metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

{[1-(2-Amino­ethyl­amino)-1-methyl­ethyl]phospho­nato-κ3N,N′,O}chloridopalladium(II) monohydrate

aInstitute of General and Inorganic Chemistry, NAS Ukraine, Kyiv, prosp. Palladina 32/34, 03680 Ukraine
*Correspondence e-mail: dudco_anatolij@ukr.net

(Received 22 December 2009; accepted 14 January 2010; online 20 January 2010)

In the title compound, [Pd(C5H14N2O3P)Cl]·H2O, the Pd(II) atom shows a slightly distorted square-planar geometry and forms two five-membered metallacycles, which both exhibit half-chair conformations. The crystal structure consists of layers propogating in the [100] direction which are connected into a three-dimensional network by strong N—H⋯Cl, N—H⋯O and O—H⋯O hydrogen bonds.

Related literature

For general background to the use of organic phospho­nic acids as chelating agents in metal extraction and as drugs for the prevention of calcification and bone resorption, see: Matczak-Jon & Videnova-Adrabinska (2005[Matczak-Jon, E. & Videnova-Adrabinska, V. (2005). Coord. Chem. Rev. 249, 2458-2488.]); Tromelin et al. (1986[Tromelin, A., El Manouni, D. & Burgada, R. (1986). Phosphorus Sulfur Relat. Elem. 27, 301-312.]); Szabo et al. (2002[Szabo, Ch. M., Martin, M. B. & Oldfield, E. (2002). J. Med. Chem. 45, 2894-2903.]). For related structures, see: Shkol'nikova et al. (1991[Shkol'nikova, L. M., Porai-Koshits, M. A., Fundamenskii, V. S., Poznyak, A. L. & Kalugina, E. V. (1991). Koord. Khim. 17, 954-963.]).

[Scheme 1]

Experimental

Crystal data
  • [Pd(C5H14N2O3P)Cl]·H2O

  • Mr = 341.02

  • Triclinic, [P \overline 1]

  • a = 7.2158 (2) Å

  • b = 7.8981 (2) Å

  • c = 10.3179 (3) Å

  • α = 97.968 (2)°

  • β = 98.403 (2)°

  • γ = 95.894 (2)°

  • V = 571.55 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.99 mm−1

  • T = 100 K

  • 0.38 × 0.12 × 0.10 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.519, Tmax = 0.832

  • 8452 measured reflections

  • 2306 independent reflections

  • 1954 reflections with I > 2σ(I)

  • Rint = 0.046

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.076

  • S = 1.05

  • 2306 reflections

  • 147 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.75 e Å−3

  • Δρmin = −0.55 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯Cl1i 0.86 (5) 2.48 (5) 3.326 (4) 169 (4)
N2—H21N⋯O3i 0.96 (5) 1.98 (5) 2.937 (5) 177 (4)
N2—H22N⋯Cl1ii 0.76 (5) 2.68 (5) 3.365 (4) 151 (4)
O3—H3O⋯O2iii 0.77 (3) 1.75 (3) 2.509 (4) 168 (6)
O4—H41O⋯O2iv 0.79 (5) 2.14 (6) 2.911 (5) 166 (5)
O4—H42O⋯O1 0.79 (6) 2.08 (6) 2.854 (5) 167 (5)
Symmetry codes: (i) -x, -y+1, -z; (ii) -x+1, -y+1, -z; (iii) -x, -y+1, -z+1; (iv) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). publCIF. In preparation.]).

Supporting information


Comment top

Organic phosphonic acids are potentially very powerful chelating agents used in metal extractions and they are also tested by pharmaceutical industry for use as efficient drugs preventing calcification and inhibiting bone resorption (Tromelin et al., 1986, Matczak-Jon & Videnova-Adrabinska, 2005). Diphosphonic acids are used in the treatment of Paget disease, osteoporosis and tumoral osteolysis (Szabo et al., 2002). The molecular structure of the title compound contains one molecule of the complex per asymmetric unit (Fig.1). The palladium atom shows a slightly distorted square-planar geometry. Mean average deviation from the respective plane is 0.040 (1) Å with a maximum deviation for O1 of 0.048 (1) Å. The bond lengths have a good correlation with reference data (Shkol'nikova et al., 1991). The ligand molecule coordinated to the palladium atom in a tridentate manner via phosphonic oxygen and two amino nitrogen atoms creating two five-membered metallacyclic subunits in half-chair conformation. Torsion angles C1–P1–O1–Pd1 = -26.4 (2)° and Pd1–N1–C1–P1 = -43.9 (3)° of the metallacycle [Pd1O1P1C1N1] slightly differ from the corresponding angles Pd1–N1–C4–C5 = 42.4 (4)° and Pd1–N2–C5–C4 = 37.5 (4)° of the second metallacycle [PdN1C4C5N2] because of different stereochemical environments. The crystal structure of the title compound forms a layered supramolecular structure, stabilized by strong N–H···Cl, N–H···O and O–H···O hydrogen bonds (Fig.2, Table 1).

Related literature top

For general background to the use of organic phosphonic acids in as chelating agents in metal extraction and as drugs for the prevention of calcification and bone resorption, see: Matczak-Jon & Videnova-Adrabinska (2005); Tromelin et al. (1986); Szabo et al. (2002). For related structures, see: Shkol'nikova et al. (1991).

Experimental top

2-(2-aminoethyl)aminopropan-2-yl-phosphonic acid hydrochloride (0.219 g, 1 mmol) in water (10 ml) was mixed together with a solution of palladium diacetate (0.224 g, 1 mmol, Merck 99%) in benzene (10 ml). The color of the aqueous phase of the reaction mixture slowly turned to pale yellow. After stirring for 12 h, the aqueous phase of the solution was separated. Suitable single crystals of the title compound were produced by slow evaporation of water from an aqueous solution at room temperature (yield: 76%). A pale yellow needle-shaped crystal was used for data collection.

Refinement top

H atoms bonded to N and O atoms were located in a difference map and refined with constrained Uiso(H) = 1.2Ueq(N,O). Other H atoms were positioned geometrically and refined using riding model with C–H = 0.99 Å for CH2 [Uiso(H) = 1.2Ueq(C)] and C–H = 0.98 Å for CH3 [Uiso(H) = 1.5Ueq(C)]. The DFIX instruction was used in the final refinement for restraining the O3—H3O distance to a reasonable value.

Structure description top

Organic phosphonic acids are potentially very powerful chelating agents used in metal extractions and they are also tested by pharmaceutical industry for use as efficient drugs preventing calcification and inhibiting bone resorption (Tromelin et al., 1986, Matczak-Jon & Videnova-Adrabinska, 2005). Diphosphonic acids are used in the treatment of Paget disease, osteoporosis and tumoral osteolysis (Szabo et al., 2002). The molecular structure of the title compound contains one molecule of the complex per asymmetric unit (Fig.1). The palladium atom shows a slightly distorted square-planar geometry. Mean average deviation from the respective plane is 0.040 (1) Å with a maximum deviation for O1 of 0.048 (1) Å. The bond lengths have a good correlation with reference data (Shkol'nikova et al., 1991). The ligand molecule coordinated to the palladium atom in a tridentate manner via phosphonic oxygen and two amino nitrogen atoms creating two five-membered metallacyclic subunits in half-chair conformation. Torsion angles C1–P1–O1–Pd1 = -26.4 (2)° and Pd1–N1–C1–P1 = -43.9 (3)° of the metallacycle [Pd1O1P1C1N1] slightly differ from the corresponding angles Pd1–N1–C4–C5 = 42.4 (4)° and Pd1–N2–C5–C4 = 37.5 (4)° of the second metallacycle [PdN1C4C5N2] because of different stereochemical environments. The crystal structure of the title compound forms a layered supramolecular structure, stabilized by strong N–H···Cl, N–H···O and O–H···O hydrogen bonds (Fig.2, Table 1).

For general background to the use of organic phosphonic acids in as chelating agents in metal extraction and as drugs for the prevention of calcification and bone resorption, see: Matczak-Jon & Videnova-Adrabinska (2005); Tromelin et al. (1986); Szabo et al. (2002). For related structures, see: Shkol'nikova et al. (1991).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The title compound showing 50% probability displacement ellipsoids for non-hydrogen atoms.
[Figure 2] Fig. 2. Crystal packing of the title compound, projection down the a axis. Dashed lines indicate hydrogen bonds.
{[1-(2-Aminoethylamino)-1-methylethyl]phosphonato- κ3N,N',O}chloridopalladium(II) monohydrate top
Crystal data top
[Pd(C5H14N2O3P)Cl]·H2OZ = 2
Mr = 341.02F(000) = 340
Triclinic, P1Dx = 1.982 Mg m3
Hall symbol: -P 1Melting point: 535 K
a = 7.2158 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 7.8981 (2) ÅCell parameters from 2725 reflections
c = 10.3179 (3) Åθ = 2.9–26.2°
α = 97.968 (2)°µ = 1.99 mm1
β = 98.403 (2)°T = 100 K
γ = 95.894 (2)°Block, yellow
V = 571.55 (3) Å30.38 × 0.12 × 0.10 mm
Data collection top
Bruker APEXII CCD
diffractometer
2306 independent reflections
Radiation source: fine-focus sealed tube1954 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
Detector resolution: 8.26 pixels mm-1θmax = 26.4°, θmin = 2.0°
φ and ω scansh = 88
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 99
Tmin = 0.519, Tmax = 0.832l = 1212
8452 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.076H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0351P)2 + 0.6204P]
where P = (Fo2 + 2Fc2)/3
2306 reflections(Δ/σ)max < 0.001
147 parametersΔρmax = 0.75 e Å3
1 restraintΔρmin = 0.55 e Å3
Crystal data top
[Pd(C5H14N2O3P)Cl]·H2Oγ = 95.894 (2)°
Mr = 341.02V = 571.55 (3) Å3
Triclinic, P1Z = 2
a = 7.2158 (2) ÅMo Kα radiation
b = 7.8981 (2) ŵ = 1.99 mm1
c = 10.3179 (3) ÅT = 100 K
α = 97.968 (2)°0.38 × 0.12 × 0.10 mm
β = 98.403 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
2306 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1954 reflections with I > 2σ(I)
Tmin = 0.519, Tmax = 0.832Rint = 0.046
8452 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0321 restraint
wR(F2) = 0.076H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.75 e Å3
2306 reflectionsΔρmin = 0.55 e Å3
147 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pd10.22708 (4)0.52397 (4)0.07010 (3)0.01203 (11)
P10.15753 (15)0.54887 (16)0.35047 (10)0.0162 (3)
Cl10.27656 (14)0.26896 (14)0.05111 (10)0.0155 (2)
N10.1808 (5)0.7519 (4)0.1696 (3)0.0120 (7)
H1N0.060 (7)0.746 (6)0.150 (4)0.014*
N20.2614 (5)0.6578 (5)0.0782 (3)0.0126 (7)
H21N0.199 (6)0.594 (6)0.161 (4)0.015*
H22N0.368 (7)0.665 (6)0.078 (4)0.015*
O10.2068 (4)0.4194 (4)0.2400 (3)0.0184 (7)
O20.2368 (4)0.5237 (4)0.4882 (3)0.0209 (7)
O30.0616 (4)0.5451 (4)0.3289 (3)0.0190 (7)
H3O0.117 (6)0.538 (7)0.387 (4)0.023*
O40.5268 (5)0.2409 (5)0.2944 (3)0.0249 (8)
H41O0.577 (8)0.316 (7)0.351 (5)0.030*
H42O0.428 (8)0.276 (7)0.281 (5)0.030*
C10.2460 (6)0.7633 (6)0.3169 (4)0.0158 (9)
C20.4630 (6)0.7880 (6)0.3480 (4)0.0214 (10)
H2A0.51140.90150.33010.032*
H2B0.51220.69820.29210.032*
H2C0.50360.78010.44160.032*
C30.1618 (7)0.9064 (6)0.3944 (4)0.0237 (10)
H3A0.21251.01820.37460.036*
H3B0.19440.90370.48960.036*
H3C0.02410.88950.36880.036*
C40.2573 (6)0.8907 (5)0.1007 (4)0.0157 (9)
H4A0.39650.91260.12420.019*
H4B0.20440.99890.12650.019*
C50.2000 (6)0.8285 (6)0.0464 (4)0.0168 (9)
H5A0.06130.82090.07120.020*
H5B0.25960.91060.09700.020*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd10.01212 (17)0.01164 (19)0.01225 (17)0.00112 (12)0.00298 (11)0.00076 (12)
P10.0142 (5)0.0219 (7)0.0118 (5)0.0005 (5)0.0022 (4)0.0023 (5)
Cl10.0142 (5)0.0136 (6)0.0183 (5)0.0028 (4)0.0027 (4)0.0002 (4)
N10.0102 (17)0.0102 (19)0.0140 (17)0.0012 (15)0.0016 (13)0.0022 (14)
N20.0097 (17)0.013 (2)0.0143 (18)0.0005 (15)0.0019 (14)0.0013 (15)
O10.0237 (16)0.0159 (17)0.0148 (15)0.0016 (13)0.0046 (12)0.0013 (13)
O20.0154 (15)0.033 (2)0.0141 (15)0.0006 (14)0.0034 (12)0.0062 (14)
O30.0129 (15)0.0294 (19)0.0147 (15)0.0011 (14)0.0034 (11)0.0047 (14)
O40.0216 (18)0.027 (2)0.0244 (18)0.0028 (16)0.0009 (14)0.0003 (15)
C10.018 (2)0.016 (2)0.012 (2)0.0002 (18)0.0018 (16)0.0017 (17)
C20.020 (2)0.028 (3)0.014 (2)0.003 (2)0.0005 (17)0.004 (2)
C30.027 (3)0.023 (3)0.019 (2)0.003 (2)0.0066 (19)0.004 (2)
C40.018 (2)0.009 (2)0.020 (2)0.0005 (18)0.0020 (17)0.0024 (18)
C50.013 (2)0.014 (2)0.024 (2)0.0019 (18)0.0033 (17)0.0062 (19)
Geometric parameters (Å, º) top
Pd1—N22.006 (3)O4—H41O0.79 (5)
Pd1—N12.029 (3)O4—H42O0.79 (6)
Pd1—O12.056 (3)C1—C31.523 (6)
Pd1—Cl12.3083 (11)C1—C21.538 (6)
P1—O21.500 (3)C2—H2A0.9800
P1—O11.530 (3)C2—H2B0.9800
P1—O31.561 (3)C2—H2C0.9800
P1—C11.844 (4)C3—H3A0.9800
N1—C41.490 (5)C3—H3B0.9800
N1—C11.511 (5)C3—H3C0.9800
N1—H1N0.86 (5)C4—C51.511 (6)
N2—C51.471 (5)C4—H4A0.9900
N2—H21N0.96 (5)C4—H4B0.9900
N2—H22N0.76 (5)C5—H5A0.9900
O3—H3O0.77 (3)C5—H5B0.9900
N2—Pd1—N184.95 (14)C3—C1—C2111.8 (4)
N2—Pd1—O1171.76 (13)N1—C1—P1103.1 (3)
N1—Pd1—O187.95 (12)C3—C1—P1111.8 (3)
N2—Pd1—Cl192.89 (11)C2—C1—P1108.9 (3)
N1—Pd1—Cl1177.67 (10)C1—C2—H2A109.5
O1—Pd1—Cl194.26 (9)C1—C2—H2B109.5
O2—P1—O1114.59 (18)H2A—C2—H2B109.5
O2—P1—O3112.56 (16)C1—C2—H2C109.5
O1—P1—O3107.83 (17)H2A—C2—H2C109.5
O2—P1—C1111.12 (19)H2B—C2—H2C109.5
O1—P1—C1105.66 (18)C1—C3—H3A109.5
O3—P1—C1104.36 (19)C1—C3—H3B109.5
C4—N1—C1118.5 (3)H3A—C3—H3B109.5
C4—N1—Pd1107.3 (2)C1—C3—H3C109.5
C1—N1—Pd1110.9 (3)H3A—C3—H3C109.5
C4—N1—H1N105 (3)H3B—C3—H3C109.5
C1—N1—H1N112 (3)N1—C4—C5106.8 (3)
Pd1—N1—H1N101 (3)N1—C4—H4A110.4
C5—N2—Pd1108.9 (2)C5—C4—H4A110.4
C5—N2—H21N114 (3)N1—C4—H4B110.4
Pd1—N2—H21N111 (3)C5—C4—H4B110.4
C5—N2—H22N111 (4)H4A—C4—H4B108.6
Pd1—N2—H22N103 (3)N2—C5—C4108.7 (3)
H21N—N2—H22N109 (4)N2—C5—H5A109.9
P1—O1—Pd1112.20 (17)C4—C5—H5A109.9
P1—O3—H3O121 (4)N2—C5—H5B109.9
H41O—O4—H42O97 (5)C4—C5—H5B109.9
N1—C1—C3110.7 (3)H5A—C5—H5B108.3
N1—C1—C2110.2 (3)
N2—Pd1—N1—C418.0 (3)C4—N1—C1—P1168.6 (3)
O1—Pd1—N1—C4157.8 (3)Pd1—N1—C1—P143.9 (3)
N2—Pd1—N1—C1148.9 (3)O2—P1—C1—N1170.2 (2)
O1—Pd1—N1—C126.9 (3)O1—P1—C1—N145.4 (3)
N1—Pd1—N2—C510.8 (3)O3—P1—C1—N168.2 (3)
Cl1—Pd1—N2—C5168.3 (3)O2—P1—C1—C370.8 (3)
O2—P1—O1—Pd1149.06 (16)O1—P1—C1—C3164.3 (3)
O3—P1—O1—Pd184.75 (19)O3—P1—C1—C350.7 (3)
C1—P1—O1—Pd126.4 (2)O2—P1—C1—C253.2 (3)
N1—Pd1—O1—P13.43 (18)O1—P1—C1—C271.6 (3)
Cl1—Pd1—O1—P1175.86 (15)O3—P1—C1—C2174.8 (3)
C4—N1—C1—C371.7 (5)C1—N1—C4—C5168.9 (3)
Pd1—N1—C1—C3163.6 (3)Pd1—N1—C4—C542.4 (4)
C4—N1—C1—C252.6 (5)Pd1—N2—C5—C437.5 (4)
Pd1—N1—C1—C272.2 (4)N1—C4—C5—N253.3 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···Cl1i0.86 (5)2.48 (5)3.326 (4)169 (4)
N2—H21N···O3i0.96 (5)1.98 (5)2.937 (5)177 (4)
N2—H22N···Cl1ii0.76 (5)2.68 (5)3.365 (4)151 (4)
O3—H3O···O2iii0.77 (3)1.75 (3)2.509 (4)168 (6)
O4—H41O···O2iv0.79 (5)2.14 (6)2.911 (5)166 (5)
O4—H42O···O10.79 (6)2.08 (6)2.854 (5)167 (5)
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1, z; (iii) x, y+1, z+1; (iv) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Pd(C5H14N2O3P)Cl]·H2O
Mr341.02
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)7.2158 (2), 7.8981 (2), 10.3179 (3)
α, β, γ (°)97.968 (2), 98.403 (2), 95.894 (2)
V3)571.55 (3)
Z2
Radiation typeMo Kα
µ (mm1)1.99
Crystal size (mm)0.38 × 0.12 × 0.10
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.519, 0.832
No. of measured, independent and
observed [I > 2σ(I)] reflections
8452, 2306, 1954
Rint0.046
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.076, 1.05
No. of reflections2306
No. of parameters147
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.75, 0.55

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···Cl1i0.86 (5)2.48 (5)3.326 (4)169 (4)
N2—H21N···O3i0.96 (5)1.98 (5)2.937 (5)177 (4)
N2—H22N···Cl1ii0.76 (5)2.68 (5)3.365 (4)151 (4)
O3—H3O···O2iii0.77 (3)1.75 (3)2.509 (4)168 (6)
O4—H41O···O2iv0.79 (5)2.14 (6)2.911 (5)166 (5)
O4—H42O···O10.79 (6)2.08 (6)2.854 (5)167 (5)
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1, z; (iii) x, y+1, z+1; (iv) x+1, y+1, z+1.
 

References

First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMatczak-Jon, E. & Videnova-Adrabinska, V. (2005). Coord. Chem. Rev. 249, 2458–2488.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShkol'nikova, L. M., Porai-Koshits, M. A., Fundamenskii, V. S., Poznyak, A. L. & Kalugina, E. V. (1991). Koord. Khim. 17, 954–963.  CAS Google Scholar
First citationSzabo, Ch. M., Martin, M. B. & Oldfield, E. (2002). J. Med. Chem. 45, 2894–2903.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationTromelin, A., El Manouni, D. & Burgada, R. (1986). Phosphorus Sulfur Relat. Elem. 27, 301–312.  CrossRef CAS Web of Science Google Scholar
First citationWestrip, S. P. (2010). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds