organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4,4-Bis(1H-pyrrol-2-yl)penta­nol

aInstitute of Chemistry, University of Neuchâtel, rue Emile-Argand 11, 2009 Neuchâtel, Switzerland, and bInstitute of Physics, University of Neuchâtel, rue Emile-Argand 11, 2009 Neuchâtel, Switzerland
*Correspondence e-mail: reinhard.neier@unine.ch

(Received 15 December 2009; accepted 16 December 2009; online 16 January 2010)

The title achiral compound, C13H18N2O, crystallized in the chiral monoclinic space group P21. The pyrrole rings are inclined to one another by 62.30 (11)°, and the propanol chain is in an extended conformation. In the crystal, the two pyrrole NH groups are involved in inter­molecular N—H⋯O hydrogen bonds, leading to the formation of a helical arrangement propagating along the b axis. An inter­esting feature of the crystal structure is the absence of any conventional hydrogen bonds involving the hydr­oxy H atom. There is, however, a weak inter­molecular O—H⋯π inter­action involving one of the pyrrole rings.

Related literature

For substituted calix[4]pyrroles, see: Gale et al. (1998[Gale, P. A., Sessler, J. L. & Král, V. (1998). Chem. Commun. pp. 1-8.]); Sessler & Davis (2001[Sessler, J. L. & Davis, J. M. (2001). Acc. Chem. Res. 34, 989-997.]); Sessler et al. (2003[Sessler, J. L., Camiolo, S. & Gale, P. A. (2003). Coord. Chem. Rev. 240, 17-55.]). For the crystal structures of similar compounds, see: Warriner et al. (2003[Warriner, C. N., Gale, P. A., Light, M. E. & Hursthouse, M. B. (2003). Chem. Commun. pp. 1810-1811.]); Maeda et al. (2007[Maeda, H., Hasegawa, H. & Ueda, A. (2007). Chem. Commun. pp. 2726-2728.]); Sobral et al. (2003[Sobral, A. J. F. N., Rebanda, N. G. C. L., Da Silva, M., Lampreia, S. H., Silva, M. R., Beja, A. M., Paixão, J. A. & Rocha Gonsalves, A. M. d'A. (2003). Tetrahedron Lett. 44, 3971-3973.]). For details of hydrogen-bonding graph-set analysis, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • C13H18N2O

  • Mr = 218.29

  • Monoclinic, P 21

  • a = 8.4721 (15) Å

  • b = 8.2111 (9) Å

  • c = 8.7120 (15) Å

  • β = 101.530 (14)°

  • V = 593.82 (16) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 173 K

  • 0.45 × 0.45 × 0.40 mm

Data collection
  • Stoe IPDS-2 diffractometer

  • 6119 measured reflections

  • 1701 independent reflections

  • 1518 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.077

  • S = 0.97

  • 1701 reflections

  • 159 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.88 (2) 2.05 (2) 2.9238 (18) 174.3 (19)
N2—H2N⋯O1ii 0.90 (2) 2.06 (2) 2.9529 (18) 171.5 (19)
O1—H1OCg1iii 0.87 (3) 2.53 3.20 135
O1—H1OCg2iii 0.87 (3) 2.64 3.10 114
Symmetry codes: (i) x, y-1, z; (ii) [-x+1, y-{\script{1\over 2}}, -z+2]; (iii) x, y+1, z. Cg1 and Cg2 are the centroids of the C7=C8 bond and the N2/C5–C8 pyrrole ring, respectively.

Data collection: X-AREA (Stoe & Cie, 2009[Stoe & Cie (2009). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2009[Stoe & Cie (2009). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The title compound (systematic name: 4,4-di(1H-pyrrol-2-yl)pentan-1-ol) was prepared as a building block for the formation of substituted calix[4]pyrroles. The latter have been shown to form extremely interesting host–guest complexes with various anions (Gale et al., 1998; Sessler and Davis, 2001; Sessler et al., 2003).

The structure of the title compound is shown in Fig. 1, and the geometrical parameters are given in the Supplementary Information and the archived CIF. This achiral compound crystallized in the chiral monoclinic space group P21. The bond lengths and angles are similar to those observed in 5 similar 1,1-bis(2-pyrrolyl)ethane compounds in the Cambridge Crystal Structure Database (CSD, V5.30, last update Sep. 2009; Allen et al., 2002). These include the (3,4,5-tribromo-2-pyrrolyl) derivative (Warriner et al., 2003; AJARIM), the o-, m- and p-pyridyl derivaties (Maeda et al., 2007; CIGKIN, CIGKEJ, CIGKAF, respectively) and the phenyl derivative (Sobral et al., 2003; JADHUS), all of which crystallized as racemates.

In the title compound the pyrrole ring mean-planes are inclined to one another by 62.30 (11)°, and the propanol chain is in the extended conformation. In the 5 compounds located in the CSD this angle varies between 68.5 to 89.6 °.

In the crystal the molecules are linked by conventional N—H···N intermolecular hydrogen bonds leading to the formation of helical chains propagating along the b axis (Fig. 2 and Table 1). The basic unitary hydrogen bonding graph set can be described by an R23(16) ring, while the basic binary graph set is a C(8) chain. This gives an extended notation of C(8)[R23(16)] (Bernstein et al., 1995). A fuller hydrogen bonding graph set analysis can be obtained using the program Mercury (Macrea et al., 2006).

An O—H···π interaction is also observed in the crystal structure (Fig. 2 and Table 1). It can be considered either to involve the C7C8 bond (centroid = Cg1) with an O—H···π angle of ca 135°, or a weaker interaction involving the pyrrole ring (N2/C5—C8; centroid = Cg2), with an O—H···π angle of only ca 114° [these data were obtained using the program Mercury (Macrae et al., 2006)].

Related literature top

For substituted calix[4]pyrroles, see: Gale et al. (1998); Sessler & Davis (2001); Sessler et al. (2003). For the crystal structures of similar compounds, see: Warriner et al. (2003); Maeda et al. (2007); Sobral et al. (2003). For details of hydrogen-bonding graph-set analysis, see: Bernstein et al. (1995). For a description of the Cambridge Structural Database, see: Allen (2002).

Experimental top

A mixture of 3-acetylpropanol (10 ml, 98.6 mmol) and pyrrole (50 ml, 0.720 mol) were stirred for 5 min and then trifluoro acetic acid [TFA] (0.74 ml, 9.6 mmol, 0.097 equiv.) was added. The whole mixture was stirred foran additional 5 min and then quenched with aqueous NaOH (0.1 N, 30 ml). The mixture was extracted with CH2Cl2 (50 ml × 2) and the organic layer dried (Na2SO4). The solvent was removed in vacuo and the remaining oil crystallized with dichloromethane (20 ml). The colourless block-like crystals obtained were washed with 2-propanol [m.p. 372 K; Yield 14.1 g (65.3%)]. 1H NMR (CDCl3) δ 7.85 (bs, 2H, N—H), 6.63–6.61 (ddd, J = 2.7 Hz,2.7 Hz, 1.6 Hz, 2H, pyrrolic-H1–8), 6.15–6.13 (ddd, J = 3.3 Hz, 2.7 Hz, 1.6 Hz, 2H, pyrrolic-H2–7), 6.10–6.08 (ddd, J = 3.3 Hz, 1.6 Hz,1.6 Hz, 2H, pyrrolic-H3–6), 3.61–3.57 (td, J = 6 Hz, 5 Hz, 2H, –O—CH212), 2.07–2.03 (m, 2H, –CH210–), 1.59 (s, 3H, –CH313), 1.51–1.43 (m, 2H,-CH211–), 1.24–1.20 (t, J = 5 Hz, 1H, –OH); 13C NMR (CDCl3)δ 137.97 (C4–5), 117.15 (C1–5), 107.92 (C2–7),104.77 (C3–6), 63.26 (C12), 39.04 (C9), 37.35 (C10),28.01 (C11), 26.62 (C13). MS calcd. for C13H18N2O 218.14, found 217.13 (M—H+).

Refinement top

In the final cycles of refinement, in the absence of significant anomalous scattering effects, 1239 Friedel pairs were merged and Δf " set to zero. The OH and NH H-atoms, located in a difference electron-density map, were freely refined: O—H = 0.83 (3) Å; N—H = 0.88 (2) - 0.90 (2) Å. The C-bound H-atoms were included in calculated positions and treated as riding atoms: C—H = 0.95, 0.99 and 0.98 Å for CH, CH2 and CH3 H-atoms, respectively, with Uiso(H) = k × Ueq(C), where k = 1.2 for CH and CH2 H-atoms, and 1.5 for CH3 H-atoms.

Structure description top

The title compound (systematic name: 4,4-di(1H-pyrrol-2-yl)pentan-1-ol) was prepared as a building block for the formation of substituted calix[4]pyrroles. The latter have been shown to form extremely interesting host–guest complexes with various anions (Gale et al., 1998; Sessler and Davis, 2001; Sessler et al., 2003).

The structure of the title compound is shown in Fig. 1, and the geometrical parameters are given in the Supplementary Information and the archived CIF. This achiral compound crystallized in the chiral monoclinic space group P21. The bond lengths and angles are similar to those observed in 5 similar 1,1-bis(2-pyrrolyl)ethane compounds in the Cambridge Crystal Structure Database (CSD, V5.30, last update Sep. 2009; Allen et al., 2002). These include the (3,4,5-tribromo-2-pyrrolyl) derivative (Warriner et al., 2003; AJARIM), the o-, m- and p-pyridyl derivaties (Maeda et al., 2007; CIGKIN, CIGKEJ, CIGKAF, respectively) and the phenyl derivative (Sobral et al., 2003; JADHUS), all of which crystallized as racemates.

In the title compound the pyrrole ring mean-planes are inclined to one another by 62.30 (11)°, and the propanol chain is in the extended conformation. In the 5 compounds located in the CSD this angle varies between 68.5 to 89.6 °.

In the crystal the molecules are linked by conventional N—H···N intermolecular hydrogen bonds leading to the formation of helical chains propagating along the b axis (Fig. 2 and Table 1). The basic unitary hydrogen bonding graph set can be described by an R23(16) ring, while the basic binary graph set is a C(8) chain. This gives an extended notation of C(8)[R23(16)] (Bernstein et al., 1995). A fuller hydrogen bonding graph set analysis can be obtained using the program Mercury (Macrea et al., 2006).

An O—H···π interaction is also observed in the crystal structure (Fig. 2 and Table 1). It can be considered either to involve the C7C8 bond (centroid = Cg1) with an O—H···π angle of ca 135°, or a weaker interaction involving the pyrrole ring (N2/C5—C8; centroid = Cg2), with an O—H···π angle of only ca 114° [these data were obtained using the program Mercury (Macrae et al., 2006)].

For substituted calix[4]pyrroles, see: Gale et al. (1998); Sessler & Davis (2001); Sessler et al. (2003). For the crystal structures of similar compounds, see: Warriner et al. (2003); Maeda et al. (2007); Sobral et al. (2003). For details of hydrogen-bonding graph-set analysis, see: Bernstein et al. (1995). For a description of the Cambridge Structural Database, see: Allen (2002).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2009); cell refinement: X-AREA (Stoe & Cie, 2009); data reduction: X-RED32 (Stoe & Cie, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of the title compound, with the displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. A view, along the c axis, of the crystal packing of the title compound. The N—H···O hydrogen bonds are shown as dotted cyan lines and the O—H···π interactions as dotted black lines [for clarity these interactions are shown for only one of the helices; see Table 1 for details].
4,4-Bis(1H-pyrrol-2-yl)pentanol top
Crystal data top
C13H18N2OF(000) = 236
Mr = 218.29Dx = 1.221 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 5671 reflections
a = 8.4721 (15) Åθ = 2.4–29.6°
b = 8.2111 (9) ŵ = 0.08 mm1
c = 8.7120 (15) ÅT = 173 K
β = 101.530 (14)°Block, colourless
V = 593.82 (16) Å30.45 × 0.45 × 0.40 mm
Z = 2
Data collection top
Stoe IPDS-2
diffractometer
1518 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.032
Graphite monochromatorθmax = 29.2°, θmin = 2.4°
φ ans ω scansh = 1011
6119 measured reflectionsk = 1111
1701 independent reflectionsl = 1111
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.030H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.077 w = 1/[σ2(Fo2) + (0.0571P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.97(Δ/σ)max < 0.001
1701 reflectionsΔρmax = 0.19 e Å3
159 parametersΔρmin = 0.16 e Å3
1 restraintExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.108 (11)
Crystal data top
C13H18N2OV = 593.82 (16) Å3
Mr = 218.29Z = 2
Monoclinic, P21Mo Kα radiation
a = 8.4721 (15) ŵ = 0.08 mm1
b = 8.2111 (9) ÅT = 173 K
c = 8.7120 (15) Å0.45 × 0.45 × 0.40 mm
β = 101.530 (14)°
Data collection top
Stoe IPDS-2
diffractometer
1518 reflections with I > 2σ(I)
6119 measured reflectionsRint = 0.032
1701 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0301 restraint
wR(F2) = 0.077H atoms treated by a mixture of independent and constrained refinement
S = 0.97Δρmax = 0.19 e Å3
1701 reflectionsΔρmin = 0.16 e Å3
159 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. In the final cycles of refinement, in the absence of significant anomalous scattering effects, 1239 Friedel pairs were merged and Δf " set to zero. The OH and NH hydrogen atoms were located in difference electron-density maps and were freely refined. The C-bound H-atoms were included in calculated positions and treated as riding.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.41371 (13)1.28786 (14)0.88057 (13)0.0300 (3)
N10.24737 (14)0.55996 (17)0.99568 (13)0.0244 (3)
N20.48148 (15)0.66563 (17)0.79634 (16)0.0281 (3)
C10.18516 (15)0.69959 (18)0.92203 (15)0.0220 (3)
C20.12554 (18)0.7921 (2)1.02911 (17)0.0293 (4)
C30.15673 (18)0.7047 (2)1.17356 (17)0.0318 (4)
C40.23207 (17)0.5631 (2)1.14900 (16)0.0286 (4)
C50.33030 (17)0.64998 (19)0.70462 (15)0.0248 (4)
C60.3443 (2)0.5545 (3)0.57848 (18)0.0409 (5)
C70.5085 (3)0.5108 (3)0.5947 (2)0.0518 (7)
C80.5900 (2)0.5804 (3)0.7302 (2)0.0419 (6)
C90.18427 (16)0.72822 (17)0.74921 (15)0.0221 (3)
C100.17922 (17)0.91270 (19)0.71418 (16)0.0244 (4)
C110.32247 (16)1.01255 (19)0.79998 (16)0.0248 (4)
C120.2876 (2)1.1921 (2)0.7865 (2)0.0398 (5)
C130.03085 (19)0.6525 (2)0.65082 (18)0.0349 (4)
H1N0.297 (2)0.482 (3)0.955 (2)0.037 (5)*
H1O0.485 (4)1.307 (4)0.823 (3)0.073 (9)*
H20.073500.894801.010500.0350*
H2N0.504 (2)0.709 (3)0.893 (2)0.034 (5)*
H30.129900.738901.269300.0380*
H40.267600.481101.225000.0340*
H60.259100.523300.495300.0490*
H70.553600.445400.524500.0620*
H80.702300.571200.771300.0500*
H10A0.171200.927600.600100.0290*
H10B0.079800.958000.740900.0290*
H11A0.347100.981100.911900.0300*
H11B0.418300.988100.755100.0300*
H12A0.274801.225400.675500.0480*
H12B0.184701.214300.820100.0480*
H13A0.064100.701300.680900.0520*
H13B0.031000.534800.669400.0520*
H13C0.027800.673300.539500.0520*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0322 (5)0.0208 (6)0.0362 (5)0.0021 (4)0.0048 (4)0.0009 (4)
N10.0277 (6)0.0221 (6)0.0244 (5)0.0005 (5)0.0073 (4)0.0010 (5)
N20.0256 (5)0.0262 (7)0.0345 (6)0.0036 (5)0.0106 (5)0.0033 (5)
C10.0204 (5)0.0215 (7)0.0239 (6)0.0020 (5)0.0043 (4)0.0001 (5)
C20.0302 (7)0.0289 (8)0.0307 (7)0.0036 (6)0.0108 (5)0.0001 (6)
C30.0331 (7)0.0384 (9)0.0262 (6)0.0018 (7)0.0118 (5)0.0011 (6)
C40.0299 (7)0.0320 (8)0.0249 (6)0.0035 (6)0.0078 (5)0.0046 (6)
C50.0321 (7)0.0208 (7)0.0224 (6)0.0019 (6)0.0073 (5)0.0027 (5)
C60.0604 (11)0.0407 (10)0.0228 (6)0.0155 (9)0.0113 (6)0.0012 (6)
C70.0729 (13)0.0529 (13)0.0382 (9)0.0297 (11)0.0318 (9)0.0085 (9)
C80.0396 (8)0.0425 (11)0.0505 (10)0.0156 (8)0.0257 (7)0.0153 (8)
C90.0231 (6)0.0217 (7)0.0206 (5)0.0018 (5)0.0025 (4)0.0003 (5)
C100.0245 (6)0.0230 (7)0.0243 (6)0.0015 (5)0.0016 (5)0.0018 (5)
C110.0241 (6)0.0200 (7)0.0290 (6)0.0013 (5)0.0025 (5)0.0026 (5)
C120.0364 (8)0.0217 (9)0.0537 (10)0.0023 (7)0.0094 (7)0.0004 (7)
C130.0336 (7)0.0372 (9)0.0303 (7)0.0103 (7)0.0021 (5)0.0021 (7)
Geometric parameters (Å, º) top
O1—C121.443 (2)C10—C111.530 (2)
O1—H1O0.87 (3)C11—C121.504 (2)
N1—C11.367 (2)C2—H20.9500
N1—C41.3678 (18)C3—H30.9500
N2—C81.371 (2)C4—H40.9500
N2—C51.3735 (19)C6—H60.9500
N1—H1N0.88 (2)C7—H70.9500
N2—H2N0.899 (19)C8—H80.9500
C1—C91.5224 (18)C10—H10A0.9900
C1—C21.375 (2)C10—H10B0.9900
C2—C31.427 (2)C11—H11A0.9900
C3—C41.364 (2)C11—H11B0.9900
C5—C61.374 (2)C12—H12A0.9900
C5—C91.512 (2)C12—H12B0.9900
C6—C71.416 (3)C13—H13A0.9800
C7—C81.368 (3)C13—H13B0.9800
C9—C101.544 (2)C13—H13C0.9800
C9—C131.538 (2)
C12—O1—H1O106.9 (19)C4—C3—H3126.00
C1—N1—C4109.86 (13)N1—C4—H4126.00
C5—N2—C8109.48 (13)C3—C4—H4126.00
C4—N1—H1N123.7 (13)C5—C6—H6126.00
C1—N1—H1N126.3 (13)C7—C6—H6126.00
C5—N2—H2N125.5 (11)C6—C7—H7126.00
C8—N2—H2N124.2 (12)C8—C7—H7126.00
N1—C1—C2107.72 (12)N2—C8—H8126.00
N1—C1—C9121.26 (12)C7—C8—H8126.00
C2—C1—C9130.98 (13)C9—C10—H10A108.00
C1—C2—C3106.99 (14)C9—C10—H10B108.00
C2—C3—C4107.48 (13)C11—C10—H10A108.00
N1—C4—C3107.94 (13)C11—C10—H10B108.00
N2—C5—C6107.40 (14)H10A—C10—H10B107.00
N2—C5—C9121.77 (12)C10—C11—H11A109.00
C6—C5—C9130.82 (13)C10—C11—H11B109.00
C5—C6—C7107.75 (15)C12—C11—H11A109.00
C6—C7—C8107.25 (18)C12—C11—H11B109.00
N2—C8—C7108.11 (17)H11A—C11—H11B108.00
C1—C9—C10109.96 (11)O1—C12—H12A109.00
C1—C9—C5110.24 (11)O1—C12—H12B109.00
C5—C9—C10110.97 (12)C11—C12—H12A109.00
C5—C9—C13109.20 (12)C11—C12—H12B109.00
C1—C9—C13108.99 (11)H12A—C12—H12B108.00
C10—C9—C13107.43 (11)C9—C13—H13A109.00
C9—C10—C11116.18 (12)C9—C13—H13B109.00
C10—C11—C12111.28 (12)C9—C13—H13C109.00
O1—C12—C11112.24 (13)H13A—C13—H13B109.00
C1—C2—H2127.00H13A—C13—H13C109.00
C3—C2—H2126.00H13B—C13—H13C110.00
C2—C3—H3126.00
C4—N1—C1—C21.41 (16)N2—C5—C6—C70.2 (2)
C4—N1—C1—C9179.27 (12)C9—C5—C6—C7178.96 (17)
C1—N1—C4—C31.08 (17)N2—C5—C9—C145.13 (18)
C8—N2—C5—C60.4 (2)N2—C5—C9—C1076.94 (16)
C8—N2—C5—C9178.81 (15)N2—C5—C9—C13164.83 (14)
C5—N2—C8—C70.5 (2)C6—C5—C9—C1133.92 (18)
N1—C1—C2—C31.17 (17)C6—C5—C9—C10104.0 (2)
C9—C1—C2—C3178.74 (14)C6—C5—C9—C1314.2 (2)
N1—C1—C9—C532.86 (18)C5—C6—C7—C80.1 (2)
N1—C1—C9—C10155.52 (13)C6—C7—C8—N20.4 (3)
N1—C1—C9—C1386.97 (15)C1—C9—C10—C1161.87 (15)
C2—C1—C9—C5149.85 (15)C5—C9—C10—C1160.36 (15)
C2—C1—C9—C1027.2 (2)C13—C9—C10—C11179.65 (12)
C2—C1—C9—C1390.32 (18)C9—C10—C11—C12166.90 (12)
C1—C2—C3—C40.53 (18)C10—C11—C12—O1173.65 (12)
C2—C3—C4—N10.33 (17)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C7C8 bond and the N2/C5–C8 pyrrole ring, respectively.
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.88 (2)2.05 (2)2.9238 (18)174.3 (19)
N2—H2N···O1ii0.90 (2)2.06 (2)2.9529 (18)171.5 (19)
O1—H1O···Cg1iii0.87 (3)2.533.20135
O1—H1O···Cg2iii0.87 (3)2.643.10114
Symmetry codes: (i) x, y1, z; (ii) x+1, y1/2, z+2; (iii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC13H18N2O
Mr218.29
Crystal system, space groupMonoclinic, P21
Temperature (K)173
a, b, c (Å)8.4721 (15), 8.2111 (9), 8.7120 (15)
β (°) 101.530 (14)
V3)593.82 (16)
Z2
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.45 × 0.45 × 0.40
Data collection
DiffractometerStoe IPDS2
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
6119, 1701, 1518
Rint0.032
(sin θ/λ)max1)0.686
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.077, 0.97
No. of reflections1701
No. of parameters159
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.19, 0.16

Computer programs: X-AREA (Stoe & Cie, 2009), X-RED32 (Stoe & Cie, 2009), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C7C8 bond and the N2/C5–C8 pyrrole ring, respectively.
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.88 (2)2.05 (2)2.9238 (18)174.3 (19)
N2—H2N···O1ii0.90 (2)2.06 (2)2.9529 (18)171.5 (19)
O1—H1O···Cg1iii0.87 (3)2.533.20135
O1—H1O···Cg2iii0.87 (3)2.643.10114
Symmetry codes: (i) x, y1, z; (ii) x+1, y1/2, z+2; (iii) x, y+1, z.
 

Acknowledgements

HSE is grateful to the XRD Application LAB, Microsystems Technology Division, Swiss Center for Electronics and Microtechnology, Neuchâtel, for access to the X-ray diffraction equipment.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGale, P. A., Sessler, J. L. & Král, V. (1998). Chem. Commun. pp. 1–8.  Web of Science CrossRef Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMaeda, H., Hasegawa, H. & Ueda, A. (2007). Chem. Commun. pp. 2726–2728.  Web of Science CSD CrossRef Google Scholar
First citationSessler, J. L., Camiolo, S. & Gale, P. A. (2003). Coord. Chem. Rev. 240, 17–55.  Web of Science CrossRef CAS Google Scholar
First citationSessler, J. L. & Davis, J. M. (2001). Acc. Chem. Res. 34, 989–997.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSobral, A. J. F. N., Rebanda, N. G. C. L., Da Silva, M., Lampreia, S. H., Silva, M. R., Beja, A. M., Paixão, J. A. & Rocha Gonsalves, A. M. d'A. (2003). Tetrahedron Lett. 44, 3971–3973.  Web of Science CSD CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2009). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar
First citationWarriner, C. N., Gale, P. A., Light, M. E. & Hursthouse, M. B. (2003). Chem. Commun. pp. 1810–1811.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds