organic compounds
2,2′-(Propane-2,2-diyl)bis(1H-pyrrole)
aInstitute of Chemistry, University of Neuchâtel, rue Emile-Argand 11, 2009 Neuchâtel, Switzerland, and bInstitute of Physics, University of Neuchâtel, rue Emile-Argand 11, 2009 Neuchâtel, Switzerland
*Correspondence e-mail: reinhard.neier@unine.ch
The title compound, C11H14N2, crystallized with two independent molecules (A and B) in the The two molecules differ only slightly, with the pyrrole rings being inclined to one another at a dihedral angle of 87.67 (8)° in molecule A and 88.09 (7)° in molecule B. In the crystal, there are no classical hydrogen bonds, but the two pyrrole NH groups of one molecule are involved in N—H⋯π interactions with the pyrrole rings of the other molecule. In this manner, a compact box-like arrangement of the two independent molecules is formed.
Related literature
For substituted calix[4]pyrroles, see: Gale et al. (1998); Sessler & Davis (2001); Sessler et al. (2003). For the synthesis and of meso-diethyl-bis(2-pyrrolyl)methane, see: Sobral et al. (2003). For intermolecular interactions involving aromatic rings in biological systems, see: Meyer et al. (2003). For a spectroscopic analysis of N—H⋯π interactions in pyrroles, see: Dauster et al. (2008).
Experimental
Crystal data
|
Data collection
|
Refinement
|
Data collection: X-AREA (Stoe & Cie, 2009); cell X-AREA; data reduction: X-RED32 (Stoe & Cie, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).
Supporting information
https://doi.org/10.1107/S1600536809054701/is2506sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536809054701/is2506Isup2.hkl
A mixture of acetone (4.21 ml, 57.4 mmol) and pyrrole (31.72 ml, 0.459 mol, 8 equiv.) were stirred for 5 min and then trifluoroactetic acid (TFA: 0.44 ml, 2.53 mmol, 0.1 equiv) was added. The mixture stirred for an additional 5 min and then quenched with aqueous NaOH (0.1 N, 30 ml). It was then extracted with CH2Cl2 (50 ml × 2) and the organic layer dried (Na2SO4). The solvent was removed in vacuo and the remaining oil (82% pure in GC) was purified by flash δ 7.72 (bs, 2H, N—H), 6.62–6.60 (m, 2H, pyrrolic-H1), 6.15–6.13 (m, 2H, pyrrolic-H2), 6.11–6.09 (m, 2H, pyrrolic-H3), 1.59 (s, 6H, –CH3); 13CNMR (CDCl3): δ 139.24 (C4), 117.19 (C1), 107.91 (C2), 103.87 (C3), 35.52(C5), 29.46 (C6).
on silica (eluent: cyclohexane/ethyl acetate; v:v = 4:1) to give colourless block-like crystals of the title compound (yield 6.8 g, 68%). 1H NMR (CDCl3):The NH H-atoms were located in a difference electron-density map and were freely refined: N—H = 0.86 (2)–0.88 (2) Å. The C-bound H-atoms were included in calculated positions and treated as riding atoms: C—H = 0.95 and 0.99 Å for CH and CH3 H-atoms, respectively, with Uiso(H) = k × Ueq(C), where k = 1.2 for CH H-atoms, and 1.5 for CH3 H-atoms.
The title compound was prepared as a building block for the formation of substituted calix[4]pyrroles. The latter have been shown to form extremely interesting host–guest complexes with various anions (Gale et al., 1998; Sessler & Davis, 2001; Sessler et al., 2003).
The structure of the title compound is shown in Fig. 1, and the geometrical parameters are given in the Supplementary Information and the archived 1 with two independent molecules (A and B) in the The bond lengths and angles are similar to those observed in the diethyl analogue (Sobral et al., 2003), which also crystallized with two independent molecules, but in the non-centrosymetric monoclinic C2.
The compound crystallized in the centrosymmetric triclinic PIn the title compound the quateranry centers, C9 in A and C29 in B, impose a twist to the molecules with the pyrrole ring mean-planes being almost perpendicular to one another; 87.67 (8) ° in molecule A and 88.09 (7)° in molecule B. This is similar to the situation in the diethyl analogue where the two dihedral angles are 86.5 (2) and 86.7 (2) °.
N—H···π interactions are extremely important in biological systems and this aspect as been reviewed by (Meyer et al., 2003). The spectroscopic aspects of the N—H···π interactions of the pyrrole dimer have also been studied recently by (Dauster et al., 2008). In the crystal of the title compound the two independent molecules are linked by N—H···π interactions involving the pyrrole NH H-atoms of molecule A with the pyrrole rings of molecule B, and visa-versa (Table 1). This leads to the formation of a compact box-like arrangement of the two molecules, as shown in Fig. 2. Again this arrangement is similar to that observed in the crystal of the diethyl analogue.
For substituted calix[4]pyrroles, see: Gale et al. (1998); Sessler & Davis (2001); Sessler et al. (2003). For the synthesis and π interactions in pyrroles, see: Dauster et al. (2008).
of meso-diethyl-bis(2-pyrrolyl)methane, see: Sobral et al. (2003). For intermolecular interactions involving aromatic rings in biological systems, see: Meyer et al. (2003). For a spectroscopic analysis of N—H···Data collection: X-AREA (Stoe & Cie, 2009); cell
X-AREA (Stoe & Cie, 2009); data reduction: X-RED32 (Stoe & Cie, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).Fig. 1. A view of the molecular structure of the two independent molecules (A and B) of the title compound, with the displacement ellipsoids drawn at the 50% probability level. | |
Fig. 2. A view, along the a axis, of the crystal packing of the title compound. The N—H···π interactions are shown as dotted black lines for one of the box-like arrangements of the two independent molecules (see Table 1 for details; C-bound H-atoms have been omitted for clarity). |
C11H14N2 | Z = 4 |
Mr = 174.24 | F(000) = 376 |
Triclinic, P1 | Dx = 1.159 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 8.4554 (8) Å | Cell parameters from 10442 reflections |
b = 9.2001 (8) Å | θ = 1.6–29.5° |
c = 13.2274 (11) Å | µ = 0.07 mm−1 |
α = 99.802 (7)° | T = 173 K |
β = 95.321 (7)° | Block, colourless |
γ = 97.328 (7)° | 0.40 × 0.34 × 0.28 mm |
V = 998.74 (15) Å3 |
Stoe IPDS-2 diffractometer | 3816 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.046 |
Graphite monochromator | θmax = 29.2°, θmin = 1.6° |
φ and ω scans | h = −11→11 |
15270 measured reflections | k = −12→12 |
5385 independent reflections | l = −18→18 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.045 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.106 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.02 | w = 1/[σ2(Fo2) + (0.0549P)2 + 0.0012P] where P = (Fo2 + 2Fc2)/3 |
5385 reflections | (Δ/σ)max < 0.001 |
255 parameters | Δρmax = 0.25 e Å−3 |
0 restraints | Δρmin = −0.21 e Å−3 |
C11H14N2 | γ = 97.328 (7)° |
Mr = 174.24 | V = 998.74 (15) Å3 |
Triclinic, P1 | Z = 4 |
a = 8.4554 (8) Å | Mo Kα radiation |
b = 9.2001 (8) Å | µ = 0.07 mm−1 |
c = 13.2274 (11) Å | T = 173 K |
α = 99.802 (7)° | 0.40 × 0.34 × 0.28 mm |
β = 95.321 (7)° |
Stoe IPDS-2 diffractometer | 3816 reflections with I > 2σ(I) |
15270 measured reflections | Rint = 0.046 |
5385 independent reflections |
R[F2 > 2σ(F2)] = 0.045 | 0 restraints |
wR(F2) = 0.106 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.02 | Δρmax = 0.25 e Å−3 |
5385 reflections | Δρmin = −0.21 e Å−3 |
255 parameters |
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.12135 (12) | 0.25140 (11) | 0.31284 (8) | 0.0249 (3) | |
N2 | 0.40689 (12) | 0.01811 (11) | 0.24234 (8) | 0.0252 (3) | |
C1 | 0.13663 (14) | 0.38021 (14) | 0.38492 (10) | 0.0312 (4) | |
C2 | 0.17507 (15) | 0.34619 (16) | 0.47962 (10) | 0.0348 (4) | |
C3 | 0.18351 (15) | 0.19174 (16) | 0.46471 (9) | 0.0311 (4) | |
C4 | 0.14934 (13) | 0.13454 (13) | 0.36055 (9) | 0.0234 (3) | |
C5 | 0.24635 (14) | −0.03734 (12) | 0.22005 (9) | 0.0226 (3) | |
C6 | 0.22365 (16) | −0.10944 (14) | 0.11865 (9) | 0.0305 (4) | |
C7 | 0.37369 (18) | −0.09563 (15) | 0.07953 (10) | 0.0358 (4) | |
C8 | 0.48462 (16) | −0.01599 (14) | 0.15732 (10) | 0.0314 (4) | |
C9 | 0.13255 (15) | −0.02364 (14) | 0.30167 (9) | 0.0277 (3) | |
C10 | −0.04155 (17) | −0.07156 (17) | 0.24923 (13) | 0.0470 (5) | |
C11 | 0.1699 (2) | −0.12827 (17) | 0.37732 (13) | 0.0479 (5) | |
N21 | 0.51399 (12) | 0.37264 (11) | 0.36601 (7) | 0.0232 (3) | |
N22 | 0.32603 (13) | 0.28069 (11) | 0.11006 (7) | 0.0253 (3) | |
C21 | 0.59997 (14) | 0.28840 (14) | 0.42014 (9) | 0.0264 (3) | |
C22 | 0.73108 (15) | 0.26137 (15) | 0.37047 (10) | 0.0308 (4) | |
C23 | 0.72320 (14) | 0.33192 (14) | 0.28313 (9) | 0.0281 (4) | |
C24 | 0.58798 (13) | 0.40056 (13) | 0.28184 (8) | 0.0225 (3) | |
C25 | 0.35755 (14) | 0.42785 (13) | 0.15697 (8) | 0.0229 (3) | |
C26 | 0.21946 (16) | 0.48825 (14) | 0.13876 (9) | 0.0298 (4) | |
C27 | 0.10133 (16) | 0.37382 (15) | 0.07998 (10) | 0.0340 (4) | |
C28 | 0.17016 (15) | 0.24721 (14) | 0.06366 (9) | 0.0307 (3) | |
C29 | 0.52308 (14) | 0.49773 (13) | 0.21071 (9) | 0.0251 (3) | |
C30 | 0.51173 (19) | 0.65164 (14) | 0.27414 (11) | 0.0381 (4) | |
C31 | 0.63878 (17) | 0.51784 (17) | 0.12898 (10) | 0.0381 (4) | |
H1N | 0.1032 (19) | 0.2477 (18) | 0.2475 (13) | 0.040 (4)* | |
H2N | 0.4531 (19) | 0.0726 (18) | 0.2990 (12) | 0.040 (4)* | |
H1 | 0.12280 | 0.47620 | 0.37120 | 0.0370* | |
H2 | 0.19290 | 0.41380 | 0.54380 | 0.0420* | |
H3 | 0.20840 | 0.13690 | 0.51730 | 0.0370* | |
H6 | 0.12470 | −0.15960 | 0.08150 | 0.0370* | |
H7 | 0.39370 | −0.13470 | 0.01140 | 0.0430* | |
H8 | 0.59580 | 0.01080 | 0.15310 | 0.0380* | |
H10A | −0.11590 | −0.06340 | 0.30180 | 0.0710* | |
H10B | −0.05400 | −0.17510 | 0.21260 | 0.0710* | |
H10C | −0.06530 | −0.00660 | 0.20000 | 0.0710* | |
H11A | 0.09550 | −0.12180 | 0.43000 | 0.0720* | |
H11B | 0.28040 | −0.09850 | 0.41070 | 0.0720* | |
H11C | 0.15750 | −0.23100 | 0.33940 | 0.0720* | |
H21N | 0.4231 (19) | 0.4002 (16) | 0.3827 (11) | 0.031 (4)* | |
H22N | 0.3894 (19) | 0.2146 (18) | 0.1123 (11) | 0.039 (4)* | |
H21 | 0.57330 | 0.25470 | 0.48130 | 0.0320* | |
H22 | 0.81210 | 0.20590 | 0.39070 | 0.0370* | |
H23 | 0.79840 | 0.33180 | 0.23400 | 0.0340* | |
H26 | 0.20540 | 0.58890 | 0.16150 | 0.0360* | |
H27 | −0.00570 | 0.38380 | 0.05650 | 0.0410* | |
H28 | 0.11950 | 0.15250 | 0.02670 | 0.0370* | |
H30A | 0.47170 | 0.71520 | 0.22810 | 0.0570* | |
H30B | 0.61830 | 0.69770 | 0.30870 | 0.0570* | |
H30C | 0.43790 | 0.64010 | 0.32610 | 0.0570* | |
H31A | 0.64370 | 0.42070 | 0.08640 | 0.0570* | |
H31B | 0.74620 | 0.56090 | 0.16360 | 0.0570* | |
H31C | 0.60000 | 0.58470 | 0.08510 | 0.0570* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0216 (5) | 0.0271 (5) | 0.0262 (5) | 0.0050 (4) | 0.0023 (4) | 0.0045 (4) |
N2 | 0.0249 (5) | 0.0242 (5) | 0.0266 (5) | 0.0033 (4) | 0.0039 (4) | 0.0051 (4) |
C1 | 0.0204 (6) | 0.0265 (6) | 0.0442 (7) | 0.0037 (5) | 0.0068 (5) | −0.0019 (5) |
C2 | 0.0263 (6) | 0.0400 (7) | 0.0321 (6) | −0.0005 (5) | 0.0080 (5) | −0.0090 (5) |
C3 | 0.0269 (6) | 0.0430 (8) | 0.0231 (6) | 0.0032 (5) | 0.0050 (4) | 0.0058 (5) |
C4 | 0.0187 (5) | 0.0285 (6) | 0.0244 (5) | 0.0045 (4) | 0.0055 (4) | 0.0068 (4) |
C5 | 0.0244 (5) | 0.0184 (5) | 0.0258 (5) | 0.0029 (4) | 0.0035 (4) | 0.0059 (4) |
C6 | 0.0395 (7) | 0.0234 (6) | 0.0267 (6) | 0.0030 (5) | 0.0002 (5) | 0.0024 (5) |
C7 | 0.0553 (9) | 0.0276 (7) | 0.0283 (6) | 0.0115 (6) | 0.0169 (6) | 0.0051 (5) |
C8 | 0.0332 (7) | 0.0269 (6) | 0.0402 (7) | 0.0104 (5) | 0.0174 (5) | 0.0116 (5) |
C9 | 0.0270 (6) | 0.0264 (6) | 0.0312 (6) | 0.0027 (5) | 0.0094 (5) | 0.0071 (5) |
C10 | 0.0282 (7) | 0.0395 (8) | 0.0639 (10) | −0.0074 (6) | 0.0111 (6) | −0.0107 (7) |
C11 | 0.0672 (11) | 0.0390 (8) | 0.0518 (9) | 0.0195 (7) | 0.0325 (8) | 0.0256 (7) |
N21 | 0.0186 (5) | 0.0288 (5) | 0.0227 (5) | 0.0038 (4) | 0.0016 (4) | 0.0060 (4) |
N22 | 0.0289 (5) | 0.0225 (5) | 0.0239 (5) | 0.0058 (4) | −0.0029 (4) | 0.0043 (4) |
C21 | 0.0248 (6) | 0.0302 (6) | 0.0236 (5) | 0.0013 (5) | −0.0040 (4) | 0.0087 (5) |
C22 | 0.0238 (6) | 0.0332 (7) | 0.0360 (7) | 0.0079 (5) | −0.0029 (5) | 0.0085 (5) |
C23 | 0.0211 (6) | 0.0336 (7) | 0.0292 (6) | 0.0037 (5) | 0.0037 (4) | 0.0047 (5) |
C24 | 0.0211 (5) | 0.0237 (6) | 0.0209 (5) | 0.0000 (4) | −0.0003 (4) | 0.0034 (4) |
C25 | 0.0283 (6) | 0.0221 (6) | 0.0186 (5) | 0.0039 (4) | 0.0003 (4) | 0.0055 (4) |
C26 | 0.0349 (7) | 0.0250 (6) | 0.0308 (6) | 0.0094 (5) | −0.0012 (5) | 0.0074 (5) |
C27 | 0.0289 (6) | 0.0382 (7) | 0.0347 (7) | 0.0056 (5) | −0.0074 (5) | 0.0115 (6) |
C28 | 0.0317 (6) | 0.0303 (6) | 0.0267 (6) | −0.0010 (5) | −0.0080 (5) | 0.0063 (5) |
C29 | 0.0275 (6) | 0.0242 (6) | 0.0223 (5) | 0.0002 (4) | −0.0014 (4) | 0.0057 (4) |
C30 | 0.0508 (8) | 0.0234 (6) | 0.0354 (7) | 0.0030 (6) | −0.0115 (6) | 0.0029 (5) |
C31 | 0.0351 (7) | 0.0476 (8) | 0.0315 (6) | −0.0054 (6) | 0.0023 (5) | 0.0163 (6) |
N1—C1 | 1.3724 (17) | C10—H10C | 0.9800 |
N1—C4 | 1.3705 (16) | C10—H10B | 0.9800 |
N2—C5 | 1.3739 (16) | C10—H10A | 0.9800 |
N2—C8 | 1.3655 (17) | C11—H11B | 0.9800 |
N1—H1N | 0.858 (17) | C11—H11A | 0.9800 |
N2—H2N | 0.856 (16) | C11—H11C | 0.9800 |
N21—C21 | 1.3704 (16) | C21—C22 | 1.3683 (18) |
N21—C24 | 1.3720 (14) | C22—C23 | 1.4186 (18) |
N22—C25 | 1.3712 (15) | C23—C24 | 1.3750 (17) |
N22—C28 | 1.3750 (17) | C24—C29 | 1.5170 (16) |
N21—H21N | 0.875 (16) | C25—C29 | 1.5192 (17) |
N22—H22N | 0.863 (16) | C25—C26 | 1.3744 (18) |
C1—C2 | 1.3626 (19) | C26—C27 | 1.4211 (19) |
C2—C3 | 1.413 (2) | C27—C28 | 1.3612 (19) |
C3—C4 | 1.3781 (17) | C29—C31 | 1.5421 (18) |
C4—C9 | 1.5118 (17) | C29—C30 | 1.5373 (18) |
C5—C6 | 1.3757 (17) | C21—H21 | 0.9500 |
C5—C9 | 1.5115 (17) | C22—H22 | 0.9500 |
C6—C7 | 1.413 (2) | C23—H23 | 0.9500 |
C7—C8 | 1.3654 (19) | C26—H26 | 0.9500 |
C9—C11 | 1.541 (2) | C27—H27 | 0.9500 |
C9—C10 | 1.544 (2) | C28—H28 | 0.9500 |
C1—H1 | 0.9500 | C30—H30A | 0.9800 |
C2—H2 | 0.9500 | C30—H30B | 0.9800 |
C3—H3 | 0.9500 | C30—H30C | 0.9800 |
C6—H6 | 0.9500 | C31—H31A | 0.9800 |
C7—H7 | 0.9500 | C31—H31B | 0.9800 |
C8—H8 | 0.9500 | C31—H31C | 0.9800 |
C1—N1—C4 | 109.93 (10) | C9—C11—H11C | 109.00 |
C5—N2—C8 | 110.24 (10) | H11A—C11—H11B | 109.00 |
C1—N1—H1N | 123.9 (11) | H11A—C11—H11C | 109.00 |
C4—N1—H1N | 126.1 (11) | H11B—C11—H11C | 109.00 |
C5—N2—H2N | 126.5 (11) | C9—C11—H11B | 109.00 |
C8—N2—H2N | 123.1 (11) | C9—C11—H11A | 109.00 |
C21—N21—C24 | 110.16 (10) | N21—C21—C22 | 107.86 (11) |
C25—N22—C28 | 110.04 (10) | C21—C22—C23 | 107.02 (11) |
C21—N21—H21N | 123.5 (9) | C22—C23—C24 | 108.20 (11) |
C24—N21—H21N | 126.3 (9) | C23—C24—C29 | 131.63 (10) |
C28—N22—H22N | 123.0 (11) | N21—C24—C23 | 106.75 (10) |
C25—N22—H22N | 126.8 (11) | N21—C24—C29 | 121.55 (10) |
N1—C1—C2 | 107.93 (12) | N22—C25—C29 | 121.59 (11) |
C1—C2—C3 | 107.31 (12) | C26—C25—C29 | 131.53 (11) |
C2—C3—C4 | 108.08 (11) | N22—C25—C26 | 106.79 (10) |
C3—C4—C9 | 130.99 (12) | C25—C26—C27 | 108.09 (11) |
N1—C4—C9 | 122.17 (10) | C26—C27—C28 | 107.19 (12) |
N1—C4—C3 | 106.75 (11) | N22—C28—C27 | 107.89 (11) |
N2—C5—C6 | 106.70 (11) | C25—C29—C31 | 109.40 (10) |
C6—C5—C9 | 131.40 (11) | C30—C29—C31 | 108.82 (11) |
N2—C5—C9 | 121.74 (10) | C25—C29—C30 | 109.04 (10) |
C5—C6—C7 | 107.85 (11) | C24—C29—C25 | 110.94 (10) |
C6—C7—C8 | 107.59 (12) | C24—C29—C30 | 109.35 (10) |
N2—C8—C7 | 107.61 (12) | C24—C29—C31 | 109.26 (10) |
C4—C9—C5 | 111.44 (10) | N21—C21—H21 | 126.00 |
C10—C9—C11 | 109.12 (12) | C22—C21—H21 | 126.00 |
C5—C9—C10 | 109.09 (10) | C21—C22—H22 | 126.00 |
C5—C9—C11 | 108.66 (11) | C23—C22—H22 | 127.00 |
C4—C9—C10 | 109.10 (11) | C22—C23—H23 | 126.00 |
C4—C9—C11 | 109.41 (10) | C24—C23—H23 | 126.00 |
N1—C1—H1 | 126.00 | C25—C26—H26 | 126.00 |
C2—C1—H1 | 126.00 | C27—C26—H26 | 126.00 |
C3—C2—H2 | 126.00 | C26—C27—H27 | 126.00 |
C1—C2—H2 | 126.00 | C28—C27—H27 | 126.00 |
C4—C3—H3 | 126.00 | N22—C28—H28 | 126.00 |
C2—C3—H3 | 126.00 | C27—C28—H28 | 126.00 |
C7—C6—H6 | 126.00 | C29—C30—H30A | 109.00 |
C5—C6—H6 | 126.00 | C29—C30—H30B | 109.00 |
C6—C7—H7 | 126.00 | C29—C30—H30C | 109.00 |
C8—C7—H7 | 126.00 | H30A—C30—H30B | 110.00 |
N2—C8—H8 | 126.00 | H30A—C30—H30C | 109.00 |
C7—C8—H8 | 126.00 | H30B—C30—H30C | 109.00 |
C9—C10—H10A | 109.00 | C29—C31—H31A | 109.00 |
C9—C10—H10B | 109.00 | C29—C31—H31B | 109.00 |
C9—C10—H10C | 109.00 | C29—C31—H31C | 109.00 |
H10B—C10—H10C | 110.00 | H31A—C31—H31B | 109.00 |
H10A—C10—H10C | 109.00 | H31A—C31—H31C | 110.00 |
H10A—C10—H10B | 109.00 | H31B—C31—H31C | 109.00 |
C4—N1—C1—C2 | 0.14 (14) | N2—C5—C9—C10 | 170.37 (11) |
C1—N1—C4—C3 | −0.25 (13) | N2—C5—C9—C11 | −70.77 (14) |
C1—N1—C4—C9 | 176.69 (11) | C6—C5—C9—C10 | −14.94 (19) |
C8—N2—C5—C6 | 0.67 (14) | C6—C5—C9—C11 | 103.92 (15) |
C8—N2—C5—C9 | 176.51 (11) | C5—C6—C7—C8 | 0.07 (16) |
C5—N2—C8—C7 | −0.63 (14) | C6—C7—C8—N2 | 0.34 (15) |
C21—N21—C24—C29 | −177.09 (10) | N21—C21—C22—C23 | −0.10 (15) |
C24—N21—C21—C22 | −0.03 (13) | C21—C22—C23—C24 | 0.19 (15) |
C21—N21—C24—C23 | 0.15 (13) | C22—C23—C24—N21 | −0.21 (14) |
C28—N22—C25—C26 | −0.63 (13) | C22—C23—C24—C29 | 176.64 (12) |
C28—N22—C25—C29 | −177.43 (10) | N21—C24—C29—C25 | −63.67 (14) |
C25—N22—C28—C27 | 0.54 (14) | N21—C24—C29—C30 | 56.63 (15) |
N1—C1—C2—C3 | 0.02 (14) | N21—C24—C29—C31 | 175.64 (11) |
C1—C2—C3—C4 | −0.17 (15) | C23—C24—C29—C25 | 119.88 (14) |
C2—C3—C4—C9 | −176.31 (12) | C23—C24—C29—C30 | −119.82 (14) |
C2—C3—C4—N1 | 0.25 (14) | C23—C24—C29—C31 | −0.82 (18) |
N1—C4—C9—C5 | 60.57 (15) | N22—C25—C26—C27 | 0.48 (13) |
N1—C4—C9—C11 | −179.26 (11) | C29—C25—C26—C27 | 176.83 (12) |
C3—C4—C9—C5 | −123.33 (14) | N22—C25—C29—C24 | −47.82 (14) |
N1—C4—C9—C10 | −59.95 (15) | N22—C25—C29—C30 | −168.30 (10) |
C3—C4—C9—C11 | −3.15 (19) | N22—C25—C29—C31 | 72.79 (14) |
C3—C4—C9—C10 | 116.16 (15) | C26—C25—C29—C24 | 136.28 (13) |
N2—C5—C9—C4 | 49.85 (15) | C26—C25—C29—C30 | 15.80 (17) |
C9—C5—C6—C7 | −175.73 (12) | C26—C25—C29—C31 | −103.11 (15) |
N2—C5—C6—C7 | −0.44 (14) | C25—C26—C27—C28 | −0.16 (14) |
C6—C5—C9—C4 | −135.46 (13) | C26—C27—C28—N22 | −0.23 (14) |
Experimental details
Crystal data | |
Chemical formula | C11H14N2 |
Mr | 174.24 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 173 |
a, b, c (Å) | 8.4554 (8), 9.2001 (8), 13.2274 (11) |
α, β, γ (°) | 99.802 (7), 95.321 (7), 97.328 (7) |
V (Å3) | 998.74 (15) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.07 |
Crystal size (mm) | 0.40 × 0.34 × 0.28 |
Data collection | |
Diffractometer | Stoe IPDS2 |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 15270, 5385, 3816 |
Rint | 0.046 |
(sin θ/λ)max (Å−1) | 0.686 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.045, 0.106, 1.02 |
No. of reflections | 5385 |
No. of parameters | 255 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.25, −0.21 |
Computer programs: X-AREA (Stoe & Cie, 2009), X-RED32 (Stoe & Cie, 2009), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).
D | H | Centroid | N—H | H···Cg | D···Cg | N—H···Cg |
N1 | H1N | Cg4 | 0.86 (2) | 2.534 (17) | 3.2190 (12) | 137.4 (14) |
N2 | H2N | Cg3 | 0.86 (2) | 2.591 (17) | 3.2425 (12) | 133.7 (13) |
N21 | H21N | Cg1 | 0.88 (2) | 2.523 (16) | 3.1925 (12) | 133.9 (12) |
N22 | H22N | Cg2 | 0.86 (2) | 2.610 (17) | 3.2440 (12) | 131.3 (13) |
Cg1, Cg2, Cg3 and Cg4 are the centroids of the N1/C1–C4, N2/C5–C8, N21/C21-C24 and N22/C25–C28 rings, respectively. |
Acknowledgements
HSE is grateful to the XRD Application LAB, Microsystems Technology Division, Swiss Center for Electronics and Microtechnology, Neuchâtel, for access to the X-ray diffraction equipment.
References
Dauster, I., Rice, C. A., Zielke, P. & Suhm, M. A. (2008). Phys. Chem. Chem. Phys. 10, 2827–2835. Web of Science CrossRef PubMed CAS Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Gale, P. A., Sessler, J. L. & Král, V. (1998). Chem. Commun. pp. 1–8. Web of Science CrossRef Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Meyer, E. A., Castellano, R. K. & Diederich, F. (2003). Angew. Chem. Int. Ed. 42, 1210–1250. Web of Science CrossRef CAS Google Scholar
Sessler, J. L., Camiolo, S. & Gale, P. A. (2003). Coord. Chem. Rev. 240, 17–55. Web of Science CrossRef CAS Google Scholar
Sessler, J. L. & Davis, J. M. (2001). Acc. Chem. Res. 34, 989–997. Web of Science CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sobral, A. J. F. N., Rebanda, N. G. C. L., da Silva, M., Lampreia, S. H., Silva, M. R., Beja, A. M., Paixão, J. A. & Rocha Gonsalves, A. M. d'A. (2003). Tetrahedron Lett. 44, 3971–3973. Web of Science CSD CrossRef CAS Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stoe & Cie (2009). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The title compound was prepared as a building block for the formation of substituted calix[4]pyrroles. The latter have been shown to form extremely interesting host–guest complexes with various anions (Gale et al., 1998; Sessler & Davis, 2001; Sessler et al., 2003).
The structure of the title compound is shown in Fig. 1, and the geometrical parameters are given in the Supplementary Information and the archived CIF. The compound crystallized in the centrosymmetric triclinic space group P1 with two independent molecules (A and B) in the asymmetric unit. The bond lengths and angles are similar to those observed in the diethyl analogue (Sobral et al., 2003), which also crystallized with two independent molecules, but in the non-centrosymetric monoclinic space group C2.
In the title compound the quateranry centers, C9 in A and C29 in B, impose a twist to the molecules with the pyrrole ring mean-planes being almost perpendicular to one another; 87.67 (8) ° in molecule A and 88.09 (7)° in molecule B. This is similar to the situation in the diethyl analogue where the two dihedral angles are 86.5 (2) and 86.7 (2) °.
N—H···π interactions are extremely important in biological systems and this aspect as been reviewed by (Meyer et al., 2003). The spectroscopic aspects of the N—H···π interactions of the pyrrole dimer have also been studied recently by (Dauster et al., 2008). In the crystal of the title compound the two independent molecules are linked by N—H···π interactions involving the pyrrole NH H-atoms of molecule A with the pyrrole rings of molecule B, and visa-versa (Table 1). This leads to the formation of a compact box-like arrangement of the two molecules, as shown in Fig. 2. Again this arrangement is similar to that observed in the crystal of the diethyl analogue.