organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Valyl benzyl ester chloride

aDepartment of Chemistry, Adam Mickiewicz University, Grunwaldzka 6, 60-780 Poznań, Poland, bDepartment of Chemistry, V. V. Puram College of Science, Bangalore 560 004, India, cDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, and dSequent Scientific limited, New Mangalore 575 011, India
*Correspondence e-mail: mkubicki@amu.edu.pl

(Received 21 December 2009; accepted 4 January 2010; online 9 January 2010)

In the title compound (systematic name: 1-benz­yloxy-3-methyl-1-oxobutan-2-aminium chloride), C12H18NO2+·Cl, the ester group is approximately planar, with a maximum deviation of 0.040 (2) Å from the least-squares plane, and makes a dihedral angle of 28.92 (16)° with the phenyl ring. The crystal structure is organized by N—H⋯Cl hydrogen bonds which join the two components into a chain along the b axis. Pairs of chains arranged anti­parallel are inter­connected by further N—H⋯Cl hydrogen bonds, forming eight-membered rings. Similar packing modes have been observed in a number of amino acid ester halides with a short unit-cell parameter of ca 5.5 Å along the direction in which the chains run.

Related literature

For valsartan, see: Black et al. (1997[Black, H. R., Graff, A., Shute, D., Stoltz, R., Ruff, D. & Levine, J. (1997). J. Hum. Hypertens. 11, 483-489.]); Buhlmayer et al. (1994[Buhlmayer, P., Furet, P., Criscione, L., deGasparo, M., Whitebread, S., Schmidlin, T., Lattmann, R. & Wood, J. (1994). Bioorg. Med. Chem. Lett. 4, 29-34.]). For related structures, see: Bryndal et al. (2006[Bryndal, I., Jaremko, M., Jaremko, L. & Lis, T. (2006). Acta Cryst. C62, o111-o114.]); Jaeger et al. (2003[Jaeger, M., Steglich, W. & Polborn, K. (2003). Private communication (refcode HABXAK). CCDC, Union Road, Cambridge, England.]); Nastopoulos et al. (1987[Nastopoulos, V., Germain, G., Cordopatis, P. & Voliotis, S. (1987). Acta Cryst. C43, 375-376.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]). For graph-set motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C12H18NO2+·Cl

  • Mr = 243.72

  • Monoclinic, P 21

  • a = 9.705 (1) Å

  • b = 5.406 (1) Å

  • c = 13.116 (2) Å

  • β = 96.58 (1)°

  • V = 683.60 (18) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 295 K

  • 0.4 × 0.2 × 0.2 mm

Data collection
  • Oxford Diffraction Xcalibur Sapphire2 diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.741, Tmax = 0.948

  • 2649 measured reflections

  • 2010 independent reflections

  • 1652 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.077

  • S = 1.06

  • 2010 reflections

  • 159 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.24 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 530 Friedel pairs

  • Flack parameter: 0.02 (8)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O1i 0.98 2.38 3.301 (3) 157
N2—H2A⋯Cl1ii 1.00 (3) 2.26 (4) 3.201 (3) 156 (2)
N2—H2B⋯Cl1iii 0.90 (3) 2.29 (3) 3.177 (3) 166 (2)
N2—H2C⋯Cl1 0.96 (3) 2.15 (3) 3.101 (2) 172.1 (18)
C4—H4C⋯Cl1iv 0.96 2.95 3.904 (3) 175
Symmetry codes: (i) x, y-1, z; (ii) [-x+1, y+{\script{1\over 2}}, -z]; (iii) [-x+1, y-{\script{1\over 2}}, -z]; (iv) x+1, y, z.

Data collection: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Stereochemical Workstation Operation Manual (Siemens, 1989[Siemens (1989). Stereochemical Workstation Operation Manual. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title compound (I, Scheme 1), valyl benzyl ester chloride [1-(benzyloxy)-3-methyl-1-oxobutan-2-aminium chloride], is a reactant (Buhlmayer et al., 1994) for the synthesis of valsartan, which belongs to the class of angiotensin II receptor antagonists (Black et al., 1997).

The ester fragment C2/C1/O1/O11/C12 (Fig. 1) is in a good approximation planar, maximum deviation from the least squares plane being 0.040 (2) Å, and it makes a dihedral angle of 28.92 (16)° with the plane of the phenyl ring [planar within 0.009 (3) Å]. The C2—C3 bond is almost perpendicular to the plane of ester group, the torsion angle O11—C1—C2—C3 being -82.2 (3)°.

In the crystal structure, the N—H···Cl hydrogen bonds between the cations and chloride anions join the ionic components into the chains along the b direction (Fig. 2 and Table 1). Within these chains there are additional relatively short and linear C—H···O hydrogen bonds involving the C=O oxygen atom. Using graph-set notation (Bernstein et al., 1995), there are two second-order antiparallel C21(4) chains which are interconnected by another hydrogen bonds into two different kinds of third-order hydrogen bonded R42(8) rings. Similar packing was observed in a number of the amino acid ester halides, and it always was connected with the unit-cell parameter of ca 5.5 Å. In the Cambridge Structural Database (Allen, 2002), there are 25 organic structures of the amino acid ester halides, and 10 of them display similar crystal packing and appropriate unit-cell parameter. For instance, L-tyrosyl methyl ester chloride (Bryndal et al., 2006) crystallizes in P212121 space group with one of the unit-cell parameters 5.424 (2) Å, valyl methyl ester chloride (Jaeger et al., 2003) - also P212121, with 5.894 (2) Å, and (S-benzyl-L-cysteine methyl ester hydrochloride (Nastopoulos et al., 1987) - in P21 with c = 5.211 (2) Å.

The coordination of Cl ion by three hydrogen bonded N—H groups might be described as a trigonal pyramid with N—H groups at the base and Cl ion in the apex. The H···Cl···H angles are in the range 77–118°, and the sum of these angles is 277°. It might be noted that if these coordination is described as tetragonal, the empty coordination place is taken by relatively strong C—H(methyl)···Cl hydrogen bond (Table 1).

Related literature top

For valsartan, see: Black et al. (1997); Buhlmayer et al. (1994). For related structures, see: Bryndal et al. (2006); Jaeger et al. (2003); Nastopoulos et al. (1987). For a description of the Cambridge Structural Database, see: Allen (2002). For graph-set motifs, see: Bernstein et al. (1995).

Experimental top

The title compound was obtained as a gift sample from Cipla, Bangalore, India. X-ray quality crystals were obtained from slow evaporation of an aqueous solution (m.p. 409–412 K).

Refinement top

Positional and isotropic thermal parameters of the H atoms from the NH3 group were freely refined. All other H atoms were put in the calculated idealized positions (C—H = 0.93–0.97 Å) and refined as riding, with Uiso's set at 1.2 (1.4 for methyl groups) times the Ueq's of appropriate carrier atoms.

Structure description top

The title compound (I, Scheme 1), valyl benzyl ester chloride [1-(benzyloxy)-3-methyl-1-oxobutan-2-aminium chloride], is a reactant (Buhlmayer et al., 1994) for the synthesis of valsartan, which belongs to the class of angiotensin II receptor antagonists (Black et al., 1997).

The ester fragment C2/C1/O1/O11/C12 (Fig. 1) is in a good approximation planar, maximum deviation from the least squares plane being 0.040 (2) Å, and it makes a dihedral angle of 28.92 (16)° with the plane of the phenyl ring [planar within 0.009 (3) Å]. The C2—C3 bond is almost perpendicular to the plane of ester group, the torsion angle O11—C1—C2—C3 being -82.2 (3)°.

In the crystal structure, the N—H···Cl hydrogen bonds between the cations and chloride anions join the ionic components into the chains along the b direction (Fig. 2 and Table 1). Within these chains there are additional relatively short and linear C—H···O hydrogen bonds involving the C=O oxygen atom. Using graph-set notation (Bernstein et al., 1995), there are two second-order antiparallel C21(4) chains which are interconnected by another hydrogen bonds into two different kinds of third-order hydrogen bonded R42(8) rings. Similar packing was observed in a number of the amino acid ester halides, and it always was connected with the unit-cell parameter of ca 5.5 Å. In the Cambridge Structural Database (Allen, 2002), there are 25 organic structures of the amino acid ester halides, and 10 of them display similar crystal packing and appropriate unit-cell parameter. For instance, L-tyrosyl methyl ester chloride (Bryndal et al., 2006) crystallizes in P212121 space group with one of the unit-cell parameters 5.424 (2) Å, valyl methyl ester chloride (Jaeger et al., 2003) - also P212121, with 5.894 (2) Å, and (S-benzyl-L-cysteine methyl ester hydrochloride (Nastopoulos et al., 1987) - in P21 with c = 5.211 (2) Å.

The coordination of Cl ion by three hydrogen bonded N—H groups might be described as a trigonal pyramid with N—H groups at the base and Cl ion in the apex. The H···Cl···H angles are in the range 77–118°, and the sum of these angles is 277°. It might be noted that if these coordination is described as tetragonal, the empty coordination place is taken by relatively strong C—H(methyl)···Cl hydrogen bond (Table 1).

For valsartan, see: Black et al. (1997); Buhlmayer et al. (1994). For related structures, see: Bryndal et al. (2006); Jaeger et al. (2003); Nastopoulos et al. (1987). For a description of the Cambridge Structural Database, see: Allen (2002). For graph-set motifs, see: Bernstein et al. (1995).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Stereochemical Workstation Operation Manual (Siemens, 1989); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Anisotropic ellipsoid representation of the title compound together with atom labelling scheme. The ellipsoids are drawn at 50% probability level, hydrogen atoms are depicted as spheres with arbitrary radii. Hydrogen bond is shown as dashed line.
[Figure 2] Fig. 2. The hydrogen-bonded structure of the title compound. Hydrogen bonds are shown as dashed lines. [Symmetry codes: (i) 1 - x, 1/2 + y, -z; (ii) x, 1 + y, z; (iii) 1 - x, -1/2 + y, -z; (iv) x, -1 + y, z; (v) 1 - x, -3/2 + y, -z.]
1-benzyloxy-3-methyl-1-oxobutan-2-aminium chloride top
Crystal data top
C12H18NO2+·ClF(000) = 260
Mr = 243.72Dx = 1.184 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 1449 reflections
a = 9.705 (1) Åθ = 2.1–26.9°
b = 5.406 (1) ŵ = 0.27 mm1
c = 13.116 (2) ÅT = 295 K
β = 96.58 (1)°Prism, colourless
V = 683.60 (18) Å30.4 × 0.2 × 0.2 mm
Z = 2
Data collection top
Oxford Diffraction Xcalibur Sapphire2
diffractometer
2010 independent reflections
Radiation source: Nova (Mo) X-ray Source1652 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
Detector resolution: 5.2679 pixels mm-1θmax = 26.9°, θmin = 2.1°
ω scanh = 1012
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
k = 46
Tmin = 0.741, Tmax = 0.948l = 1511
2649 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.077 w = 1/[σ2(Fo2) + (0.040P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
2010 reflectionsΔρmax = 0.17 e Å3
159 parametersΔρmin = 0.24 e Å3
1 restraintAbsolute structure: Flack (1983), 530 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.02 (8)
Crystal data top
C12H18NO2+·ClV = 683.60 (18) Å3
Mr = 243.72Z = 2
Monoclinic, P21Mo Kα radiation
a = 9.705 (1) ŵ = 0.27 mm1
b = 5.406 (1) ÅT = 295 K
c = 13.116 (2) Å0.4 × 0.2 × 0.2 mm
β = 96.58 (1)°
Data collection top
Oxford Diffraction Xcalibur Sapphire2
diffractometer
2010 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
1652 reflections with I > 2σ(I)
Tmin = 0.741, Tmax = 0.948Rint = 0.023
2649 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.034H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.077Δρmax = 0.17 e Å3
S = 1.06Δρmin = 0.24 e Å3
2010 reflectionsAbsolute structure: Flack (1983), 530 Friedel pairs
159 parametersAbsolute structure parameter: 0.02 (8)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6929 (3)1.0154 (5)0.2145 (2)0.0492 (6)
O110.7115 (2)0.9397 (3)0.31112 (13)0.0744 (6)
C120.6987 (5)1.1297 (7)0.3890 (2)0.0963 (12)
H12A0.61001.21320.37560.116*
H12B0.77191.25160.38780.116*
C130.7099 (4)1.0030 (7)0.4919 (2)0.0766 (10)
C140.6351 (4)1.0998 (9)0.5647 (2)0.1010 (13)
H140.57911.23800.55060.121*
C150.6452 (6)0.9849 (14)0.6612 (3)0.128 (2)
H150.59471.04790.71140.154*
C160.7258 (7)0.7875 (13)0.6824 (4)0.137 (3)
H160.73140.71460.74690.165*
C170.7994 (6)0.6933 (11)0.6098 (4)0.1375 (18)
H170.85440.55390.62430.165*
C180.7931 (5)0.8035 (8)0.5143 (3)0.1053 (14)
H180.84590.74110.46530.126*
O10.6602 (2)1.2196 (4)0.18837 (14)0.0702 (6)
C20.7212 (2)0.8078 (4)0.14310 (17)0.0454 (6)
H20.68510.65360.16910.054*
N20.6429 (2)0.8642 (6)0.04138 (15)0.0476 (5)
H2A0.678 (3)1.021 (7)0.013 (2)0.071 (10)*
H2B0.649 (3)0.740 (6)0.0041 (19)0.049 (8)*
H2C0.546 (3)0.867 (7)0.0479 (16)0.064 (7)*
C30.8749 (3)0.7732 (5)0.1324 (2)0.0558 (7)
H30.88060.64640.07960.067*
C40.9422 (3)1.0029 (7)0.0953 (3)0.0886 (11)
H4A0.93741.13350.14440.124*
H4B0.89451.05260.03040.124*
H4C1.03750.96880.08760.124*
C50.9560 (3)0.6756 (7)0.2299 (3)0.0844 (10)
H5A1.04810.63210.21630.118*
H5B0.91030.53210.25300.118*
H5C0.96090.80100.28200.118*
Cl10.33538 (6)0.86692 (12)0.08481 (4)0.05096 (19)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0545 (16)0.0364 (15)0.0597 (15)0.0021 (13)0.0201 (12)0.0033 (13)
O110.1207 (16)0.0510 (14)0.0542 (10)0.0173 (11)0.0221 (10)0.0029 (8)
C120.171 (4)0.060 (2)0.0638 (19)0.016 (3)0.040 (2)0.0077 (17)
C130.107 (3)0.068 (2)0.0550 (17)0.004 (2)0.0097 (17)0.0008 (16)
C140.117 (3)0.125 (4)0.062 (2)0.008 (3)0.019 (2)0.018 (2)
C150.146 (5)0.179 (6)0.063 (3)0.054 (4)0.025 (3)0.021 (3)
C160.181 (6)0.160 (6)0.064 (3)0.083 (5)0.015 (3)0.021 (3)
C170.190 (5)0.123 (4)0.089 (3)0.000 (4)0.030 (3)0.027 (3)
C180.143 (4)0.094 (4)0.078 (2)0.013 (3)0.011 (2)0.013 (2)
O10.1138 (17)0.0358 (12)0.0648 (12)0.0101 (11)0.0265 (11)0.0051 (9)
C20.0508 (14)0.0325 (16)0.0541 (13)0.0006 (11)0.0122 (10)0.0044 (10)
N20.0450 (12)0.0398 (12)0.0593 (11)0.0043 (17)0.0117 (9)0.0056 (15)
C30.0524 (16)0.0503 (16)0.0659 (16)0.0095 (13)0.0117 (13)0.0058 (13)
C40.055 (2)0.090 (3)0.123 (3)0.002 (2)0.0227 (18)0.021 (2)
C50.066 (2)0.082 (3)0.100 (2)0.0181 (19)0.0083 (17)0.0045 (19)
Cl10.0535 (3)0.0506 (4)0.0506 (3)0.0008 (4)0.0137 (2)0.0006 (3)
Geometric parameters (Å, º) top
C1—O11.188 (3)C18—H180.9300
C1—O111.324 (3)C2—N21.489 (3)
C1—C21.507 (3)C2—C31.526 (3)
O11—C121.464 (4)C2—H20.9800
C12—C131.506 (4)N2—H2A1.00 (3)
C12—H12A0.9700N2—H2B0.90 (3)
C12—H12B0.9700N2—H2C0.96 (3)
C13—C181.359 (5)C3—C41.509 (4)
C13—C141.368 (5)C3—C51.518 (4)
C14—C151.403 (6)C3—H30.9800
C14—H140.9300C4—H4A0.9600
C15—C161.334 (7)C4—H4B0.9600
C15—H150.9300C4—H4C0.9600
C16—C171.353 (8)C5—H5A0.9600
C16—H160.9300C5—H5B0.9600
C17—C181.382 (6)C5—H5C0.9600
C17—H170.9300
O1—C1—O11124.5 (3)N2—C2—C3110.25 (19)
O1—C1—C2125.0 (2)C1—C2—C3113.5 (2)
O11—C1—C2110.5 (2)N2—C2—H2108.6
C1—O11—C12115.9 (2)C1—C2—H2108.6
O11—C12—C13107.6 (3)C3—C2—H2108.6
O11—C12—H12A110.2C2—N2—H2A110.6 (17)
C13—C12—H12A110.2C2—N2—H2B112.0 (16)
O11—C12—H12B110.2H2A—N2—H2B109.2 (19)
C13—C12—H12B110.2C2—N2—H2C109.3 (13)
H12A—C12—H12B108.5H2A—N2—H2C113 (3)
C18—C13—C14120.1 (4)H2B—N2—H2C102 (3)
C18—C13—C12122.4 (3)C4—C3—C5110.8 (3)
C14—C13—C12117.5 (4)C4—C3—C2113.1 (2)
C13—C14—C15118.2 (5)C5—C3—C2112.5 (2)
C13—C14—H14120.9C4—C3—H3106.6
C15—C14—H14120.9C5—C3—H3106.6
C16—C15—C14121.4 (5)C2—C3—H3106.6
C16—C15—H15119.3C3—C4—H4A109.5
C14—C15—H15119.3C3—C4—H4B109.5
C15—C16—C17119.9 (5)H4A—C4—H4B109.5
C15—C16—H16120.0C3—C4—H4C109.5
C17—C16—H16120.0H4A—C4—H4C109.5
C16—C17—C18120.2 (6)H4B—C4—H4C109.5
C16—C17—H17119.9C3—C5—H5A109.5
C18—C17—H17119.9C3—C5—H5B109.5
C13—C18—C17120.1 (4)H5A—C5—H5B109.5
C13—C18—H18119.9C3—C5—H5C109.5
C17—C18—H18119.9H5A—C5—H5C109.5
N2—C2—C1107.1 (2)H5B—C5—H5C109.5
O1—C1—O11—C124.1 (4)C12—C13—C18—C17179.8 (4)
C2—C1—O11—C12175.1 (3)C16—C17—C18—C131.8 (7)
C1—O11—C12—C13174.8 (3)O1—C1—C2—N225.0 (4)
O11—C12—C13—C1834.5 (5)O11—C1—C2—N2155.9 (2)
O11—C12—C13—C14147.1 (3)O1—C1—C2—C396.9 (3)
C18—C13—C14—C151.1 (6)O11—C1—C2—C382.2 (3)
C12—C13—C14—C15179.5 (4)N2—C2—C3—C462.6 (3)
C13—C14—C15—C160.4 (6)C1—C2—C3—C457.6 (3)
C14—C15—C16—C170.3 (7)N2—C2—C3—C5170.9 (3)
C15—C16—C17—C181.1 (8)C1—C2—C3—C569.0 (3)
C14—C13—C18—C171.9 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O1i0.982.383.301 (3)157
N2—H2A···Cl1ii1.00 (3)2.26 (4)3.201 (3)156 (2)
N2—H2B···Cl1iii0.90 (3)2.29 (3)3.177 (3)166 (2)
N2—H2C···Cl10.96 (3)2.15 (3)3.101 (2)172.1 (18)
C4—H4C···Cl1iv0.962.953.904 (3)175
Symmetry codes: (i) x, y1, z; (ii) x+1, y+1/2, z; (iii) x+1, y1/2, z; (iv) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC12H18NO2+·Cl
Mr243.72
Crystal system, space groupMonoclinic, P21
Temperature (K)295
a, b, c (Å)9.705 (1), 5.406 (1), 13.116 (2)
β (°) 96.58 (1)
V3)683.60 (18)
Z2
Radiation typeMo Kα
µ (mm1)0.27
Crystal size (mm)0.4 × 0.2 × 0.2
Data collection
DiffractometerOxford Diffraction Xcalibur Sapphire2
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.741, 0.948
No. of measured, independent and
observed [I > 2σ(I)] reflections
2649, 2010, 1652
Rint0.023
(sin θ/λ)max1)0.636
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.077, 1.06
No. of reflections2010
No. of parameters159
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.17, 0.24
Absolute structureFlack (1983), 530 Friedel pairs
Absolute structure parameter0.02 (8)

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), Stereochemical Workstation Operation Manual (Siemens, 1989).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O1i0.982.383.301 (3)157.2
N2—H2A···Cl1ii1.00 (3)2.26 (4)3.201 (3)156 (2)
N2—H2B···Cl1iii0.90 (3)2.29 (3)3.177 (3)166 (2)
N2—H2C···Cl10.96 (3)2.15 (3)3.101 (2)172.1 (18)
C4—H4C···Cl1iv0.962.953.904 (3)174.7
Symmetry codes: (i) x, y1, z; (ii) x+1, y+1/2, z; (iii) x+1, y1/2, z; (iv) x+1, y, z.
 

Acknowledgements

BPS thanks Cipla, Bangalore for the gift of a sample of the title compound

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBlack, H. R., Graff, A., Shute, D., Stoltz, R., Ruff, D. & Levine, J. (1997). J. Hum. Hypertens. 11, 483–489.  CrossRef CAS PubMed Web of Science Google Scholar
First citationBryndal, I., Jaremko, M., Jaremko, L. & Lis, T. (2006). Acta Cryst. C62, o111–o114.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBuhlmayer, P., Furet, P., Criscione, L., deGasparo, M., Whitebread, S., Schmidlin, T., Lattmann, R. & Wood, J. (1994). Bioorg. Med. Chem. Lett. 4, 29–34.  CrossRef CAS Web of Science Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationJaeger, M., Steglich, W. & Polborn, K. (2003). Private communication (refcode HABXAK). CCDC, Union Road, Cambridge, England.  Google Scholar
First citationNastopoulos, V., Germain, G., Cordopatis, P. & Voliotis, S. (1987). Acta Cryst. C43, 375–376.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1989). Stereochemical Workstation Operation Manual. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds