140.0320 (8)0.0329 (7)0.0453 (8)0.0044 (6)0.0063 (6)0.0016 (6)
Cl20.0786 (4)0.1071 (4)0.0763 (4)0.0002 (3)0.0450 (3)0.0068 (3)
S20.0353 (2)0.0323 (2)0.0531 (2)0.0031 (2)0.0084 (2)0.0037 (2)
O20.0452 (7)0.0385 (6)0.0590 (7)0.0070 (5)0.0134 (6)0.0055 (5)
N30.0422 (8)0.0373 (6)0.0605 (9)0.0076 (6)0.0194 (7)0.0010 (6)
N40.0308 (7)0.0364 (6)0.0499 (8)0.0023 (5)0.0081 (6)0.0070 (6)
C150.0448 (10)0.0357 (7)0.0535 (9)0.0046 (7)0.0133 (7)0.0041 (7)
C160.0678 (13)0.0531 (10)0.0604 (11)0.0056 (9)0.0269 (10)0.0083 (9)
C170.0906 (17)0.0673 (12)0.0523 (11)0.0088 (12)0.0234 (11)0.0001 (9)
C180.0848 (17)0.0620 (11)0.0517 (11)0.0016 (11)0.0048 (10)0.0102 (9)
C190.0544 (11)0.0429 (8)0.0534 (10)0.0025 (7)0.0037 (8)0.0004 (7)
C200.0404 (9)0.0350 (7)0.0470 (9)0.0031 (6)0.0084 (7)0.0042 (6)
C210.0313 (8)0.0311 (7)0.0526 (9)0.0008 (6)0.0080 (7)0.0029 (6)
C220.0319 (8)0.0294 (7)0.0481 (8)0.0012 (6)0.0069 (7)0.0025 (6)
C230.0382 (9)0.0343 (7)0.0495 (9)0.0023 (6)0.0075 (7)0.0002 (6)
C240.0593 (12)0.0509 (9)0.0502 (9)0.0062 (8)0.0062 (8)0.0075 (8)
C250.0736 (15)0.0652 (12)0.0482 (10)0.0052 (10)0.0169 (10)0.0062 (9)
C260.0538 (11)0.0563 (10)0.0538 (10)0.0076 (8)0.0204 (9)0.0078 (8)
C270.0360 (9)0.0429 (8)0.0551 (10)0.0027 (7)0.0102 (7)0.0051 (7)
C280.0324 (8)0.0312 (7)0.0469 (8)0.0044 (6)0.0054 (6)0.0013 (6)
Geometric parameters (Å, º) top
Cl1—C121.737 (2)C11—C121.377 (3)
Cl2—C261.737 (2)C12—C131.381 (2)
S1—C91.7609 (17)C13—C141.383 (2)
S1—C81.8617 (15)C3—H30.9300
S2—C221.8600 (15)C4—H40.9300
S2—C231.7619 (17)C5—H50.9300
O1—C71.2142 (18)C6—H60.9300
O2—C211.2179 (18)C10—H100.9300
N1—C71.354 (2)C11—H110.9300
N1—C11.395 (2)C13—H130.9300
N2—C141.390 (2)C15—C161.375 (3)
N2—C81.446 (2)C15—C201.395 (2)
N1—H1A0.90 (3)C16—C171.385 (3)
N2—H2A0.901 (19)C17—C181.386 (3)
N3—C151.402 (2)C18—C191.391 (3)
N3—C211.350 (2)C19—C201.383 (2)
N4—C281.391 (2)C20—C221.499 (2)
N4—C221.444 (2)C21—C221.551 (2)
N3—H3A0.89 (2)C23—C281.396 (2)
N4—H4A0.885 (19)C23—C241.377 (2)
C1—C21.396 (2)C24—C251.391 (3)
C1—C61.381 (3)C25—C261.371 (3)
C2—C81.500 (2)C26—C271.388 (2)
C2—C31.376 (2)C27—C281.384 (2)
C3—C41.393 (3)C16—H160.9300
C4—C51.383 (3)C17—H170.9300
C5—C61.381 (3)C18—H180.9300
C7—C81.553 (2)C19—H190.9300
C9—C141.398 (2)C24—H240.9300
C9—C101.377 (2)C25—H250.9300
C10—C111.393 (3)C27—H270.9300
Cl1···Cl2i3.6085 (10)C13···O2vii3.206 (2)
Cl2···Cl1ii3.6085 (10)C13···C21vii3.520 (2)
Cl2···H5iii2.9700C13···C3vii3.463 (2)
S1···O13.3241 (11)C14···O13.3303 (18)
S1···N13.4896 (14)C15···S13.6805 (16)
S1···N2iv3.5063 (14)C15···C25ix3.551 (3)
S1···C153.6805 (16)C16···C25ix3.510 (3)
S1···S23.4836 (6)C19···C27v3.414 (2)
S2···N4v3.5113 (14)C21···C13iv3.520 (2)
S2···S13.4836 (6)C25···C16v3.510 (3)
S2···O23.3208 (12)C25···C15v3.551 (3)
S2···N33.4923 (14)C25···C25iii3.546 (3)
S2···C13.6649 (16)C27···C19ix3.414 (2)
S1···H2Aiv2.606 (19)C27···C7ix3.465 (2)
S1···H27v3.1200C27···O1ix3.211 (2)
S2···H13iv3.0800C28···O23.3339 (19)
S2···H4Av2.628 (19)C6···H243.0100
O1···N22.9632 (18)C7···H3Avi2.787 (19)
O1···N3vi2.8666 (18)C7···H27v2.8700
O1···S13.3241 (11)C16···H103.0500
O1···C3vii3.418 (2)C21···H1Aviii2.74 (3)
O1···C143.3303 (18)C21···H13iv2.9200
O1···C27v3.211 (2)C23···H4Av3.095 (18)
O2···C283.3339 (19)C25···H25iii3.0500
O2···N1viii2.8402 (18)H1A···C21vi2.74 (3)
O2···N42.9550 (18)H1A···O2vi1.95 (3)
O2···S23.3208 (12)H2A···S1vii2.606 (19)
O2···C13iv3.206 (2)H2A···H132.5800
O1···H3Avi1.99 (2)H3···O1iv2.5300
O1···H27v2.8100H3A···C7viii2.787 (19)
O1···H3vii2.5300H3A···O1viii1.99 (2)
O2···H1Aviii1.95 (3)H4A···S2ix2.628 (19)
O2···H13iv2.7900H4A···C23ix3.095 (18)
O2···H19ix2.6500H4A···H272.5600
N1···S13.4896 (14)H5···Cl2iii2.9700
N1···O2vi2.8402 (18)H10···C163.0500
N2···S1vii3.5063 (14)H13···O2vii2.7900
N2···O12.9632 (18)H13···C21vii2.9200
N3···O1viii2.8666 (18)H13···S2vii3.0800
N3···S23.4923 (14)H13···H2A2.5800
N4···O22.9550 (18)H19···O2v2.6500
N4···S2ix3.5113 (14)H24···C63.0100
C1···S23.6649 (16)H25···C25iii3.0500
C3···C13iv3.463 (2)H27···H4A2.5600
C3···O1iv3.418 (2)H27···S1ix3.1200
C6···C11vii3.495 (3)H27···O1ix2.8100
C7···C27v3.465 (2)H27···C7ix2.8700
C11···C6iv3.495 (3)
C8—S1—C991.02 (7)C5—C6—H6121.00
C22—S2—C2390.97 (7)C9—C10—H10121.00
C1—N1—C7111.26 (14)C11—C10—H10120.00
C8—N2—C14113.78 (13)C10—C11—H11121.00
C7—N1—H1A121.2 (15)C12—C11—H11120.00
C1—N1—H1A126.9 (14)C12—C13—H13121.00
C8—N2—H2A115.6 (13)C14—C13—H13121.00
C14—N2—H2A116.3 (12)C16—C15—C20121.82 (16)
C15—N3—C21111.45 (14)N3—C15—C16128.34 (16)
C22—N4—C28113.79 (13)N3—C15—C20109.83 (15)
C21—N3—H3A122.9 (13)C15—C16—C17117.16 (19)
C15—N3—H3A125.6 (13)C16—C17—C18121.83 (19)
C28—N4—H4A115.5 (12)C17—C18—C19120.67 (18)
C22—N4—H4A116.8 (13)C18—C19—C20117.82 (17)
N1—C1—C2110.43 (14)C15—C20—C19120.69 (15)
N1—C1—C6128.38 (16)C15—C20—C22108.09 (13)
C2—C1—C6121.19 (15)C19—C20—C22131.22 (15)
C3—C2—C8131.49 (15)O2—C21—N3127.96 (14)
C1—C2—C8107.61 (13)O2—C21—C22124.75 (14)
C1—C2—C3120.89 (15)N3—C21—C22107.29 (12)
C2—C3—C4117.94 (18)S2—C22—C20110.41 (10)
C3—C4—C5120.76 (18)S2—C22—C21106.87 (10)
C4—C5—C6121.53 (19)S2—C22—N4104.66 (10)
C1—C6—C5117.68 (19)C20—C22—C21102.05 (12)
O1—C7—C8125.24 (14)N4—C22—C20118.49 (13)
O1—C7—N1127.63 (14)N4—C22—C21113.99 (12)
N1—C7—C8107.13 (12)S2—C23—C28110.98 (11)
S1—C8—C2110.54 (10)C24—C23—C28121.39 (16)
N2—C8—C2118.57 (13)S2—C23—C24127.60 (13)
N2—C8—C7114.05 (12)C23—C24—C25119.06 (17)
S1—C8—N2104.39 (10)C24—C25—C26118.99 (18)
C2—C8—C7102.19 (12)Cl2—C26—C25118.86 (15)
S1—C8—C7106.72 (10)Cl2—C26—C27118.18 (14)
S1—C9—C14110.91 (11)C25—C26—C27122.96 (18)
C10—C9—C14121.38 (16)C26—C27—C28117.77 (15)
S1—C9—C10127.68 (13)N4—C28—C27125.83 (14)
C9—C10—C11119.00 (17)C23—C28—C27119.79 (14)
C10—C11—C12118.93 (18)N4—C28—C23114.33 (14)
C11—C12—C13122.87 (18)C15—C16—H16121.00
Cl1—C12—C11118.80 (15)C17—C16—H16121.00
Cl1—C12—C13118.33 (14)C16—C17—H17119.00
C12—C13—C14118.07 (15)C18—C17—H17119.00
N2—C14—C13125.90 (14)C17—C18—H18120.00
C9—C14—C13119.73 (14)C19—C18—H18120.00
N2—C14—C9114.29 (14)C18—C19—H19121.00
C4—C3—H3121.00C20—C19—H19121.00
C2—C3—H3121.00C23—C24—H24120.00
C3—C4—H4120.00C25—C24—H24120.00
C5—C4—H4120.00C24—C25—H25121.00
C6—C5—H5119.00C26—C25—H25121.00
C4—C5—H5119.00C26—C27—H27121.00
C1—C6—H6121.00C28—C27—H27121.00
C9—S1—C8—C7101.67 (11)O1—C7—C8—S175.43 (17)
C8—S1—C9—C10171.57 (16)C10—C9—C14—N2175.71 (15)
C8—S1—C9—C1410.32 (12)C14—C9—C10—C110.4 (3)
C9—S1—C8—N219.41 (10)C10—C9—C14—C131.3 (2)
C9—S1—C8—C2147.97 (11)S1—C9—C14—C13179.58 (12)
C23—S2—C22—C21102.41 (11)S1—C9—C10—C11178.36 (14)
C23—S2—C22—C20147.38 (11)S1—C9—C14—N22.55 (16)
C22—S2—C23—C289.92 (12)C9—C10—C11—C120.7 (3)
C23—S2—C22—N418.82 (10)C10—C11—C12—Cl1179.01 (15)
C22—S2—C23—C24172.01 (16)C10—C11—C12—C131.0 (3)
C1—N1—C7—O1169.93 (15)C11—C12—C13—C140.1 (3)
C1—N1—C7—C810.37 (17)Cl1—C12—C13—C14179.91 (13)
C7—N1—C1—C6174.55 (17)C12—C13—C14—C91.0 (2)
C7—N1—C1—C24.51 (19)C12—C13—C14—N2175.62 (15)
C8—N2—C14—C919.25 (18)C16—C15—C20—C191.5 (3)
C8—N2—C14—C13163.92 (14)C16—C15—C20—C22177.60 (16)
C14—N2—C8—S125.03 (14)N3—C15—C20—C19177.41 (15)
C14—N2—C8—C2148.54 (13)N3—C15—C20—C223.54 (18)
C14—N2—C8—C791.06 (15)C20—C15—C16—C171.0 (3)
C15—N3—C21—C2210.02 (17)N3—C15—C16—C17177.60 (18)
C21—N3—C15—C16174.40 (17)C15—C16—C17—C180.3 (3)
C15—N3—C21—O2169.98 (16)C16—C17—C18—C190.0 (3)
C21—N3—C15—C204.37 (19)C17—C18—C19—C200.3 (3)
C22—N4—C28—C2318.74 (18)C18—C19—C20—C151.1 (3)
C28—N4—C22—C20147.82 (13)C18—C19—C20—C22177.75 (17)
C22—N4—C28—C27164.02 (14)C15—C20—C22—S2104.54 (13)
C28—N4—C22—C2192.09 (15)C15—C20—C22—C218.79 (16)
C28—N4—C22—S224.31 (14)C19—C20—C22—S274.4 (2)
N1—C1—C6—C5177.63 (18)C15—C20—C22—N4134.86 (14)
N1—C1—C2—C3177.35 (15)C19—C20—C22—N446.2 (2)
C2—C1—C6—C51.3 (3)C19—C20—C22—C21172.30 (17)
C6—C1—C2—C8177.18 (16)O2—C21—C22—C20168.65 (15)
N1—C1—C2—C83.69 (18)O2—C21—C22—N439.7 (2)
C6—C1—C2—C31.8 (3)N3—C21—C22—C2011.35 (16)
C1—C2—C8—S1104.15 (13)N3—C21—C22—S2104.59 (12)
C3—C2—C8—N245.7 (2)N3—C21—C22—N4140.30 (13)
C3—C2—C8—C7172.06 (17)O2—C21—C22—S275.41 (17)
C1—C2—C8—N2135.45 (14)C28—C23—C24—C250.0 (3)
C1—C2—C8—C79.13 (16)S2—C23—C28—N42.57 (16)
C3—C2—C8—S174.7 (2)C24—C23—C28—N4175.64 (15)
C1—C2—C3—C40.8 (3)C24—C23—C28—C271.8 (2)
C8—C2—C3—C4177.86 (17)S2—C23—C28—C27180.00 (12)
C2—C3—C4—C50.5 (3)S2—C23—C24—C25177.89 (14)
C3—C4—C5—C60.9 (3)C23—C24—C25—C261.5 (3)
C4—C5—C6—C10.0 (3)C24—C25—C26—C271.2 (3)
N1—C7—C8—C211.79 (16)C24—C25—C26—Cl2179.04 (15)
N1—C7—C8—N2140.99 (13)Cl2—C26—C27—C28179.19 (13)
N1—C7—C8—S1104.29 (12)C25—C26—C27—C280.5 (3)
O1—C7—C8—C2168.49 (15)C26—C27—C28—C232.0 (2)
O1—C7—C8—N239.3 (2)C26—C27—C28—N4175.09 (15)
Symmetry codes: (i) x1, y+1/2, z+1/2; (ii) x+1, y+1/2, z1/2; (iii) x+1, y+1, z; (iv) x, y+1/2, z+1/2; (v) x+1, y1/2, z+1/2; (vi) x, y1, z; (vii) x, y1/2, z+1/2; (viii) x, y+1, z; (ix) x+1, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2vi0.90 (3)1.95 (3)2.840 (2)171 (2)
N2—H2A···S1vii0.90 (2)2.61 (2)3.506 (1)177 (2)
N3—H3A···O1viii0.89 (2)1.99 (2)2.867 (2)166 (2)
N4—H4A···S2ix0.89 (2)2.63 (2)3.511 (1)176 (2)
C3—H3···O1iv0.932.533.418 (2)161
Symmetry codes: (iv) x, y+1/2, z+1/2; (vi) x, y1, z; (vii) x, y1/2, z+1/2; (viii) x, y+1, z; (ix) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC14H9ClN2OS
Mr288.75
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)12.8421 (6), 9.1159 (3), 22.1553 (9)
β (°) 97.051 (3)
V3)2574.1 (2)
Z8
Radiation typeMo Kα
µ (mm1)0.45
Crystal size (mm)0.77 × 0.49 × 0.19
Data collection
DiffractometerStoe IPDS 2
Absorption correctionIntegration
(X-RED32; Stoe & Cie, 2002)
Tmin, Tmax0.723, 0.919
No. of measured, independent and
observed [I > 2σ(I)] reflections
23976, 5271, 3987
Rint0.031
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.080, 1.01
No. of reflections5271
No. of parameters359
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.17, 0.19

Computer programs: X-AREA (Stoe & Cie, 2002), X-RED32 (Stoe & Cie, 2002), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2i0.90 (3)1.95 (3)2.840 (2)171 (2)
N2—H2A···S1ii0.90 (2)2.61 (2)3.506 (1)177 (2)
N3—H3A···O1iii0.89 (2)1.99 (2)2.867 (2)166 (2)
N4—H4A···S2iv0.89 (2)2.63 (2)3.511 (1)176 (2)
C3—H3···O1v0.932.533.418 (2)161.00
Symmetry codes: (i) x, y1, z; (ii) x, y1/2, z+1/2; (iii) x, y+1, z; (iv) x+1, y+1/2, z+1/2; (v) x, y+1/2, z+1/2.
 

Acknowledgements

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS 2 diffractometer (purchased under grant F.279 of the University Research Fund).

References

First citationAlam, Y. A. & Nawwar, G. A. M. (2002). Heteroat. Chem. 13, 207–210.  Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationĆaleta, I., Kralj, M., Marjanović, M., Bertoša, B., Tomić, S., Pavlović, G., Pavelić, K. & Karminski-Zamola, G. (2009). J. Med. Chem. 52, 1744–1756.  Web of Science PubMed Google Scholar
First citationCho, Y., Loerger, T. R. & Sacchettini, J. C. (2008). J. Med. Chem. 51, 5984–5992.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDandia, A., Khanna, S. & Joshi, K. C. (1990). J. Indian Chem. Soc. 67, 824–826.  CAS Google Scholar
First citationDa-Silva, J. F. M., Garden, S. J. & Pinto, A. C. (2001). J. Braz. Chem. Soc. 12, 273–324.  CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHall, M. D., Salam, N. K., Hellawell, J. L., Fales, H. M., Kensler, C. B., Ludwig, J. A., Szakács, G., Hibbs, D. E. & Gottesman, M. M. (2009). J. Med. Chem. 52, 3191–3204.  Web of Science CrossRef PubMed CAS Google Scholar
First citationJoshi, K. C., Dandia, A. & Khanna, S. (1990). Indian J. Chem. Soc. Sect. B, 29, 824–829.  Google Scholar
First citationKumar, R. R., Perumal, S., Senthilkumar, P., Yogeeswari, P. & Sriram, D. (2008). J. Med. Chem. 51, 5731–5735.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationQuenelle, D. C., Keith, K. A. & Kern, K. E. R. (2006). Antiviral Res. 71, 24–30.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationVine, K. L., Locke, J. M., Ranson, M., Pyne, S. G. & Bremner, J. B. (2007). Bioorg. Med. Chem. 15, 931–938.  Web of Science CrossRef PubMed CAS Google Scholar
First citationVine, K. L., Matesic, L., Locke, J. M., Ranson, M. & Skropeta, D. (2009). Anti-Cancer Agents Med. Chem. 9, 397–414.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds