organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-4-[(4-Bromo­benzyl­­idene)amino]phenol

aDepartment of Physics, Panimalar Institute of Technology, Chennai 602 103, India, bDepartment of Physics, SRM University, Kattankulathur Campus, Chennai, India, cDepartment of Chemistry, SRM University, Ramapuram Campus, Chennai 600 089, India, dDepartment of Physics, AMET University, Kanathur, Chennai 603 112, India, and eDepartment of Research and Development, PRIST University, Vallam, Thanjavur 613 403, Tamil Nadu, India
*Correspondence e-mail: manivan_1999@yahoo.com

(Received 22 December 2009; accepted 24 December 2009; online 9 January 2010)

In the title compound, C13H10BrNO, the dihedral angle between the benzene rings is 35.20 (8)°. In the crystal, mol­ecules are linked by O—H⋯N hydrogen bonds, forming a zigzag chain along the a axis. A weak C—H⋯π inter­action is observed between the chains.

Related literature

For the biological activity of benzyl­idene derivatives, see: El Masry et al. (2000[El Masry, A. H., Fahmy, H. H. & Abdelwahed, S. H. A. (2000). Molecules, 5, 1429-1438.]); Fegade et al. (2009[Fegade, J. D., Rane, S. S., Chaudhari, R. Y. & Patil, V. R. (2009). Digest J. Nanomater. Biostruct. 4, 145-154.]); Foroumadi et al. (2007[Foroumadi, A., Samzadeh Kermani, A., Emami, S., Dehghan, G., Sorkhi, M., Arabsorkhi, F., Heidari, M. R., Abdollahi, M. & Shafiee, A. (2007). Bioorg. Med. Chem. Lett. 17, 6764-6769.]); Hodnett & Dunn (1970[Hodnett, E. M. & Dunn, W. J. (1970). J. Med. Chem. 13, 768-770.]); Hu & Zhou (2004[Hu, W. & Zhou, W. (2004). Bioorg. Med. Chem. Lett. 14, 621-622.]); Jada et al. (2008[Jada, S. R., Matthews, C., Saad, M. S., Hamzah, A. S., Lajis, N. H., Stevens, M. F. G. & Stanslas, J. (2008). Br. J. Pharmacol. 155, 641-654.]); Samadhiya & Halve (2001[Samadhiya, S. & Halve, A. (2001). Orient J. Chem. 17, 119-122.]); Singh & Dash (1988[Singh, W. M. & Dash, B. C. (1988). Pesticides, 22, 33-37.]). For related structures, see: Cui et al. (2009[Cui, C., Meng, Q. & Wang, Y. (2009). Acta Cryst. E65, o2472.]); Sun et al. (2009[Sun, Y., Fu, S., Zhang, J., Wang, X. & Wang, D. (2009). Acta Cryst. E65, o237.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C13H10BrNO

  • Mr = 276.13

  • Orthorhombic, P b c a

  • a = 12.7035 (4) Å

  • b = 10.3897 (3) Å

  • c = 17.0899 (6) Å

  • V = 2255.62 (12) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 3.62 mm−1

  • T = 295 K

  • 0.20 × 0.16 × 0.15 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.503, Tmax = 0.581

  • 13273 measured reflections

  • 2670 independent reflections

  • 1710 reflections with I > 2σ(I)

  • Rint = 0.043

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.086

  • S = 1.00

  • 2670 reflections

  • 146 parameters

  • H-atom parameters constrained

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.40 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C8–C13 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1i 0.82 2.05 2.848 (3) 164
C5—H5⋯Cg1ii 0.93 2.89 3.374 (3) 114
Symmetry codes: (i) [x-{\script{1\over 2}}, y, -z+{\script{3\over 2}}]; (ii) -x, -y, -z+1.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Benzylidene derivatives exhibit antitumor (Hu & Zhou 2004) and antioxidant (Foroumadi et al., 2007) activities. Some N-benzylidene aniline derivatives show biological activities sucs as antibacterial (El Masry et al., 2000), antifungal (Singh & Dash, 1988), anticancer (Hodnett & Dunn, 1970) and herbicidal (Samadhiya & Halve, 2001). In addition, benzylidene derivatives of andrographolide are potential anticancer agents (Jada et al., 2008) and some of the benzylidene derivatives are acting as selective cyclooxygenase-2-inhibitors (Fegade et al., 2009).

The geometric parameters of the title compound (Fig. 1) agree well with reported similar structures (Cui et al., 2009; Sun et al., 2009). The dihedral angle between the benzene rings is 35.20 (8)°. The C—Br bond distance is 1.894 (2) Å, which is comparable to the literature value of 1.883 (15) Å (Allen et al., 1987). The crystal packing is stabilized by an O—H···N hydrogen bond and a weak C—H···π interaction (Table 1).

Related literature top

For the biological activity of benzylidene derivatives, see: El Masry et al. (2000); Fegade et al. (2009); Foroumadi et al. (2007); Hodnett & Dunn (1970); Hu & Zhou (2004); Jada et al. (2008); Samadhiya & Halve (2001); Singh & Dash (1988). For related structures, see: Cui et al. (2009); Sun et al. (2009). For bond-length data, see: Allen et al. (1987).

Experimental top

A mixture of 4-bromobenzaldehyde (5 mmol), 4-aminophenol (5 mmol) and ethanol (40 ml) was refluxed for 2 h. It was then allowed to cool and filtered. Recrystallization of the crude product from ethanol yielded brown colored crystals.

Refinement top

H atoms were positioned geometrically and refined using riding model, with O—H = 0.82 Å and Uiso(H) = 1.2Ueq(O), and C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C).

Structure description top

Benzylidene derivatives exhibit antitumor (Hu & Zhou 2004) and antioxidant (Foroumadi et al., 2007) activities. Some N-benzylidene aniline derivatives show biological activities sucs as antibacterial (El Masry et al., 2000), antifungal (Singh & Dash, 1988), anticancer (Hodnett & Dunn, 1970) and herbicidal (Samadhiya & Halve, 2001). In addition, benzylidene derivatives of andrographolide are potential anticancer agents (Jada et al., 2008) and some of the benzylidene derivatives are acting as selective cyclooxygenase-2-inhibitors (Fegade et al., 2009).

The geometric parameters of the title compound (Fig. 1) agree well with reported similar structures (Cui et al., 2009; Sun et al., 2009). The dihedral angle between the benzene rings is 35.20 (8)°. The C—Br bond distance is 1.894 (2) Å, which is comparable to the literature value of 1.883 (15) Å (Allen et al., 1987). The crystal packing is stabilized by an O—H···N hydrogen bond and a weak C—H···π interaction (Table 1).

For the biological activity of benzylidene derivatives, see: El Masry et al. (2000); Fegade et al. (2009); Foroumadi et al. (2007); Hodnett & Dunn (1970); Hu & Zhou (2004); Jada et al. (2008); Samadhiya & Halve (2001); Singh & Dash (1988). For related structures, see: Cui et al. (2009); Sun et al. (2009). For bond-length data, see: Allen et al. (1987).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and 30% probability displacement ellipsoids for non-H atoms.
(E)-4-[(4-Bromobenzylidene)amino]phenol top
Crystal data top
C13H10BrNOF(000) = 1104
Mr = 276.13Dx = 1.626 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 2371 reflections
a = 12.7035 (4) Åθ = 2.4–23.7°
b = 10.3897 (3) ŵ = 3.62 mm1
c = 17.0899 (6) ÅT = 295 K
V = 2255.62 (12) Å3Block, brown
Z = 80.20 × 0.16 × 0.15 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2670 independent reflections
Radiation source: fine-focus sealed tube1710 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
ω and φ scansθmax = 27.8°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1216
Tmin = 0.503, Tmax = 0.581k = 1213
13273 measured reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.086H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0358P)2 + 0.8359P]
where P = (Fo2 + 2Fc2)/3
2670 reflections(Δ/σ)max = 0.001
146 parametersΔρmax = 0.49 e Å3
0 restraintsΔρmin = 0.40 e Å3
Crystal data top
C13H10BrNOV = 2255.62 (12) Å3
Mr = 276.13Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 12.7035 (4) ŵ = 3.62 mm1
b = 10.3897 (3) ÅT = 295 K
c = 17.0899 (6) Å0.20 × 0.16 × 0.15 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2670 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1710 reflections with I > 2σ(I)
Tmin = 0.503, Tmax = 0.581Rint = 0.043
13273 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.086H-atom parameters constrained
S = 1.00Δρmax = 0.49 e Å3
2670 reflectionsΔρmin = 0.40 e Å3
146 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.16600 (18)0.0270 (2)0.54592 (14)0.0371 (6)
C20.2620 (2)0.0367 (3)0.54384 (16)0.0463 (7)
H20.27270.10860.57530.056*
C30.34124 (19)0.0056 (3)0.49578 (18)0.0520 (7)
H30.40540.03740.49440.062*
C40.32501 (19)0.1120 (3)0.44968 (15)0.0422 (6)
C50.2319 (2)0.1769 (3)0.45068 (16)0.0463 (7)
H50.22200.24900.41920.056*
C60.1528 (2)0.1340 (3)0.49907 (16)0.0449 (7)
H60.08910.17800.50020.054*
C70.07751 (18)0.0183 (3)0.59347 (15)0.0383 (6)
H70.01580.02980.59270.046*
C80.01245 (17)0.1551 (2)0.67752 (14)0.0325 (5)
C90.08369 (16)0.0690 (2)0.70991 (15)0.0365 (6)
H90.07360.01890.70310.044*
C100.16897 (17)0.1120 (2)0.75198 (14)0.0368 (6)
H100.21550.05320.77400.044*
C110.18585 (16)0.2426 (2)0.76165 (15)0.0360 (6)
C120.11568 (19)0.3294 (2)0.72949 (16)0.0412 (6)
H120.12670.41740.73550.049*
C130.02907 (18)0.2855 (2)0.68836 (15)0.0388 (6)
H130.01860.34430.66770.047*
N10.07946 (14)0.1183 (2)0.63553 (12)0.0367 (5)
O10.26777 (13)0.29148 (18)0.80295 (12)0.0497 (5)
H10.30150.23240.82260.075*
Br10.43298 (2)0.16639 (3)0.38080 (2)0.06483 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0383 (13)0.0383 (15)0.0348 (14)0.0034 (11)0.0019 (11)0.0038 (12)
C20.0458 (14)0.0461 (16)0.0471 (16)0.0036 (12)0.0056 (13)0.0117 (14)
C30.0386 (14)0.0573 (19)0.0599 (19)0.0045 (13)0.0086 (14)0.0115 (15)
C40.0427 (14)0.0468 (16)0.0371 (15)0.0113 (12)0.0046 (12)0.0009 (13)
C50.0549 (16)0.0432 (16)0.0407 (16)0.0024 (13)0.0003 (13)0.0081 (13)
C60.0406 (14)0.0464 (17)0.0476 (17)0.0047 (11)0.0009 (13)0.0066 (13)
C70.0322 (13)0.0420 (16)0.0406 (14)0.0007 (10)0.0006 (11)0.0023 (13)
C80.0268 (11)0.0357 (14)0.0349 (13)0.0010 (10)0.0028 (10)0.0021 (11)
C90.0337 (12)0.0305 (13)0.0452 (16)0.0010 (10)0.0018 (11)0.0006 (12)
C100.0332 (13)0.0360 (15)0.0411 (15)0.0066 (10)0.0012 (11)0.0013 (12)
C110.0291 (12)0.0387 (16)0.0403 (15)0.0004 (10)0.0010 (11)0.0041 (11)
C120.0361 (12)0.0308 (14)0.0566 (18)0.0013 (11)0.0019 (12)0.0056 (13)
C130.0319 (12)0.0364 (15)0.0480 (16)0.0076 (11)0.0022 (11)0.0021 (13)
N10.0314 (10)0.0404 (12)0.0384 (13)0.0021 (8)0.0016 (9)0.0000 (10)
O10.0371 (10)0.0431 (11)0.0688 (14)0.0020 (8)0.0169 (9)0.0058 (10)
Br10.0582 (2)0.0736 (3)0.0627 (2)0.01461 (15)0.01935 (16)0.01033 (18)
Geometric parameters (Å, º) top
C1—C61.380 (4)C8—C131.383 (3)
C1—C21.388 (3)C8—C91.388 (3)
C1—C71.465 (3)C8—N11.423 (3)
C2—C31.371 (4)C9—C101.375 (3)
C2—H20.9300C9—H90.9300
C3—C41.373 (4)C10—C111.383 (4)
C3—H30.9300C10—H100.9300
C4—C51.362 (4)C11—O11.356 (3)
C4—Br11.894 (2)C11—C121.382 (3)
C5—C61.376 (4)C12—C131.383 (3)
C5—H50.9300C12—H120.9300
C6—H60.9300C13—H130.9300
C7—N11.264 (3)O1—H10.8200
C7—H70.9300
C6—C1—C2118.4 (2)C13—C8—C9118.6 (2)
C6—C1—C7119.2 (2)C13—C8—N1117.1 (2)
C2—C1—C7122.4 (2)C9—C8—N1124.3 (2)
C3—C2—C1120.5 (3)C10—C9—C8120.9 (2)
C3—C2—H2119.8C10—C9—H9119.6
C1—C2—H2119.8C8—C9—H9119.6
C2—C3—C4119.4 (2)C9—C10—C11120.2 (2)
C2—C3—H3120.3C9—C10—H10119.9
C4—C3—H3120.3C11—C10—H10119.9
C5—C4—C3121.5 (2)O1—C11—C12117.2 (2)
C5—C4—Br1119.3 (2)O1—C11—C10123.3 (2)
C3—C4—Br1119.2 (2)C12—C11—C10119.5 (2)
C4—C5—C6118.7 (3)C11—C12—C13120.0 (2)
C4—C5—H5120.6C11—C12—H12120.0
C6—C5—H5120.6C13—C12—H12120.0
C5—C6—C1121.4 (2)C12—C13—C8120.8 (2)
C5—C6—H6119.3C12—C13—H13119.6
C1—C6—H6119.3C8—C13—H13119.6
N1—C7—C1124.4 (2)C7—N1—C8119.4 (2)
N1—C7—H7117.8C11—O1—H1109.5
C1—C7—H7117.8
C6—C1—C2—C30.5 (4)N1—C8—C9—C10177.8 (2)
C7—C1—C2—C3177.0 (3)C8—C9—C10—C111.0 (4)
C1—C2—C3—C40.1 (5)C9—C10—C11—O1179.4 (2)
C2—C3—C4—C50.2 (5)C9—C10—C11—C120.8 (4)
C2—C3—C4—Br1177.9 (2)O1—C11—C12—C13178.4 (2)
C3—C4—C5—C60.1 (4)C10—C11—C12—C130.3 (4)
Br1—C4—C5—C6177.9 (2)C11—C12—C13—C81.2 (4)
C4—C5—C6—C10.2 (4)C9—C8—C13—C121.0 (4)
C2—C1—C6—C50.5 (4)N1—C8—C13—C12179.1 (2)
C7—C1—C6—C5177.0 (3)C1—C7—N1—C8178.2 (2)
C6—C1—C7—N1176.6 (3)C13—C8—N1—C7147.6 (3)
C2—C1—C7—N10.9 (4)C9—C8—N1—C734.5 (4)
C13—C8—C9—C100.1 (4)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C8–C13 ring.
D—H···AD—HH···AD···AD—H···A
O1—H1···N1i0.822.052.848 (3)164
C5—H5···Cg1ii0.932.893.374 (3)114
Symmetry codes: (i) x1/2, y, z+3/2; (ii) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC13H10BrNO
Mr276.13
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)295
a, b, c (Å)12.7035 (4), 10.3897 (3), 17.0899 (6)
V3)2255.62 (12)
Z8
Radiation typeMo Kα
µ (mm1)3.62
Crystal size (mm)0.20 × 0.16 × 0.15
Data collection
DiffractometerBruker Kappa APEXII CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.503, 0.581
No. of measured, independent and
observed [I > 2σ(I)] reflections
13273, 2670, 1710
Rint0.043
(sin θ/λ)max1)0.657
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.086, 1.00
No. of reflections2670
No. of parameters146
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.49, 0.40

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C8–C13 ring.
D—H···AD—HH···AD···AD—H···A
O1—H1···N1i0.822.052.848 (3)164
C5—H5···Cg1ii0.932.893.374 (3)114
Symmetry codes: (i) x1/2, y, z+3/2; (ii) x, y, z+1.
 

Acknowledgements

The authors wish to acknowledge the SAIF, IIT, Madras, for the data collection.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCui, C., Meng, Q. & Wang, Y. (2009). Acta Cryst. E65, o2472.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationEl Masry, A. H., Fahmy, H. H. & Abdelwahed, S. H. A. (2000). Molecules, 5, 1429–1438.  Web of Science CrossRef CAS Google Scholar
First citationFegade, J. D., Rane, S. S., Chaudhari, R. Y. & Patil, V. R. (2009). Digest J. Nanomater. Biostruct. 4, 145–154.  Google Scholar
First citationForoumadi, A., Samzadeh Kermani, A., Emami, S., Dehghan, G., Sorkhi, M., Arabsorkhi, F., Heidari, M. R., Abdollahi, M. & Shafiee, A. (2007). Bioorg. Med. Chem. Lett. 17, 6764–6769.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHodnett, E. M. & Dunn, W. J. (1970). J. Med. Chem. 13, 768–770.  CrossRef CAS PubMed Web of Science Google Scholar
First citationHu, W. & Zhou, W. (2004). Bioorg. Med. Chem. Lett. 14, 621–622.  Web of Science CrossRef PubMed CAS Google Scholar
First citationJada, S. R., Matthews, C., Saad, M. S., Hamzah, A. S., Lajis, N. H., Stevens, M. F. G. & Stanslas, J. (2008). Br. J. Pharmacol. 155, 641–654.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSamadhiya, S. & Halve, A. (2001). Orient J. Chem. 17, 119–122.  CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSingh, W. M. & Dash, B. C. (1988). Pesticides, 22, 33–37.  Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, Y., Fu, S., Zhang, J., Wang, X. & Wang, D. (2009). Acta Cryst. E65, o237.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds