organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N,N-Bis(2-pyridylmeth­yl)aniline

aThe State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
*Correspondence e-mail: jwxu@ciac.jl.cn, yangwei1988@ciac.jl.cn

(Received 30 December 2009; accepted 15 January 2010; online 30 January 2010)

In the title compound, C18H17N3, the two pyridyl rings make a dihedral angle of 54.55 (13)°. The dihedral angles between the phenyl ring and the two pyridyl rings are 73.61 (13) and 81.40 (13)°. In the crystal, weak inter­molecular C—H⋯π inter­actions are observed.

Related literature

For bis­(pyridin-2-ylmeth­yl)amine derivatives, see: Komatsu et al. (2007[Komatsu, K., Urano, Y., Kojima, H. & Nagano, T. (2007). J. Am. Chem. Soc. 129, 13447-13454.]); Royzen et al. (2006[Royzen, M., Durandin, A., Young, V. G., Geacintov, N. E. & Canary, J. W. (2006). J. Am. Chem. Soc. 128, 3854-3855.]); Xiang & Tong (2006[Xiang, Y. & Tong, A.-J. (2006). Org. Lett. 8, 1549-1552.]). For related structures, see: Nielsen et al. (2005[Nielsen, A., Bond, A. D. & McKenzie, C. J. (2005). Acta Cryst. E61, m478-m480.], 2007[Nielsen, A., Veltze, S., Bond, A. D. & McKenzie, C. J. (2007). Polyhedron, 26, 1649-1657.]); Bjernemose et al. (2003[Bjernemose, J., Hazell, A., McKenzie, C. J., Mahon, M. F., Nielsen, L. P., Raithby, P. R., Simonsen, O., Toftlund, H. & Wolny, J. A. (2003). Polyhedron, 22, 875-885.]); Hazell et al. (2000[Hazell, A., McKenzie, C. J. & Nielsen, L. P. (2000). Polyhedron, 19, 1333-1338.]); Ugozzoli et al. (2002[Ugozzoli, F., Massera, C., Lanfredi, A. M. M., Marsich, N. & Camus, A. (2002). Inorg. Chim. Acta, 340, 97-104.]). For the synthesis, see: Foxon et al. (2007[Foxon, S., Xu, J.-Y., Turba, S., Leibold, M., Hampel, F., Heinemann, F. W., Walter, O. W., Ūrtele, C., Holthausen, M. & Schindler, S. (2007). Eur. J. Inorg. Chem. 3, 429-443.]).

[Scheme 1]

Experimental

Crystal data
  • C18H17N3

  • Mr = 275.35

  • Monoclinic, P 21 /c

  • a = 11.4866 (19) Å

  • b = 16.811 (3) Å

  • c = 7.7930 (12) Å

  • β = 101.471 (3)°

  • V = 1474.8 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.26 × 0.17 × 0.12 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.981, Tmax = 0.991

  • 7541 measured reflections

  • 2591 independent reflections

  • 1251 reflections with I > 2σ(I)

  • Rint = 0.057

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.117

  • S = 0.93

  • 2591 reflections

  • 190 parameters

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.14 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C8–C12/N2 and C1–C6 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7ACg2i 0.97 2.98 (4) 3.825 (3) 146
C15—H15⋯Cg1ii 0.93 2.96 (3) 3.619 (4) 129
C17—H17⋯Cg2iii 0.93 2.65 (3) 3.530 (3) 159
Symmetry codes: (i) -x+1, -y+1, -z+2; (ii) -x, -y+1, -z+2; (iii) x, y, z+1.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Bis(pyridin-2-ylmethyl)amine derivatives are often used as zinc probes (Royzen et al., 2006; Komatsu et al., 2007; Xiang & Tong, 2006). The title compound, N,N-bis(pyridin-2-ylmethyl)aniline, has been also used as a ligand in metal complexes (Nielsen et al., 2005, 2007; Bjernemose et al., 2003; Hazell et al., 2000; Ugozzoli et al., 2002). Herein, we report the molecular and crystal structure of this compound. The molecule has three rings trending to different orientations, of which the dihedral angle between the two pyridyl rings is 54.55 (13)°, and the dihedral angles between the phenyl ring and the two pyridyl rings are 73.61 (13) and 81.40 (13)°. Intermolecular C—H···π interactions exist in the crystal, which connect molecules into a two-dimensional layer structure.

Related literature top

For bis(pyridin-2-ylmethyl)amine derivatives, see: Komatsu et al. (2007); Royzen et al. (2006); Xiang & Tong (2006). For related structures, see: Nielsen et al. (2005, 2007); Bjernemose et al. (2003); Hazell et al. (2000); Ugozzoli et al. (2002). For the synthesis, see: Foxon et al. (2007).

Experimental top

The title compound was synthesized according to previous reported literature (Foxon et al., 2007). Single crystals suitable for X-ray diffraction were obtained by slow evaporation of a solution of the title compound in acetone at room temperature.

Refinement top

H atoms were placed geometrically with C—H distances of 0.93–0.97 Å and refined using a riding model, with Uiso(H) = 1.2Ueq(C).

Structure description top

Bis(pyridin-2-ylmethyl)amine derivatives are often used as zinc probes (Royzen et al., 2006; Komatsu et al., 2007; Xiang & Tong, 2006). The title compound, N,N-bis(pyridin-2-ylmethyl)aniline, has been also used as a ligand in metal complexes (Nielsen et al., 2005, 2007; Bjernemose et al., 2003; Hazell et al., 2000; Ugozzoli et al., 2002). Herein, we report the molecular and crystal structure of this compound. The molecule has three rings trending to different orientations, of which the dihedral angle between the two pyridyl rings is 54.55 (13)°, and the dihedral angles between the phenyl ring and the two pyridyl rings are 73.61 (13) and 81.40 (13)°. Intermolecular C—H···π interactions exist in the crystal, which connect molecules into a two-dimensional layer structure.

For bis(pyridin-2-ylmethyl)amine derivatives, see: Komatsu et al. (2007); Royzen et al. (2006); Xiang & Tong (2006). For related structures, see: Nielsen et al. (2005, 2007); Bjernemose et al. (2003); Hazell et al. (2000); Ugozzoli et al. (2002). For the synthesis, see: Foxon et al. (2007).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level.
N,N-Bis(2-pyridylmethyl)aniline top
Crystal data top
C18H17N3F(000) = 584
Mr = 275.35Dx = 1.240 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 649 reflections
a = 11.4866 (19) Åθ = 2.4–19.7°
b = 16.811 (3) ŵ = 0.08 mm1
c = 7.7930 (12) ÅT = 293 K
β = 101.471 (3)°Block, colorless
V = 1474.8 (4) Å30.26 × 0.17 × 0.12 mm
Z = 4
Data collection top
Bruker SMART APEX CCD
diffractometer
2591 independent reflections
Radiation source: sealed tube1251 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.057
φ and ω scansθmax = 25.1°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1013
Tmin = 0.981, Tmax = 0.991k = 1919
7541 measured reflectionsl = 98
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.117H-atom parameters constrained
S = 0.93 w = 1/[σ2(Fo2) + (0.0459P)2]
where P = (Fo2 + 2Fc2)/3
2591 reflections(Δ/σ)max < 0.001
190 parametersΔρmax = 0.14 e Å3
0 restraintsΔρmin = 0.14 e Å3
Crystal data top
C18H17N3V = 1474.8 (4) Å3
Mr = 275.35Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.4866 (19) ŵ = 0.08 mm1
b = 16.811 (3) ÅT = 293 K
c = 7.7930 (12) Å0.26 × 0.17 × 0.12 mm
β = 101.471 (3)°
Data collection top
Bruker SMART APEX CCD
diffractometer
2591 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1251 reflections with I > 2σ(I)
Tmin = 0.981, Tmax = 0.991Rint = 0.057
7541 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.117H-atom parameters constrained
S = 0.93Δρmax = 0.14 e Å3
2591 reflectionsΔρmin = 0.14 e Å3
190 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.27837 (18)0.47311 (12)0.8924 (2)0.0521 (6)
N20.2502 (2)0.66652 (12)0.6656 (3)0.0633 (6)
N30.0590 (2)0.36999 (13)1.1010 (3)0.0649 (6)
C10.3652 (2)0.42824 (15)0.8353 (3)0.0472 (6)
C20.3695 (2)0.34558 (15)0.8561 (3)0.0559 (7)
H20.31300.32040.90740.067*
C30.4559 (3)0.30090 (16)0.8019 (3)0.0664 (8)
H30.45700.24610.81830.080*
C40.5403 (3)0.33561 (18)0.7243 (4)0.0667 (8)
H40.59820.30490.68770.080*
C50.5375 (2)0.41657 (18)0.7018 (3)0.0630 (8)
H50.59410.44090.64910.076*
C60.4515 (2)0.46266 (16)0.7564 (3)0.0553 (7)
H60.45150.51750.74010.066*
C70.2770 (2)0.55875 (14)0.8723 (3)0.0569 (7)
H7A0.35720.57840.91200.068*
H7B0.22830.58110.94870.068*
C80.2311 (2)0.58934 (15)0.6879 (3)0.0469 (6)
C90.1736 (2)0.54150 (14)0.5561 (3)0.0567 (7)
H90.16210.48780.57650.068*
C100.1332 (2)0.57366 (17)0.3930 (3)0.0648 (8)
H100.09400.54200.30170.078*
C110.1510 (3)0.65247 (19)0.3663 (4)0.0703 (9)
H110.12450.67580.25730.084*
C120.2089 (3)0.69592 (16)0.5048 (4)0.0730 (9)
H120.22070.74980.48660.088*
C130.1675 (2)0.43629 (15)0.9124 (3)0.0588 (7)
H13A0.14770.39550.82330.071*
H13B0.10550.47630.88890.071*
C140.1647 (2)0.39913 (13)1.0875 (3)0.0470 (7)
C150.0517 (3)0.33528 (16)1.2541 (5)0.0745 (9)
H150.02160.31531.26680.089*
C160.1452 (3)0.32745 (16)1.3924 (4)0.0713 (9)
H160.13600.30191.49460.086*
C170.2526 (3)0.35824 (15)1.3761 (4)0.0631 (8)
H170.31770.35481.46830.076*
C180.2633 (2)0.39451 (14)1.2210 (3)0.0538 (7)
H180.33570.41551.20670.065*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0523 (15)0.0480 (13)0.0571 (14)0.0000 (12)0.0131 (11)0.0074 (10)
N20.0811 (18)0.0502 (15)0.0608 (16)0.0035 (12)0.0198 (13)0.0024 (11)
N30.0521 (16)0.0707 (16)0.0754 (18)0.0112 (13)0.0209 (13)0.0024 (13)
C10.0477 (18)0.0510 (17)0.0402 (15)0.0018 (14)0.0025 (12)0.0056 (12)
C20.065 (2)0.0538 (18)0.0510 (17)0.0028 (15)0.0166 (14)0.0048 (13)
C30.078 (2)0.0572 (18)0.0641 (19)0.0088 (17)0.0151 (17)0.0007 (15)
C40.062 (2)0.075 (2)0.064 (2)0.0084 (17)0.0129 (15)0.0038 (15)
C50.0474 (19)0.081 (2)0.0606 (19)0.0089 (17)0.0098 (14)0.0056 (16)
C60.0490 (17)0.0583 (17)0.0554 (17)0.0073 (15)0.0027 (14)0.0089 (13)
C70.067 (2)0.0516 (17)0.0518 (17)0.0031 (14)0.0115 (14)0.0003 (12)
C80.0492 (17)0.0454 (16)0.0465 (16)0.0047 (13)0.0104 (12)0.0013 (13)
C90.0641 (19)0.0460 (15)0.0554 (18)0.0047 (14)0.0007 (14)0.0014 (14)
C100.060 (2)0.072 (2)0.0574 (19)0.0117 (16)0.0015 (15)0.0101 (15)
C110.082 (2)0.079 (2)0.053 (2)0.0183 (18)0.0200 (17)0.0141 (17)
C120.099 (3)0.0552 (18)0.072 (2)0.0088 (18)0.0345 (19)0.0170 (17)
C130.0511 (18)0.0672 (18)0.0574 (18)0.0035 (15)0.0087 (13)0.0072 (14)
C140.0452 (17)0.0453 (15)0.0528 (17)0.0010 (13)0.0156 (14)0.0046 (12)
C150.070 (2)0.071 (2)0.094 (3)0.0126 (18)0.043 (2)0.0042 (18)
C160.091 (3)0.0649 (19)0.067 (2)0.004 (2)0.037 (2)0.0013 (16)
C170.067 (2)0.0711 (19)0.0524 (19)0.0023 (17)0.0146 (15)0.0002 (14)
C180.0471 (18)0.0613 (18)0.0550 (18)0.0075 (14)0.0146 (15)0.0003 (14)
Geometric parameters (Å, º) top
N1—C11.393 (3)C7—H7B0.9700
N1—C71.448 (3)C8—C91.367 (3)
N1—C131.452 (3)C9—C101.374 (3)
N2—C81.333 (3)C9—H90.9300
N2—C121.343 (3)C10—C111.363 (3)
N3—C141.332 (3)C10—H100.9300
N3—C151.346 (3)C11—C121.362 (4)
C1—C61.392 (3)C11—H110.9300
C1—C21.399 (3)C12—H120.9300
C2—C31.376 (3)C13—C141.507 (3)
C2—H20.9300C13—H13A0.9700
C3—C41.372 (4)C13—H13B0.9700
C3—H30.9300C14—C181.379 (3)
C4—C51.372 (3)C15—C161.368 (4)
C4—H40.9300C15—H150.9300
C5—C61.388 (3)C16—C171.367 (4)
C5—H50.9300C16—H160.9300
C6—H60.9300C17—C181.381 (3)
C7—C81.519 (3)C17—H170.9300
C7—H7A0.9700C18—H180.9300
C1—N1—C7119.8 (2)C8—C9—H9120.4
C1—N1—C13120.2 (2)C10—C9—H9120.4
C7—N1—C13116.4 (2)C11—C10—C9119.3 (2)
C8—N2—C12116.3 (2)C11—C10—H10120.3
C14—N3—C15116.6 (2)C9—C10—H10120.3
C6—C1—N1122.3 (2)C12—C11—C10117.7 (3)
C6—C1—C2116.9 (3)C12—C11—H11121.1
N1—C1—C2120.8 (2)C10—C11—H11121.1
C3—C2—C1121.2 (3)N2—C12—C11124.6 (3)
C3—C2—H2119.4N2—C12—H12117.7
C1—C2—H2119.4C11—C12—H12117.7
C4—C3—C2121.3 (3)N1—C13—C14116.8 (2)
C4—C3—H3119.4N1—C13—H13A108.1
C2—C3—H3119.4C14—C13—H13A108.1
C3—C4—C5118.5 (3)N1—C13—H13B108.1
C3—C4—H4120.7C14—C13—H13B108.1
C5—C4—H4120.7H13A—C13—H13B107.3
C4—C5—C6121.0 (3)N3—C14—C18123.0 (2)
C4—C5—H5119.5N3—C14—C13114.1 (2)
C6—C5—H5119.5C18—C14—C13122.9 (2)
C5—C6—C1121.1 (3)N3—C15—C16124.2 (3)
C5—C6—H6119.5N3—C15—H15117.9
C1—C6—H6119.5C16—C15—H15117.9
N1—C7—C8115.68 (19)C17—C16—C15118.2 (3)
N1—C7—H7A108.4C17—C16—H16120.9
C8—C7—H7A108.4C15—C16—H16120.9
N1—C7—H7B108.4C16—C17—C18119.2 (3)
C8—C7—H7B108.4C16—C17—H17120.4
H7A—C7—H7B107.4C18—C17—H17120.4
N2—C8—C9122.8 (2)C14—C18—C17118.8 (3)
N2—C8—C7114.7 (2)C14—C18—H18120.6
C9—C8—C7122.5 (2)C17—C18—H18120.6
C8—C9—C10119.2 (2)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C8–C12/N2 and C1–C6 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C7—H7A···Cg2i0.972.98 (4)3.825 (3)146
C15—H15···Cg1ii0.932.96 (3)3.619 (4)129
C17—H17···Cg2iii0.932.65 (3)3.530 (3)159
Symmetry codes: (i) x+1, y+1, z+2; (ii) x, y+1, z+2; (iii) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC18H17N3
Mr275.35
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)11.4866 (19), 16.811 (3), 7.7930 (12)
β (°) 101.471 (3)
V3)1474.8 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.26 × 0.17 × 0.12
Data collection
DiffractometerBruker SMART APEX CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.981, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
7541, 2591, 1251
Rint0.057
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.117, 0.93
No. of reflections2591
No. of parameters190
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.14, 0.14

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2006), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C8–C12/N2 and C1–C6 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C7—H7A···Cg2i0.972.98 (4)3.825 (3)146
C15—H15···Cg1ii0.932.96 (3)3.619 (4)129
C17—H17···Cg2iii0.932.65 (3)3.530 (3)159
Symmetry codes: (i) x+1, y+1, z+2; (ii) x, y+1, z+2; (iii) x, y, z+1.
 

Acknowledgements

This work is supported by the State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Changchun, China.

References

First citationBjernemose, J., Hazell, A., McKenzie, C. J., Mahon, M. F., Nielsen, L. P., Raithby, P. R., Simonsen, O., Toftlund, H. & Wolny, J. A. (2003). Polyhedron, 22, 875–885.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFoxon, S., Xu, J.-Y., Turba, S., Leibold, M., Hampel, F., Heinemann, F. W., Walter, O. W., Ūrtele, C., Holthausen, M. & Schindler, S. (2007). Eur. J. Inorg. Chem. 3, 429–443.  Web of Science CSD CrossRef Google Scholar
First citationHazell, A., McKenzie, C. J. & Nielsen, L. P. (2000). Polyhedron, 19, 1333–1338.  Web of Science CSD CrossRef CAS Google Scholar
First citationKomatsu, K., Urano, Y., Kojima, H. & Nagano, T. (2007). J. Am. Chem. Soc. 129, 13447–13454.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNielsen, A., Bond, A. D. & McKenzie, C. J. (2005). Acta Cryst. E61, m478–m480.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNielsen, A., Veltze, S., Bond, A. D. & McKenzie, C. J. (2007). Polyhedron, 26, 1649–1657.  Web of Science CSD CrossRef CAS Google Scholar
First citationRoyzen, M., Durandin, A., Young, V. G., Geacintov, N. E. & Canary, J. W. (2006). J. Am. Chem. Soc. 128, 3854–3855.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUgozzoli, F., Massera, C., Lanfredi, A. M. M., Marsich, N. & Camus, A. (2002). Inorg. Chim. Acta, 340, 97–104.  Web of Science CSD CrossRef CAS Google Scholar
First citationXiang, Y. & Tong, A.-J. (2006). Org. Lett. 8, 1549–1552.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds