organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-[2-(2-Chloro­phen­yl)-2-hy­droxy­ethyl]propan-2-aminium nitrate

aCollege of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China, and bCollege of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
*Correspondence e-mail: fenghai289289@163.com

(Received 14 December 2009; accepted 17 December 2009; online 16 January 2010)

In the title compound, C11H17ClNO+·NO3, the side chain of the ethyl­ammonium group is orientated approximately perpendicular to the benzene ring, the dihedral angle between the C/C/N plane of the ethyl­ammonium group and the benzene ring being 79.40 (18)°. In the crystal structure, inter­molecular O—H⋯O and N—H⋯O hydrogen bonds are observed between the cation and the anion.

Related literature

For related structures, see: Tang, Xu, Zhang & Feng (2009[Tang, Z., Xu, M., Zhang, H.-C. & Feng, H. (2009). Acta Cryst. E65, o1670.]); Tang, Xu, Zheng & Feng (2009[Tang, Z., Xu, M., Zheng, G.-R. & Feng, H. (2009). Acta Cryst. E65, o1501.]).

[Scheme 1]

Experimental

Crystal data
  • C11H17ClNO+·NO3

  • Mr = 276.72

  • Monoclinic, P 21 /n

  • a = 11.9551 (6) Å

  • b = 10.4563 (5) Å

  • c = 12.2968 (7) Å

  • β = 115.109 (1)°

  • V = 1391.91 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.28 mm−1

  • T = 296 K

  • 0.38 × 0.36 × 0.22 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.900, Tmax = 0.940

  • 13380 measured reflections

  • 3179 independent reflections

  • 1833 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.145

  • S = 1.00

  • 3179 reflections

  • 167 parameters

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.49 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H2A⋯O4 0.90 1.97 2.843 (2) 163
N1—H2B⋯O2i 0.90 1.93 2.8234 (19) 170
O1—H101⋯O4ii 0.82 1.98 2.7614 (19) 158
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x+1, -y+1, -z+1.

Data collection: PROCESS-AUTO (Rigaku/MSC, 2006[Rigaku/MSC (2006). PROCESS-AUTO. Rigaku/MSC. The Woodlands, Texas, USA.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2007[Rigaku/MSC (2007). CrystalStructure. Rigaku/MSC. The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

A recent study reports the structure of bis{N-[2-(2-chlorophenyl)-2-hydroxyethyl]propan-2-aminium} oxalate (Tang, Xu, Zhang & Feng, 2009), which was synthesized by oxalic acid and clorprenaline (Tang, Xu, Zheng & Feng, 2009). Here using nitric acid instead of oxalic acid and following a similar synthetic procedure yields the title compound, (I).

In the molecular structure (Fig. 1), the Cl atom and the phenyl plane is almost planar with a deviation of 0.0118 Å. The dihedral angle between the plane formed by C1/C2/C8 and the benzene plane is 81.23 (18)°, which shows that the two planes are almost perpendicular. O—H···O and N—H···O hydrogen bonds are found in the crystal structure.

Related literature top

For related structures, see: Tang, Xu, Zhang & Feng (2009); Tang, Xu, Zheng & Feng (2009).

Experimental top

Racemic clorprenaline was prepared by clorprenaline hydrochloride purchased from ShangHai Shengxin Medicine & Chemical Co., Ltd. ShangHai, China. Clorprenaline hydrochloride and NaOH in a molar ratio of 1:1 were mixed and dissolved in a methanol-water solution (1:1 v/v). The precipitate formed was filtered off, washed with water and dried. It was used without further purification. Racemic clorprenaline (3.0 g, 0.014 mol) was dissolved in ethanol (30 ml), then nitric acid was added to give pH of about 2. The resulting solution was concentrated and colorless crystals of (I) were obtained within one day at ambient temperature.

Refinement top

All H atoms were placed in calculated positions and allowed to ride on their parent atoms, with C—H = 0.93 (aromatic), 0.98 (methine), 0.97 (methylene), 0.96 Å (methyl), O—H = 0.82 Å and N—H = 0.90 Å, and with Uiso(H) = 1.2–1.5 times Ueq of the parent atoms.

Structure description top

A recent study reports the structure of bis{N-[2-(2-chlorophenyl)-2-hydroxyethyl]propan-2-aminium} oxalate (Tang, Xu, Zhang & Feng, 2009), which was synthesized by oxalic acid and clorprenaline (Tang, Xu, Zheng & Feng, 2009). Here using nitric acid instead of oxalic acid and following a similar synthetic procedure yields the title compound, (I).

In the molecular structure (Fig. 1), the Cl atom and the phenyl plane is almost planar with a deviation of 0.0118 Å. The dihedral angle between the plane formed by C1/C2/C8 and the benzene plane is 81.23 (18)°, which shows that the two planes are almost perpendicular. O—H···O and N—H···O hydrogen bonds are found in the crystal structure.

For related structures, see: Tang, Xu, Zhang & Feng (2009); Tang, Xu, Zheng & Feng (2009).

Computing details top

Data collection: PROCESS-AUTO (Rigaku/MSC, 2006); cell refinement: PROCESS-AUTO (Rigaku/MSC, 2006); data reduction: CrystalStructure (Rigaku/MSC, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels, showing 40% probability displacement ellipsoids.
N-[2-(2-Chlorophenyl)-2-hydroxyethyl]propan-2-aminium nitrate top
Crystal data top
C11H17ClNO+·NO3F(000) = 584
Mr = 276.72Dx = 1.320 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 7750 reflections
a = 11.9551 (6) Åθ = 3.1–27.4°
b = 10.4563 (5) ŵ = 0.28 mm1
c = 12.2968 (7) ÅT = 296 K
β = 115.109 (1)°Chunk, colorless
V = 1391.91 (12) Å30.38 × 0.36 × 0.22 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3179 independent reflections
Radiation source: rolling anode1833 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
Detector resolution: 10.00 pixels mm-1θmax = 27.4°, θmin = 3.1°
ω scansh = 1515
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1313
Tmin = 0.900, Tmax = 0.940l = 1515
13380 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.145 w = 1/[σ2(Fo2) + (0.0508P)2 + 0.8267P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
3179 reflectionsΔρmax = 0.37 e Å3
167 parametersΔρmin = 0.49 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.031 (2)
Crystal data top
C11H17ClNO+·NO3V = 1391.91 (12) Å3
Mr = 276.72Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.9551 (6) ŵ = 0.28 mm1
b = 10.4563 (5) ÅT = 296 K
c = 12.2968 (7) Å0.38 × 0.36 × 0.22 mm
β = 115.109 (1)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3179 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
1833 reflections with I > 2σ(I)
Tmin = 0.900, Tmax = 0.940Rint = 0.031
13380 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.145H-atom parameters constrained
S = 1.00Δρmax = 0.37 e Å3
3179 reflectionsΔρmin = 0.49 e Å3
167 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.50104 (7)0.95849 (7)0.13939 (6)0.1022 (3)
N20.28600 (14)0.45390 (15)0.33777 (14)0.0580 (4)
N10.37095 (12)0.76881 (13)0.40807 (13)0.0468 (4)
H2A0.37480.68320.41690.056*
H2B0.31280.78620.33390.056*
C80.49200 (14)0.81542 (17)0.41706 (16)0.0489 (4)
H8A0.55520.79900.49730.059*
H8B0.48770.90710.40390.059*
O10.53694 (12)0.61603 (12)0.34203 (12)0.0634 (4)
H1010.58120.59950.41260.095*
O20.28728 (13)0.33459 (13)0.33095 (13)0.0724 (5)
O30.23497 (15)0.52046 (14)0.24813 (13)0.0787 (5)
O40.33694 (14)0.50469 (14)0.43991 (12)0.0734 (4)
C90.33109 (16)0.82528 (19)0.49838 (17)0.0568 (5)
H80.33820.91860.49670.068*
C10.52762 (16)0.75053 (17)0.32594 (16)0.0521 (4)
H10.46150.76730.24610.063*
C20.64380 (17)0.81197 (18)0.33057 (17)0.0560 (5)
C70.6422 (2)0.9062 (2)0.25042 (18)0.0650 (5)
C30.75844 (18)0.7782 (2)0.4181 (2)0.0776 (7)
H30.76340.71550.47350.093*
C100.4135 (2)0.7788 (3)0.62253 (19)0.0801 (7)
H9A0.41500.68700.62320.096*
H9B0.38250.80890.67820.096*
H9C0.49570.81090.64550.096*
C60.7495 (2)0.9625 (2)0.2564 (2)0.0830 (6)
H60.74571.02430.20060.100*
C50.8610 (2)0.9267 (3)0.3447 (3)0.0923 (7)
H50.93330.96470.34960.111*
C110.19628 (19)0.7912 (3)0.4610 (2)0.0950 (9)
H10A0.14730.82550.38260.114*
H10B0.16900.82660.51760.114*
H10C0.18740.69990.45900.114*
C40.8659 (2)0.8349 (3)0.4258 (3)0.0942 (9)
H40.94160.81060.48610.113*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.1190 (5)0.0985 (5)0.0691 (3)0.0122 (4)0.0207 (3)0.0293 (3)
N20.0537 (8)0.0524 (9)0.0573 (9)0.0069 (7)0.0134 (7)0.0004 (7)
N10.0444 (7)0.0437 (7)0.0513 (7)0.0031 (6)0.0193 (6)0.0005 (6)
C80.0448 (8)0.0489 (9)0.0546 (9)0.0036 (7)0.0225 (7)0.0004 (7)
O10.0721 (8)0.0509 (7)0.0686 (8)0.0004 (6)0.0312 (6)0.0032 (6)
O20.0794 (9)0.0485 (7)0.0677 (8)0.0020 (7)0.0105 (7)0.0035 (6)
O30.0865 (10)0.0630 (8)0.0633 (8)0.0017 (8)0.0093 (7)0.0125 (7)
O40.0934 (10)0.0564 (8)0.0567 (8)0.0187 (7)0.0185 (7)0.0061 (6)
C90.0538 (9)0.0598 (11)0.0636 (10)0.0034 (8)0.0315 (8)0.0127 (9)
C10.0557 (9)0.0533 (10)0.0497 (9)0.0023 (8)0.0247 (7)0.0062 (8)
C20.0629 (9)0.0551 (10)0.0619 (10)0.0007 (8)0.0378 (8)0.0024 (8)
C70.0842 (12)0.0617 (12)0.0610 (10)0.0040 (10)0.0422 (9)0.0010 (9)
C30.0563 (10)0.0833 (15)0.0978 (15)0.0062 (11)0.0371 (10)0.0233 (12)
C100.0859 (13)0.1027 (18)0.0609 (11)0.0001 (13)0.0401 (10)0.0077 (11)
C60.1148 (14)0.0703 (14)0.0984 (13)0.0136 (13)0.0785 (11)0.0028 (11)
C50.0847 (12)0.0848 (16)0.1380 (19)0.0117 (13)0.0768 (13)0.0115 (15)
C110.0604 (11)0.130 (2)0.1072 (17)0.0126 (13)0.0480 (11)0.0340 (16)
C40.0587 (11)0.1000 (19)0.132 (2)0.0021 (13)0.0478 (13)0.0155 (16)
Geometric parameters (Å, º) top
Cl1—C71.748 (2)C1—H10.9800
N2—O31.225 (2)C2—C31.382 (3)
N2—O21.251 (2)C2—C71.388 (3)
N2—O41.258 (2)C7—C61.385 (3)
N1—C81.486 (2)C3—C41.381 (3)
N1—C91.503 (2)C3—H30.9300
N1—H2A0.9000C10—H9A0.9600
N1—H2B0.9000C10—H9B0.9600
C8—C11.517 (3)C10—H9C0.9600
C8—H8A0.9700C6—C51.366 (3)
C8—H8B0.9700C6—H60.9300
O1—C11.418 (2)C5—C41.368 (4)
O1—H1010.8200C5—H50.9300
C9—C101.504 (3)C11—H10A0.9600
C9—C111.519 (3)C11—H10B0.9600
C9—H80.9800C11—H10C0.9600
C1—C21.509 (3)C4—H40.9300
O3—N2—O2121.46 (16)C3—C2—C1120.90 (18)
O3—N2—O4120.26 (16)C7—C2—C1122.68 (17)
O2—N2—O4118.27 (16)C6—C7—C2122.1 (2)
C8—N1—C9114.86 (13)C6—C7—Cl1118.28 (17)
C8—N1—H2A108.6C2—C7—Cl1119.66 (16)
C9—N1—H2A108.6C4—C3—C2122.0 (2)
C8—N1—H2B108.6C4—C3—H3119.0
C9—N1—H2B108.6C2—C3—H3119.0
H2A—N1—H2B107.5C9—C10—H9A109.5
N1—C8—C1111.59 (14)C9—C10—H9B109.5
N1—C8—H8A109.3H9A—C10—H9B109.5
C1—C8—H8A109.3C9—C10—H9C109.5
N1—C8—H8B109.3H9A—C10—H9C109.5
C1—C8—H8B109.3H9B—C10—H9C109.5
H8A—C8—H8B108.0C5—C6—C7119.7 (2)
C1—O1—H101109.5C5—C6—H6120.2
N1—C9—C10110.28 (16)C7—C6—H6120.2
N1—C9—C11108.21 (16)C6—C5—C4119.8 (2)
C10—C9—C11112.7 (2)C6—C5—H5120.1
N1—C9—H8108.5C4—C5—H5120.1
C10—C9—H8108.5C9—C11—H10A109.5
C11—C9—H8108.5C9—C11—H10B109.5
O1—C1—C2113.60 (15)H10A—C11—H10B109.5
O1—C1—C8111.75 (15)C9—C11—H10C109.5
C2—C1—C8108.90 (15)H10A—C11—H10C109.5
O1—C1—H1107.4H10B—C11—H10C109.5
C2—C1—H1107.4C5—C4—C3120.0 (2)
C8—C1—H1107.4C5—C4—H4120.0
C3—C2—C7116.40 (19)C3—C4—H4120.0
C9—N1—C8—C1177.99 (14)C1—C2—C7—C6179.4 (2)
C8—N1—C9—C1068.4 (2)C3—C2—C7—Cl1178.09 (18)
C8—N1—C9—C11167.93 (18)C1—C2—C7—Cl10.5 (3)
N1—C8—C1—O159.77 (18)C7—C2—C3—C40.0 (4)
N1—C8—C1—C2173.93 (14)C1—C2—C3—C4178.7 (2)
O1—C1—C2—C344.5 (3)C2—C7—C6—C51.1 (4)
C8—C1—C2—C380.7 (2)Cl1—C7—C6—C5177.8 (2)
O1—C1—C2—C7136.94 (19)C7—C6—C5—C40.6 (4)
C8—C1—C2—C797.8 (2)C6—C5—C4—C30.2 (4)
C3—C2—C7—C60.8 (3)C2—C3—C4—C50.5 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H2A···O40.901.972.843 (2)163
N1—H2B···O2i0.901.932.8234 (19)170
O1—H101···O4ii0.821.982.7614 (19)158
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC11H17ClNO+·NO3
Mr276.72
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)11.9551 (6), 10.4563 (5), 12.2968 (7)
β (°) 115.109 (1)
V3)1391.91 (12)
Z4
Radiation typeMo Kα
µ (mm1)0.28
Crystal size (mm)0.38 × 0.36 × 0.22
Data collection
DiffractometerRigaku R-AXIS RAPID
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.900, 0.940
No. of measured, independent and
observed [I > 2σ(I)] reflections
13380, 3179, 1833
Rint0.031
(sin θ/λ)max1)0.648
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.145, 1.00
No. of reflections3179
No. of parameters167
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.37, 0.49

Computer programs: PROCESS-AUTO (Rigaku/MSC, 2006), CrystalStructure (Rigaku/MSC, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H2A···O40.901.972.843 (2)163.0
N1—H2B···O2i0.901.932.8234 (19)169.6
O1—H101···O4ii0.821.982.7614 (19)158.4
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1, y+1, z+1.
 

References

First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2006). PROCESS-AUTO. Rigaku/MSC. The Woodlands, Texas, USA.  Google Scholar
First citationRigaku/MSC (2007). CrystalStructure. Rigaku/MSC. The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTang, Z., Xu, M., Zhang, H.-C. & Feng, H. (2009). Acta Cryst. E65, o1670.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTang, Z., Xu, M., Zheng, G.-R. & Feng, H. (2009). Acta Cryst. E65, o1501.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds