organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(1,3-Benzodioxol-5-yl)ethanone

aDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, bDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA, cDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, and dDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri 574 199, India
*Correspondence e-mail: jjasinski@keene.edu

(Received 26 December 2009; accepted 11 January 2010; online 16 January 2010)

In the title compound, C9H8O3, the dihedral angle between the mean planes of the benzene and dioxole rings is 1.4 (8)°, with the dioxole group in a slightly distorted envelope configuration with the flap C atom displaced by 0.0645 Å from the plane through the other four atoms. In the crystal, weak inter­molecular C—H⋯O hydrogen-bond inter­actions link the mol­ecules into chains propagating in [011]. The crystal packing exhibits weak ππ inter­actions as evidenced by the relatively short distances [3.801 (9) Å] between the centroids of adjacent benzene rings.

Related literature

For the pharmaceutical properties of compounds containing the 1,3-dioxolyl group, see: Gabrielsen et al. (1992[Gabrielsen, B., Monath, Th., Huggins, J., Kefauver, D., Pettit, G., Groszek, G., Hollingshead, M., Kirsi, J. & Shannon, W. (1992). J. Nat. Prod. 55, 1569-1581.]); Krause & Goeber (1972[Krause, W. & Goeber, B. (1972). Pharmazie, 27 419-420.]); Ma et al. (1987a[Ma, G., Li, H,, Huang, H., Yan, L., Sh. Hong (1987a). Zhongcaoyao 18 342-345.],b[Ma, G., Li, H,, Huang, H., Yan, L., Sh. Hong (1987b). Chem. Abstr. 107, 242490e.]); Ohta & Kimoto (1976[Ohta, S. & Kimoto, S. (1976). Chem. Pharm. Bull. 24, 2977-2984]); For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For related structures, see: Jasinski et al. (2008[Jasinski, J. P., Butcher, R. J., Sreevidya, T. V., Yathirajan, H. S. & Narayana, B. (2008). Anal. Sci. 24, x245-x246.]); Yathirajan et al. (2007[Yathirajan, H. S., Bindya, S., Ashok, M. A., Narayana, B. & Bolte, M. (2007). Acta Cryst. E63, o2349.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97 1354-1355.]). For MOPAC AM1 calculations, see: Schmidt & Polik (2007[Schmidt, J. R. & Polik, W. F. (2007). WebMO Pro. WebMO, LLC: Holland, MI, USA, available from http://www.webmo.net.]).

[Scheme 1]

Experimental

Crystal data
  • C9H8O3

  • Mr = 164.15

  • Monoclinic, P 21 /c

  • a = 9.4697 (3) Å

  • b = 10.8445 (3) Å

  • c = 7.5148 (3) Å

  • β = 105.973 (3)°

  • V = 741.93 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 200 K

  • 0.58 × 0.45 × 0.26 mm

Data collection
  • Oxford Diffraction R Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.909, Tmax = 0.972

  • 12470 measured reflections

  • 3061 independent reflections

  • 2215 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.133

  • S = 1.03

  • 3061 reflections

  • 110 parameters

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3A⋯O3i 0.95 2.50 3.423 (1) 165
Symmetry code: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: CrysAlis PRO (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Acetophenone is the simplest aromatic ketone. It is used as a polymerization catalyst for the manufacture of olefins, as an intermediate for pharmaceuticals, agrochemicals and other organic compounds, as a drug to induce sleep and as a solvent for plastics, resins, cellulose ethers, and esters. Acetophenone and its derivatives are ingredients of flavor and fragrance for soaps, detergents, cosmetics, and perfumes as well as in foods, beverages, and tobacco. Many synthetic or naturally occurring compounds containing the 1,3-dioxolyl group are very important because of their pharmacological properties (Ma et al. 1987a,b; Ohta & Kimoto 1976; Krause & Goeber 1972; Gabrielsen et al. 1992). The crystal structure of 1,3-benzodioxol-5-ylmethanol (Yathirajan et al., 2007) is reported. The title compound, (I), was used recently for the synthesis of (2E)-1-(1,3-benzodioxol-5-yl)-3-(4-chlorophenyl)prop-2-en-1-one and (2E)-1-(1,3-benzodioxol-5-yl)-3-(3,4-dimethoxyphenyl) prop-2-en-1-one (Jasinski et al., 2008). In view of the importance of the title compound, C9H8O3, (I), we report the crystal structure.

The molecular structure consists of an ethanoyl group bonded to a benzene group which is fused to a 1,3-dioxol ring in a nearly planar fashion (Fig. 1). The dihedral angle between the mean planes of the benzene and dioxol ring is 1.4 (8)°, as the dioxol group maintains itself in a slightly distorted envelope configuration (Cremer & Pople, 1975) with puckering parameters Q(2) and Phi(2) of 0.1020 and 34.7750, respectively. For an ideal envelope, Phi(2) has a value of k x 36. Bond lengths and bond angles are all within expected ranges (Allen et al. 1987).

Weak intermolecular C—H···O hydrogen bond interactions link the molecules into chains propagating in the [011] direction (Fig. 2). Crystal packing exhibits weak Cg2—Cg2 π-π interactions as evidenced by relatively short distances between the centroids of nearby aromatic rings (Cg2—Cg2: 3.8019 Å; slippage = 1.630 Å; 1 - x, -y, -z; Cg2 = ring centroid for C2—C7). A geometry optimized MOPAC AM1 computational calculation (Schmidt & Polik 2007) on (I) (AM1 (Austin Model 1 approximation), in vacuo, results in a completely planar molecule. This observation supports a suggestion that intermolecular forces influence the molecular conformation in the crystal.

Related literature top

For the pharmaceutical properties of compounds containing the 1,3-dioxolyl group, see: Gabrielsen et al. (1992); Krause & Goeber (1972); Ma et al. (1987a,b); Ohta & Kimoto (1976); For bond-length data, see: Allen et al. (1987). For related structures, see: Jasinski et al. (2008); Yathirajan et al. (2007). For puckering parameters, see: Cremer & Pople (1975). For MOPAC AM1 calculations, see: Schmidt & Polik (2007).

Experimental top

The title compound (I) was obtained from Aldrich Chemical Company and was recrystallized from DMF by slow evaporation (m.p.: 360–362 K). Analysis for the title compound C9H8O3: Found (calculated): C: 65.85 (65.91); H: 4.91(4.86).

Refinement top

All H atoms were placed in calculated positions and wer refined using the riding model with C—H = 0.95–0.98 Å, and with Uiso(H) = 1.17–1.50Ueq(C).

Structure description top

Acetophenone is the simplest aromatic ketone. It is used as a polymerization catalyst for the manufacture of olefins, as an intermediate for pharmaceuticals, agrochemicals and other organic compounds, as a drug to induce sleep and as a solvent for plastics, resins, cellulose ethers, and esters. Acetophenone and its derivatives are ingredients of flavor and fragrance for soaps, detergents, cosmetics, and perfumes as well as in foods, beverages, and tobacco. Many synthetic or naturally occurring compounds containing the 1,3-dioxolyl group are very important because of their pharmacological properties (Ma et al. 1987a,b; Ohta & Kimoto 1976; Krause & Goeber 1972; Gabrielsen et al. 1992). The crystal structure of 1,3-benzodioxol-5-ylmethanol (Yathirajan et al., 2007) is reported. The title compound, (I), was used recently for the synthesis of (2E)-1-(1,3-benzodioxol-5-yl)-3-(4-chlorophenyl)prop-2-en-1-one and (2E)-1-(1,3-benzodioxol-5-yl)-3-(3,4-dimethoxyphenyl) prop-2-en-1-one (Jasinski et al., 2008). In view of the importance of the title compound, C9H8O3, (I), we report the crystal structure.

The molecular structure consists of an ethanoyl group bonded to a benzene group which is fused to a 1,3-dioxol ring in a nearly planar fashion (Fig. 1). The dihedral angle between the mean planes of the benzene and dioxol ring is 1.4 (8)°, as the dioxol group maintains itself in a slightly distorted envelope configuration (Cremer & Pople, 1975) with puckering parameters Q(2) and Phi(2) of 0.1020 and 34.7750, respectively. For an ideal envelope, Phi(2) has a value of k x 36. Bond lengths and bond angles are all within expected ranges (Allen et al. 1987).

Weak intermolecular C—H···O hydrogen bond interactions link the molecules into chains propagating in the [011] direction (Fig. 2). Crystal packing exhibits weak Cg2—Cg2 π-π interactions as evidenced by relatively short distances between the centroids of nearby aromatic rings (Cg2—Cg2: 3.8019 Å; slippage = 1.630 Å; 1 - x, -y, -z; Cg2 = ring centroid for C2—C7). A geometry optimized MOPAC AM1 computational calculation (Schmidt & Polik 2007) on (I) (AM1 (Austin Model 1 approximation), in vacuo, results in a completely planar molecule. This observation supports a suggestion that intermolecular forces influence the molecular conformation in the crystal.

For the pharmaceutical properties of compounds containing the 1,3-dioxolyl group, see: Gabrielsen et al. (1992); Krause & Goeber (1972); Ma et al. (1987a,b); Ohta & Kimoto (1976); For bond-length data, see: Allen et al. (1987). For related structures, see: Jasinski et al. (2008); Yathirajan et al. (2007). For puckering parameters, see: Cremer & Pople (1975). For MOPAC AM1 calculations, see: Schmidt & Polik (2007).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2007); cell refinement: CrysAlis PRO (Oxford Diffraction, 2007); data reduction: CrysAlis PRO (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I), C9H8O3, showing the atom labeling scheme and 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. The molecular packing for (I) viewed down the a axis. Dashed lines indicate weak C—H···O intermolecular hydrogen bond interactions which link the molecule into chains propagating along the [011].
1-(1,3-Benzodioxol-5-yl)ethanone top
Crystal data top
C9H8O3F(000) = 344
Mr = 164.15Dx = 1.470 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5168 reflections
a = 9.4697 (3) Åθ = 4.8–34.7°
b = 10.8445 (3) ŵ = 0.11 mm1
c = 7.5148 (3) ÅT = 200 K
β = 105.973 (3)°Irregular plate, colorless
V = 741.93 (4) Å30.58 × 0.45 × 0.26 mm
Z = 4
Data collection top
Oxford Diffraction R Gemini
diffractometer
3061 independent reflections
Radiation source: fine-focus sealed tube2215 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
Detector resolution: 10.5081 pixels mm-1θmax = 34.8°, θmin = 4.9°
φ and ω scansh = 1414
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
k = 1715
Tmin = 0.909, Tmax = 0.972l = 1111
12470 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.133H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0852P)2]
where P = (Fo2 + 2Fc2)/3
3061 reflections(Δ/σ)max < 0.001
110 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
C9H8O3V = 741.93 (4) Å3
Mr = 164.15Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.4697 (3) ŵ = 0.11 mm1
b = 10.8445 (3) ÅT = 200 K
c = 7.5148 (3) Å0.58 × 0.45 × 0.26 mm
β = 105.973 (3)°
Data collection top
Oxford Diffraction R Gemini
diffractometer
3061 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
2215 reflections with I > 2σ(I)
Tmin = 0.909, Tmax = 0.972Rint = 0.024
12470 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.133H-atom parameters constrained
S = 1.03Δρmax = 0.39 e Å3
3061 reflectionsΔρmin = 0.28 e Å3
110 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.19844 (7)0.26081 (7)0.45409 (11)0.03260 (19)
O20.12787 (7)0.42705 (7)0.60401 (10)0.02944 (17)
O30.76739 (8)0.26971 (7)0.62415 (11)0.03273 (18)
C10.07627 (10)0.31692 (10)0.50175 (15)0.0315 (2)
H1A0.00230.33700.38820.038*
H1B0.03570.25960.57770.038*
C20.27739 (9)0.42276 (8)0.64441 (11)0.02067 (17)
C30.37564 (9)0.50450 (8)0.74958 (12)0.02310 (18)
H3A0.34480.57320.80790.028*
C40.52406 (9)0.48140 (8)0.76650 (12)0.02156 (17)
H4A0.59600.53530.83970.026*
C50.56965 (8)0.38161 (8)0.67914 (11)0.01868 (16)
C60.46499 (9)0.30025 (8)0.56785 (12)0.02042 (17)
H6A0.49360.23290.50480.024*
C70.32064 (9)0.32334 (8)0.55556 (11)0.02051 (17)
C80.72805 (9)0.35800 (8)0.70045 (12)0.02201 (18)
C90.84055 (10)0.44275 (10)0.82066 (14)0.0293 (2)
H9A0.93730.42500.80320.044*
H9B0.84360.42980.95070.044*
H9C0.81390.52860.78630.044*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0185 (3)0.0348 (4)0.0419 (4)0.0031 (3)0.0041 (3)0.0136 (3)
O20.0162 (3)0.0337 (4)0.0373 (4)0.0036 (2)0.0055 (3)0.0046 (3)
O30.0236 (3)0.0311 (4)0.0461 (4)0.0029 (3)0.0140 (3)0.0052 (3)
C10.0180 (4)0.0394 (5)0.0362 (5)0.0029 (4)0.0061 (4)0.0063 (4)
C20.0166 (3)0.0237 (4)0.0217 (4)0.0032 (3)0.0054 (3)0.0019 (3)
C30.0227 (4)0.0221 (4)0.0248 (4)0.0030 (3)0.0071 (3)0.0028 (3)
C40.0204 (4)0.0209 (4)0.0227 (4)0.0010 (3)0.0048 (3)0.0013 (3)
C50.0172 (3)0.0191 (4)0.0201 (4)0.0006 (3)0.0056 (3)0.0024 (3)
C60.0203 (4)0.0188 (4)0.0230 (4)0.0013 (3)0.0075 (3)0.0009 (3)
C70.0178 (3)0.0210 (4)0.0217 (4)0.0014 (3)0.0036 (3)0.0005 (3)
C80.0186 (3)0.0227 (4)0.0261 (4)0.0004 (3)0.0084 (3)0.0039 (3)
C90.0186 (4)0.0328 (5)0.0353 (5)0.0031 (3)0.0056 (3)0.0003 (4)
Geometric parameters (Å, º) top
O1—C71.3765 (10)C4—C51.3945 (12)
O1—C11.4370 (12)C4—H4A0.9500
O2—C21.3648 (10)C5—C61.4157 (11)
O2—C11.4314 (12)C5—C81.4862 (11)
O3—C81.2256 (11)C6—C71.3676 (11)
C1—H1A0.9900C6—H6A0.9500
C1—H1B0.9900C8—C91.5053 (12)
C2—C31.3679 (12)C9—H9A0.9800
C2—C71.3879 (12)C9—H9B0.9800
C3—C41.3985 (11)C9—H9C0.9800
C3—H3A0.9500
C7—O1—C1105.37 (7)C4—C5—C8121.13 (7)
C2—O2—C1105.72 (7)C6—C5—C8118.56 (7)
O2—C1—O1107.93 (7)C7—C6—C5116.75 (8)
O2—C1—H1A110.1C7—C6—H6A121.6
O1—C1—H1A110.1C5—C6—H6A121.6
O2—C1—H1B110.1C6—C7—O1128.28 (8)
O1—C1—H1B110.1C6—C7—C2122.11 (8)
H1A—C1—H1B108.4O1—C7—C2109.56 (7)
O2—C2—C3127.26 (8)O3—C8—C5120.79 (8)
O2—C2—C7110.18 (7)O3—C8—C9120.11 (8)
C3—C2—C7122.51 (8)C5—C8—C9119.09 (8)
C2—C3—C4116.31 (8)C8—C9—H9A109.5
C2—C3—H3A121.8C8—C9—H9B109.5
C4—C3—H3A121.8H9A—C9—H9B109.5
C5—C4—C3121.99 (8)C8—C9—H9C109.5
C5—C4—H4A119.0H9A—C9—H9C109.5
C3—C4—H4A119.0H9B—C9—H9C109.5
C4—C5—C6120.31 (7)
C2—O2—C1—O110.84 (10)C5—C6—C7—C21.19 (13)
C7—O1—C1—O210.94 (10)C1—O1—C7—C6175.70 (9)
C1—O2—C2—C3175.94 (9)C1—O1—C7—C26.94 (10)
C1—O2—C2—C76.63 (10)O2—C2—C7—C6177.78 (8)
O2—C2—C3—C4178.36 (8)C3—C2—C7—C60.21 (14)
C7—C2—C3—C41.22 (13)O2—C2—C7—O10.22 (10)
C2—C3—C4—C50.83 (13)C3—C2—C7—O1177.35 (8)
C3—C4—C5—C60.55 (13)C4—C5—C8—O3179.58 (8)
C3—C4—C5—C8179.39 (8)C6—C5—C8—O30.36 (12)
C4—C5—C6—C71.54 (12)C4—C5—C8—C90.81 (12)
C8—C5—C6—C7178.40 (7)C6—C5—C8—C9179.12 (8)
C5—C6—C7—O1178.26 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3A···O3i0.952.503.423 (1)165
Symmetry code: (i) x+1, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC9H8O3
Mr164.15
Crystal system, space groupMonoclinic, P21/c
Temperature (K)200
a, b, c (Å)9.4697 (3), 10.8445 (3), 7.5148 (3)
β (°) 105.973 (3)
V3)741.93 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.58 × 0.45 × 0.26
Data collection
DiffractometerOxford Diffraction R Gemini
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2007)
Tmin, Tmax0.909, 0.972
No. of measured, independent and
observed [I > 2σ(I)] reflections
12470, 3061, 2215
Rint0.024
(sin θ/λ)max1)0.803
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.133, 1.03
No. of reflections3061
No. of parameters110
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.39, 0.28

Computer programs: CrysAlis PRO (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3A···O3i0.952.503.423 (1)165.0
Symmetry code: (i) x+1, y+1/2, z+3/2.
 

Acknowledgements

QNMHA thanks the University of Mysore for use of their research facilities. RJB acknowledges the NSF MRI program (grant No. CHE-0619278) for funds to purchase an X-ray diffractometer.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97 1354–1355.  CrossRef CAS Web of Science Google Scholar
First citationGabrielsen, B., Monath, Th., Huggins, J., Kefauver, D., Pettit, G., Groszek, G., Hollingshead, M., Kirsi, J. & Shannon, W. (1992). J. Nat. Prod. 55, 1569–1581.  CrossRef PubMed CAS Web of Science Google Scholar
First citationJasinski, J. P., Butcher, R. J., Sreevidya, T. V., Yathirajan, H. S. & Narayana, B. (2008). Anal. Sci. 24, x245–x246.  CAS Google Scholar
First citationKrause, W. & Goeber, B. (1972). Pharmazie, 27 419–420.  CAS PubMed Web of Science Google Scholar
First citationMa, G., Li, H,, Huang, H., Yan, L., Sh. Hong (1987a). Zhongcaoyao 18 342–345.  Google Scholar
First citationMa, G., Li, H,, Huang, H., Yan, L., Sh. Hong (1987b). Chem. Abstr. 107, 242490e.  Google Scholar
First citationOhta, S. & Kimoto, S. (1976). Chem. Pharm. Bull. 24, 2977-2984  CrossRef CAS Google Scholar
First citationOxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationSchmidt, J. R. & Polik, W. F. (2007). WebMO Pro. WebMO, LLC: Holland, MI, USA, available from http://www.webmo.net.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYathirajan, H. S., Bindya, S., Ashok, M. A., Narayana, B. & Bolte, M. (2007). Acta Cryst. E63, o2349.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds