metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[[bis­­(μ2-4,4′-bi­pyridine)[μ2-(2,4-di­chloro­phen­­oxy)acetato]copper(I)] nitrate]

aSchool of Chemistry and Environment, South China Normal University, Guangzhou 510631, People's Republic of China
*Correspondence e-mail: liushizhu521@126.com

(Received 17 December 2009; accepted 18 January 2010; online 23 January 2010)

The title compound, {[Cu2(C8H5Cl2O3)(C10H8N2)2]NO3}n was prepared by reacting copper(II) nitrate with 4,4′-bipyridine (4,4′-bipy) and (2,4-dichloro­phen­oxy)acetic acid under solvothermal conditions. Each of two copper(I) atoms in the asymmetric unit is three-coordinated by two N atoms from two 4,4′-bipy ligands and one O atom from the (2,4-dichloro­phen­oxy)acetate ligand. As both ligands act as bridging ligands, a double-stranded chain structure is observed.

Related literature

For coordination polymers incorporating either 4,4′bipy or phenoxy­acetato ligands and Cu(I) or Cu(II), see: Biswas et al. (2007[Biswas, C., Chattopabhyay, S., Drew, M. G. B. & Ghosh, A. (2007). Polyhedron, 26, 4411-4418.]); Bourne & Moitsheki (2007[Bourne, S. A. & Moitsheki, L. J. (2007). J. Chem. Crystallogr. 37, 359-367.]); Huang et al. (2008[Huang, F.-P., Yu, Q., Bian, H.-D., Yan, S.-P. & Liang, H. (2008). Polyhedron, 27, 3160-3166.]); Mo et al. (2009[Mo, J., Zhang, S.-M., Ge, W.-Z. & Liu, J.-H. (2009). J. Chem. Crystallogr. 39, 890-893.]); Smith et al. (1981[Smith, G., O'Reilly, E. J. & Kennard, C. H. L. (1981). Inorg. Chim. Acta, 49, 53-55.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu2(C8H5Cl2O3)(C10H8N2)2]NO3

  • Mr = 721.5

  • Monoclinic, P 21 /c

  • a = 10.598 (2) Å

  • b = 18.552 (3) Å

  • c = 15.212 (3) Å

  • β = 108.835 (2)°

  • V = 2830.9 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.74 mm−1

  • T = 296 K

  • 0.15 × 0.13 × 0.08 mm

Data collection
  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.883, Tmax = 0.935

  • 14129 measured reflections

  • 5085 independent reflections

  • 3787 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.143

  • S = 1.04

  • 5085 reflections

  • 388 parameters

  • H-atom parameters constrained

  • Δρmax = 0.89 e Å−3

  • Δρmin = −0.68 e Å−3

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SMART. Bruker AXS Inc, Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SMART. Bruker AXS Inc, Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The design and synthesis of inorganic-organic composite coordination polymers exhibiting novel structures and properties is an intensively studied field of chemical research. 4,4'-bipyridine is a ligand that is particularly suited for constructing frameworks that possess hydrophobic pores and channels with potentially useful inclusion properties, including size and shape specificity (Bourne & Moitsheki, 2007; Huang et al., 2008; Mo et al., 2009; Biswas et al., 2007). 2,4-Dichlorophenoxyacetato ligands have been described to act as bridging in ligands in a typical Cu(II) paddlewheel complex (Smith et al., 1981).

The title compound (Fig. 1) was prepared from copper(II) nitrate, 4,4'-bipyridine (4,4'-bipy) and 2,4-dichlorophenoxyacetic acid under solvothermal conditions with ethanol most probably acting as the reducing agent for copper(II). A rufous colored block shaped crystal of the resulting copper(I) complex with a 2,4-dichlorophenoxyacetato ligand was characterized by single-crystal X-ray analysis. It reveals that each of two copper(I) centers is three-coordinated by two N atoms from two 4,4'-bipy ligands and one O atom from a bridging 2,4-dichlorophenoxyacetato ligand. The copper(I) coordination units are additionally connected by bridging 4,4'-bipy ligands, generating a one-dimensional polymeric chain strurcture (Fig. 2). A doubly stranded chain is observed due to the coordination of the copper(I) centers to one 2,4-dichlorophenoxyacetato ligand.

Related literature top

Forcoordination polymers incorporating either 4,4'bipy or phenoxyacetato ligands and Cu(I) or Cu(II), see: Biswas et al. (2007); Bourne & Moitsheki (2007); Huang et al. (2008); Mo et al. (2009); Smith et al. (1981).

Experimental top

A mixture of Cu(NO3)2 × 5 H2O (0.121 g, 0.44 mmol), 4,4'-bipyridine × 2 H2O (0.096 g, 0.5 mmol) and 2,4-dichlorophenoxyacetic acid (0.22 g, 1 mmol) in 8 ml of an ethanol/H2O mixture (v/v 1/7) was stirred vigorously for 10 min and then sealed in a 25 ml teflon-lined stainless-steel autoclave. The autoclave was heated to 403 K for 2 days and was then slowly cooled to room temperature with a rate of 6 K/h. The product was collected by filtration, washed with water and air-dried. Rufous block shaped crystals suitable for X-ray analysis were obtained in ca 26.8% yield based on Cu.

Refinement top

All non-hydrogen atoms were refined with anisotropic displacement parameters. Hydrogen atoms attached to carbon were placed in geometrically idealized positions and refined using a riding modelwith Uiso(H) = 1.2 Ueq(C) for H atoms of the aromatic rings.

Structure description top

The design and synthesis of inorganic-organic composite coordination polymers exhibiting novel structures and properties is an intensively studied field of chemical research. 4,4'-bipyridine is a ligand that is particularly suited for constructing frameworks that possess hydrophobic pores and channels with potentially useful inclusion properties, including size and shape specificity (Bourne & Moitsheki, 2007; Huang et al., 2008; Mo et al., 2009; Biswas et al., 2007). 2,4-Dichlorophenoxyacetato ligands have been described to act as bridging in ligands in a typical Cu(II) paddlewheel complex (Smith et al., 1981).

The title compound (Fig. 1) was prepared from copper(II) nitrate, 4,4'-bipyridine (4,4'-bipy) and 2,4-dichlorophenoxyacetic acid under solvothermal conditions with ethanol most probably acting as the reducing agent for copper(II). A rufous colored block shaped crystal of the resulting copper(I) complex with a 2,4-dichlorophenoxyacetato ligand was characterized by single-crystal X-ray analysis. It reveals that each of two copper(I) centers is three-coordinated by two N atoms from two 4,4'-bipy ligands and one O atom from a bridging 2,4-dichlorophenoxyacetato ligand. The copper(I) coordination units are additionally connected by bridging 4,4'-bipy ligands, generating a one-dimensional polymeric chain strurcture (Fig. 2). A doubly stranded chain is observed due to the coordination of the copper(I) centers to one 2,4-dichlorophenoxyacetato ligand.

Forcoordination polymers incorporating either 4,4'bipy or phenoxyacetato ligands and Cu(I) or Cu(II), see: Biswas et al. (2007); Bourne & Moitsheki (2007); Huang et al. (2008); Mo et al. (2009); Smith et al. (1981).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, showing displacement ellipsoids at 50% probability for non-H atoms. Symmetry code: i 1 + x, 0.5 - y, 1/2 + z.
[Figure 2] Fig. 2. A view of the one-dimensional polymeric chain structure of the title compound. Hydrogen atoms are omitted for clarity.
Poly[[bis(µ2-4,4'-bipyridine)[µ2-(2,4-dichlorophenoxy)acetato]copper(I)] nitrate] top
Crystal data top
[Cu2(C8H5Cl2O3)(C10H8N2)2]NO3F(000) = 1456
Mr = 721.5Dx = 1.693 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5085 reflections
a = 10.598 (2) Åθ = 1.8–25.2°
b = 18.552 (3) ŵ = 1.74 mm1
c = 15.212 (3) ÅT = 296 K
β = 108.835 (2)°Block, rufous
V = 2830.9 (8) Å30.15 × 0.13 × 0.08 mm
Z = 4
Data collection top
Bruker APEXII area-detector
diffractometer
5085 independent reflections
Radiation source: fine-focus sealed tube3787 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
φ and ω scanθmax = 25.2°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1212
Tmin = 0.883, Tmax = 0.935k = 1922
14129 measured reflectionsl = 1618
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.143H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.068P)2 + 4.0523P]
where P = (Fo2 + 2Fc2)/3
5085 reflections(Δ/σ)max = 0.001
388 parametersΔρmax = 0.89 e Å3
0 restraintsΔρmin = 0.68 e Å3
Crystal data top
[Cu2(C8H5Cl2O3)(C10H8N2)2]NO3V = 2830.9 (8) Å3
Mr = 721.5Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.598 (2) ŵ = 1.74 mm1
b = 18.552 (3) ÅT = 296 K
c = 15.212 (3) Å0.15 × 0.13 × 0.08 mm
β = 108.835 (2)°
Data collection top
Bruker APEXII area-detector
diffractometer
5085 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3787 reflections with I > 2σ(I)
Tmin = 0.883, Tmax = 0.935Rint = 0.032
14129 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.143H-atom parameters constrained
S = 1.04Δρmax = 0.89 e Å3
5085 reflectionsΔρmin = 0.68 e Å3
388 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.29363 (5)0.27588 (3)1.15749 (4)0.04390 (19)
Cu20.48636 (5)0.28270 (3)1.03403 (4)0.04604 (19)
N30.3225 (3)0.2599 (2)0.9378 (3)0.0444 (9)
C220.0663 (4)0.2425 (2)0.8069 (3)0.0394 (9)
C130.0770 (4)0.1880 (2)1.0032 (3)0.0499 (12)
H130.11480.14220.99280.060*
C50.1398 (5)0.5119 (2)1.2023 (4)0.0498 (11)
C120.1511 (4)0.2477 (2)0.9594 (3)0.0380 (9)
C240.2591 (4)0.3141 (3)0.8824 (3)0.0466 (11)
H240.30190.35840.88820.056*
C100.0413 (4)0.3181 (2)1.0374 (3)0.0451 (11)
H100.08150.36321.04860.054*
C110.0874 (4)0.3135 (2)0.9796 (3)0.0441 (10)
H110.13270.35530.95350.053*
C140.0513 (4)0.1966 (2)1.0613 (3)0.0495 (12)
H140.09790.15591.09000.059*
C200.2591 (5)0.1964 (3)0.9247 (4)0.0559 (13)
H200.30240.15710.95960.067*
C210.1331 (4)0.1861 (3)0.8623 (3)0.0513 (12)
H210.09280.14110.85750.062*
C40.2570 (5)0.5161 (2)1.1810 (4)0.0558 (13)
C30.3775 (6)0.5171 (3)1.2524 (5)0.0752 (17)
H30.45690.52011.23900.090*
C70.3548 (5)0.5004 (3)1.0594 (4)0.0619 (14)
H7A0.43400.52631.09560.074*
H7B0.33640.51350.99470.074*
C90.2614 (9)0.5098 (3)1.3627 (4)0.086 (2)
C60.1390 (6)0.5089 (3)1.2928 (4)0.0682 (15)
H60.05960.50631.30630.082*
C20.3796 (8)0.5138 (3)1.3432 (5)0.091 (2)
H20.46040.51431.39130.110*
N10.1127 (3)0.26020 (19)1.0789 (2)0.0387 (8)
C80.3819 (4)0.4199 (2)1.0702 (3)0.0429 (10)
O20.3150 (3)0.38364 (16)1.1069 (2)0.0532 (8)
O10.2440 (3)0.52203 (18)1.0888 (3)0.0606 (9)
Cl20.01198 (13)0.51063 (8)1.11418 (11)0.0687 (4)
Cl10.2599 (3)0.50305 (12)1.47790 (13)0.1398 (10)
O30.4707 (3)0.39830 (17)1.0396 (2)0.0554 (9)
N60.2506 (5)0.4773 (4)0.7132 (5)0.0851 (16)
C230.1347 (4)0.3077 (2)0.8176 (3)0.0455 (10)
H230.09600.34700.78080.055*
C250.0720 (4)0.2359 (2)0.7422 (3)0.0376 (9)
C150.2888 (4)0.2414 (2)0.8933 (3)0.0357 (9)
C260.1299 (4)0.1708 (2)0.7098 (3)0.0484 (11)
H260.08170.12840.72820.058*
C190.3701 (4)0.3011 (2)0.8646 (3)0.0473 (11)
H190.34150.34580.89150.057*
C160.3419 (4)0.1766 (2)0.8556 (3)0.0469 (11)
H160.29360.13430.87460.056*
C290.1522 (4)0.2960 (2)0.7132 (4)0.0563 (13)
H290.11930.34140.73480.068*
C180.4926 (4)0.2953 (2)0.7970 (3)0.0475 (11)
H180.54330.33680.77790.057*
C170.4666 (4)0.1739 (2)0.7894 (3)0.0505 (12)
H170.50020.12920.76570.061*
C270.2593 (4)0.1678 (2)0.6498 (3)0.0512 (12)
H270.29590.12290.62920.061*
C280.2795 (5)0.2893 (2)0.6530 (4)0.0547 (13)
H280.32990.33090.63430.066*
N20.5420 (3)0.23224 (18)0.7575 (2)0.0386 (8)
N40.3348 (3)0.22657 (18)0.6199 (3)0.0413 (8)
O60.2775 (8)0.4203 (3)0.6898 (5)0.161 (3)
O50.1538 (8)0.5055 (6)0.6659 (6)0.229 (5)
O40.3168 (8)0.5019 (6)0.7763 (9)0.282 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0233 (3)0.0560 (4)0.0418 (3)0.0006 (2)0.0041 (2)0.0028 (2)
Cu20.0269 (3)0.0546 (4)0.0474 (4)0.0019 (2)0.0008 (2)0.0023 (3)
N30.0290 (18)0.051 (2)0.048 (2)0.0013 (16)0.0043 (16)0.0036 (18)
C220.028 (2)0.047 (2)0.039 (2)0.0007 (18)0.0044 (18)0.0066 (19)
C130.037 (2)0.040 (2)0.059 (3)0.0082 (19)0.003 (2)0.013 (2)
C50.056 (3)0.036 (2)0.057 (3)0.007 (2)0.017 (2)0.003 (2)
C120.026 (2)0.046 (2)0.037 (2)0.0006 (17)0.0030 (17)0.0049 (19)
C240.032 (2)0.052 (3)0.050 (3)0.0088 (19)0.005 (2)0.002 (2)
C100.028 (2)0.045 (2)0.052 (3)0.0045 (18)0.0022 (19)0.000 (2)
C110.032 (2)0.042 (2)0.049 (3)0.0026 (18)0.0001 (19)0.005 (2)
C140.032 (2)0.046 (3)0.058 (3)0.0006 (19)0.003 (2)0.017 (2)
C200.040 (2)0.045 (3)0.067 (3)0.004 (2)0.004 (2)0.004 (2)
C210.035 (2)0.046 (3)0.058 (3)0.0014 (19)0.005 (2)0.004 (2)
C40.056 (3)0.036 (2)0.069 (4)0.011 (2)0.012 (3)0.007 (2)
C30.068 (4)0.049 (3)0.093 (5)0.008 (3)0.004 (3)0.003 (3)
C70.051 (3)0.049 (3)0.095 (4)0.011 (2)0.035 (3)0.021 (3)
C90.142 (7)0.045 (3)0.061 (4)0.021 (4)0.022 (4)0.003 (3)
C60.091 (4)0.041 (3)0.072 (4)0.014 (3)0.026 (3)0.004 (3)
C20.095 (5)0.063 (4)0.084 (5)0.016 (4)0.015 (4)0.015 (3)
N10.0260 (17)0.048 (2)0.0352 (19)0.0029 (15)0.0003 (14)0.0045 (16)
C80.026 (2)0.042 (2)0.051 (3)0.0041 (18)0.0012 (19)0.007 (2)
O20.0466 (18)0.0451 (18)0.060 (2)0.0064 (14)0.0066 (16)0.0104 (15)
O10.0492 (19)0.058 (2)0.079 (3)0.0196 (16)0.0269 (18)0.0207 (18)
Cl20.0513 (7)0.0733 (9)0.0809 (10)0.0034 (6)0.0205 (7)0.0069 (7)
Cl10.233 (3)0.1117 (16)0.0609 (11)0.0612 (17)0.0279 (14)0.0073 (10)
O30.0343 (16)0.0523 (19)0.074 (2)0.0030 (14)0.0096 (16)0.0018 (16)
N60.046 (3)0.090 (4)0.106 (5)0.011 (3)0.006 (3)0.018 (4)
C230.034 (2)0.049 (3)0.046 (3)0.0027 (19)0.0027 (19)0.003 (2)
C250.030 (2)0.044 (2)0.037 (2)0.0019 (17)0.0077 (18)0.0073 (18)
C150.0248 (19)0.046 (2)0.030 (2)0.0039 (17)0.0005 (16)0.0009 (18)
C260.033 (2)0.039 (2)0.063 (3)0.0032 (18)0.000 (2)0.003 (2)
C190.030 (2)0.043 (2)0.056 (3)0.0005 (18)0.003 (2)0.006 (2)
C160.035 (2)0.040 (2)0.049 (3)0.0053 (18)0.010 (2)0.001 (2)
C290.039 (2)0.037 (2)0.076 (4)0.0040 (19)0.006 (2)0.005 (2)
C180.031 (2)0.044 (3)0.057 (3)0.0054 (18)0.000 (2)0.000 (2)
C170.042 (2)0.043 (3)0.050 (3)0.0029 (19)0.007 (2)0.005 (2)
C270.036 (2)0.045 (3)0.062 (3)0.005 (2)0.001 (2)0.008 (2)
C280.041 (3)0.042 (3)0.068 (3)0.003 (2)0.001 (2)0.001 (2)
N20.0247 (16)0.046 (2)0.0380 (19)0.0022 (14)0.0003 (15)0.0057 (16)
N40.0308 (18)0.045 (2)0.042 (2)0.0016 (15)0.0043 (16)0.0007 (16)
O60.190 (7)0.083 (4)0.160 (6)0.010 (4)0.012 (5)0.011 (4)
O50.125 (6)0.424 (16)0.139 (7)0.105 (8)0.045 (5)0.002 (8)
O40.106 (6)0.324 (14)0.378 (15)0.042 (7)0.023 (7)0.232 (12)
Geometric parameters (Å, º) top
Cu1—N2i1.913 (3)C7—H7A0.9700
Cu1—N11.926 (3)C7—H7B0.9700
Cu1—O22.180 (3)C9—C21.379 (10)
Cu2—N31.922 (4)C9—C61.387 (9)
Cu2—N4i1.931 (3)C9—Cl11.762 (7)
Cu2—O32.155 (3)C6—H60.9300
N3—C201.339 (6)C2—H20.9300
N3—C241.344 (6)C8—O21.235 (5)
C22—C211.387 (6)C8—O31.243 (5)
C22—C231.393 (6)N6—O41.088 (9)
C22—C251.483 (5)N6—O51.169 (8)
C13—C141.372 (6)N6—O61.181 (8)
C13—C121.397 (6)C23—H230.9300
C13—H130.9300C25—C261.374 (6)
C5—C61.380 (7)C25—C291.385 (6)
C5—C41.383 (7)C15—C161.373 (6)
C5—Cl21.730 (5)C15—C191.384 (6)
C12—C111.381 (6)C26—C271.381 (6)
C12—C151.486 (5)C26—H260.9300
C24—C231.373 (6)C19—C181.376 (6)
C24—H240.9300C19—H190.9300
C10—N11.348 (5)C16—C171.379 (6)
C10—C111.366 (5)C16—H160.9300
C10—H100.9300C29—C281.370 (6)
C11—H110.9300C29—H290.9300
C14—N11.332 (6)C18—N21.341 (5)
C14—H140.9300C18—H180.9300
C20—C211.380 (6)C17—N21.339 (5)
C20—H200.9300C17—H170.9300
C21—H210.9300C27—N41.342 (6)
C4—O11.368 (6)C27—H270.9300
C4—C31.384 (8)C28—N41.326 (6)
C3—C21.376 (10)C28—H280.9300
C3—H30.9300N2—Cu1ii1.913 (3)
C7—O11.443 (6)N4—Cu2ii1.931 (3)
C7—C81.519 (6)
N2i—Cu1—N1161.82 (15)C9—C6—H6121.3
N2i—Cu1—O2100.44 (13)C3—C2—C9119.8 (6)
N1—Cu1—O296.62 (13)C3—C2—H2120.1
N3—Cu2—N4i160.65 (15)C9—C2—H2120.1
N3—Cu2—O3100.74 (14)C14—N1—C10116.6 (3)
N4i—Cu2—O397.66 (13)C14—N1—Cu1125.6 (3)
C20—N3—C24116.1 (4)C10—N1—Cu1117.8 (3)
C20—N3—Cu2126.3 (3)O2—C8—O3127.5 (4)
C24—N3—Cu2117.4 (3)O2—C8—C7118.0 (4)
C21—C22—C23116.1 (4)O3—C8—C7114.6 (4)
C21—C22—C25122.9 (4)C8—O2—Cu1143.1 (3)
C23—C22—C25120.9 (4)C4—O1—C7118.3 (4)
C14—C13—C12120.2 (4)C8—O3—Cu2114.4 (3)
C14—C13—H13119.9O4—N6—O5123.0 (10)
C12—C13—H13119.9O4—N6—O6119.4 (8)
C6—C5—C4122.1 (5)O5—N6—O6117.6 (8)
C6—C5—Cl2117.9 (4)C24—C23—C22120.1 (4)
C4—C5—Cl2120.0 (4)C24—C23—H23119.9
C11—C12—C13115.9 (4)C22—C23—H23119.9
C11—C12—C15121.5 (4)C26—C25—C29115.9 (4)
C13—C12—C15122.6 (4)C26—C25—C22122.8 (4)
N3—C24—C23123.8 (4)C29—C25—C22121.2 (4)
N3—C24—H24118.1C16—C15—C19116.1 (4)
C23—C24—H24118.1C16—C15—C12122.2 (4)
N1—C10—C11123.0 (4)C19—C15—C12121.7 (4)
N1—C10—H10118.5C25—C26—C27120.4 (4)
C11—C10—H10118.5C25—C26—H26119.8
C10—C11—C12120.8 (4)C27—C26—H26119.8
C10—C11—H11119.6C18—C19—C15120.9 (4)
C12—C11—H11119.6C18—C19—H19119.6
N1—C14—C13123.4 (4)C15—C19—H19119.6
N1—C14—H14118.3C15—C16—C17120.2 (4)
C13—C14—H14118.3C15—C16—H16119.9
N3—C20—C21123.5 (4)C17—C16—H16119.9
N3—C20—H20118.2C28—C29—C25120.6 (4)
C21—C20—H20118.2C28—C29—H29119.7
C20—C21—C22120.3 (4)C25—C29—H29119.7
C20—C21—H21119.8N2—C18—C19122.8 (4)
C22—C21—H21119.8N2—C18—H18118.6
O1—C4—C5116.4 (4)C19—C18—H18118.6
O1—C4—C3124.4 (5)N2—C17—C16123.7 (4)
C5—C4—C3119.2 (6)N2—C17—H17118.1
C2—C3—C4119.9 (7)C16—C17—H17118.1
C2—C3—H3120.0N4—C27—C26123.2 (4)
C4—C3—H3120.0N4—C27—H27118.4
O1—C7—C8112.6 (4)C26—C27—H27118.4
O1—C7—H7A109.1N4—C28—C29123.6 (4)
C8—C7—H7A109.1N4—C28—H28118.2
O1—C7—H7B109.1C29—C28—H28118.2
C8—C7—H7B109.1C17—N2—C18116.1 (4)
H7A—C7—H7B107.8C17—N2—Cu1ii120.6 (3)
C2—C9—C6121.7 (6)C18—N2—Cu1ii123.3 (3)
C2—C9—Cl1121.2 (6)C28—N4—C27116.2 (4)
C6—C9—Cl1117.1 (6)C28—N4—Cu2ii123.5 (3)
C5—C6—C9117.3 (6)C27—N4—Cu2ii120.3 (3)
C5—C6—H6121.3
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x1, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formula[Cu2(C8H5Cl2O3)(C10H8N2)2]NO3
Mr721.5
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)10.598 (2), 18.552 (3), 15.212 (3)
β (°) 108.835 (2)
V3)2830.9 (8)
Z4
Radiation typeMo Kα
µ (mm1)1.74
Crystal size (mm)0.15 × 0.13 × 0.08
Data collection
DiffractometerBruker APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.883, 0.935
No. of measured, independent and
observed [I > 2σ(I)] reflections
14129, 5085, 3787
Rint0.032
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.143, 1.04
No. of reflections5085
No. of parameters388
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.89, 0.68

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The authors acknowledge South China Normal University for supporting this work.

References

First citationBiswas, C., Chattopabhyay, S., Drew, M. G. B. & Ghosh, A. (2007). Polyhedron, 26, 4411–4418.  Web of Science CSD CrossRef CAS Google Scholar
First citationBourne, S. A. & Moitsheki, L. J. (2007). J. Chem. Crystallogr. 37, 359–367.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2004). APEX2 and SMART. Bruker AXS Inc, Madison, Wisconsin, USA.  Google Scholar
First citationHuang, F.-P., Yu, Q., Bian, H.-D., Yan, S.-P. & Liang, H. (2008). Polyhedron, 27, 3160–3166.  Web of Science CSD CrossRef CAS Google Scholar
First citationMo, J., Zhang, S.-M., Ge, W.-Z. & Liu, J.-H. (2009). J. Chem. Crystallogr. 39, 890–893.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmith, G., O'Reilly, E. J. & Kennard, C. H. L. (1981). Inorg. Chim. Acta, 49, 53–55.  CSD CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds