metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis{tris­­[3-(2-pyrid­yl)pyrazole]manganese(II)} dodeca­molybdosilicate hexa­hydrate

aCollege of Medicine, Henan University, Kaifeng 475003, People's Republic of China
*Correspondence e-mail: niubh_hu@163.com

(Received 20 December 2009; accepted 12 January 2010; online 27 January 2010)

The title compound, [Mn(C8H7N3)3]2[SiMo12O40]·6H2O, consists of an [SiMo12O40]4− heteropolyanion, lying on a centre of inversion, and a complex [Mn(C8H7N3)3]4+ cation. The MnII atom of the cation is hexa­coordinated in a distorted octa­hedral geometry by six N atoms from three chelating 3-(2-pyrid­yl)pyrazole ligands. In the heteropolyanion, the four O atoms of the tetra­hedral SiO4 group each half-occupy eight sites due to Si lying on the centre of inversion. N—H⋯O and O—H⋯O hydrogen bonding mediated by the water mol­ecules leads to a consolidation of the structure.

Related literature

For background to polyoxometalates, see: Pope & Müller (1991[Pope, M. T. & Müller, A. (1991). Angew. Chem. Int. Ed. 30, 34-38.]). For polyoxometalates modified with amines, see: Zhang, Dou et al. (2009[Zhang, X. T., Dou, J. M., Wei, P. H., Li, D. C., Li, B., Shi, C. W. & Hu, B. (2009). Inorg. Chim. Acta, 362, 3325-3332.]); Zhang, Wei, Shi et al. (2010a[Zhang, X., Wei, P., Shi, C., Li, B. & Hu, B. (2010a). Acta Cryst. E66, m26-m27.],b[Zhang, X., Wei, P., Shi, C., Li, B. & Hu, B. (2010b). Acta Cryst. E66, m174-m175.]); Zhang, Wei, Sun et al. (2009[Zhang, X. T., Wei, P. H., Sun, D. F., Ni, Z. H., Dou, J. M., Li, B., Shi, C. W. & Hu, B. (2009). Cryst. Growth Des. 9, 4424-4428.]); Zhang, Wei, Zhu et al. (2010[Zhang, X., Wei, P., Zhu, W., Li, B. & Hu, B. (2010). Acta Cryst. E66, m127-m128.]); Zhang, Yuan et al. (2010[Zhang, X., Yuan, D., Wei, P., Li, B. & Hu, B. (2010). Acta Cryst. E66, m152-m153.]). For another dodeca­molybdosilicate, see: Wu et al. (2003[Wu, C. D., Lu, C. Z., Chen, S. M., Zhuang, H. H. & Huang, J. S. (2003). Polyhedron, 22, 3091-3098.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn(C8H7N3)3]2[SiMo12O40]·6H2O

  • Mr = 2908.34

  • Monoclinic, C 2/c

  • a = 18.907 (4) Å

  • b = 16.385 (3) Å

  • c = 27.552 (6) Å

  • β = 105.09 (3)°

  • V = 8241 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.17 mm−1

  • T = 293 K

  • 0.12 × 0.10 × 0.08 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.780, Tmax = 0.845

  • 27737 measured reflections

  • 7045 independent reflections

  • 5381 reflections with I > 2σ(I)

  • Rint = 0.054

Refinement
  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.144

  • S = 1.01

  • 7045 reflections

  • 615 parameters

  • 9 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.13 e Å−3

  • Δρmin = −0.63 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N6—H6⋯O20 0.86 1.97 2.812 (12) 165
O1W—H1W⋯O2W 0.82 (5) 1.94 (3) 2.76 (3) 174 (12)
N9—H9A⋯O3Wi 0.86 2.13 2.98 (2) 170
O3W—H5W⋯O3ii 0.82 (6) 2.16 (4) 2.937 (15) 157 (10)
O2W—H3W⋯O11iii 0.82 (13) 2.48 (12) 3.046 (19) 127 (12)
O2W—H3WB⋯O16iv 0.9 (6) 2.4 (4) 3.14 (2) 158
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) x, y, z+1; (iii) [-x+1, y, -z+{\script{1\over 2}}]; (iv) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

There has been extensive interest in heteropolyoxometalates, owing to their fascinating properties and great potential applications in many fields (such as, catalysis, material science, medicine, and magnetochemistry) as well as their unusual topological properties (Pope et al., 1991). The organic amines, such as 3-(2-pyridyl)pyrazole and pyrazine, are used to effectively modify heteropolyoxomolybdates under hydrothermal condictions (Zhang et al., 2009a,b). Here, we describe the synthesis and structural characterization of the title compound.

As shown in Figure 1, the title compound consists of two subunits, viz. of a heteropolyanion [SiMo12O40]4- anion, a complex [Mn(C8H7N3)3]4+ cation, and six lattice water molecules. The MnII ion is Hexa-coordinated in a distorted octahedron by six N atoms from three chelating 3-(2-pyridyl)pyrazole ligands. The Mn—N bond lengths are in the range of 2.207 (9)—2.272 (9) Å. In the Keggin structure anion, each Mo atom is surrounded by six O atoms and the Si atom is located at the center of the anion. There exists four kinds of O atoms according to their coordination environment: Oa (O atoms in the SiO4 trahedron), Ob (bridging O atoms between two triplet groups of MoO6 octahedra), Oc (bridging O atoms within one triplet group of MoO6 octahedra) and Od (terminal O atoms). The Si—O bond distances are in the normal range of 1.587 (2)—1.667 (2) compared to reported ones (Wu et al., 2003). The Mo—O bond distances vary widely from 1.638 (10) to 2.444 (8) Å. The shortest Mo—O bonds are in the range of 1.638 (5)—1.665 (5) Å for the terminal oxygen atoms. The longest Mo—O lengths are in the range of 2.335 (3)—2.451 (8) Å for those oxygen atoms connected with both Mo and Si atoms. The Mo—O bond distances for the bridging oxygen atoms are from 1.809 (3) to 2.009 (1) Å. N—H···O and O—H···O hydrogen bonding between the neutral molecules and the water molecules leads to a consolidation of the structure (Fig. 2; Table 2).

Related literature top

For background to polyoxometalates, see: Pope & Müller (1991). For polyoxometalates modified with amines, see: Zhang, Dou et al. (2009); Zhang, Wei, Shi et al. (2010a,b); Zhang, Wei, Sun et al. (2009); Zhang, Wei, Zhu et al. (2010); Zhang, Yuan et al. (2010). For another dodecamolybdosilicate, see: Wu et al. (2003).

Experimental top

A mixture of 3-(2-pyridyl)pyrazole (1 mmoL 0.14 g), sodium molybdate (2 mmoL, 0.48 g), sodium silicate nonahydrate (0.2 mmoL, 0.05 g) and Manganese sulfate monohydrate (1 mmoL, 0.17 g) in 10 ml distilled water was sealed in a 25 ml Teflon-lined stainless steel autoclave and was kept at 433 K for three days. Colorless crystals suitable for the X-ray experiment were obtained. Anal. Calc. for C48H54Mn2Mo12N18O46Si: C 19.81, H 1.86, N 8.67%; Found: C 19.65, H 1.72, N 8.55%.

Refinement top

All hydrogen atoms bound to carbon were refined using a riding model with distance C—H = 0.93 Å, Uiso = 1.2Ueq (C) for aromatic atoms. The H atoms of the water molecule were located from difference density maps and were refined with d(O—H) = 0.83 (2) Å, and with a fixed Uiso of 0.80 Å2. In the SiO4 unit, all oxygen atoms are disordered and their positions were refined with split positions and an occupancy ratio of 1:1. In the final difference Fourier map the highest peak is 2.29 Å from atom H2W and the deepest hole is 0.93 A Å from atom Mo6. The highest peak is located in the voids of the crystal structure and may be associated with an additional water molecule. However, refinement of this position did not result in a reasonable model. Hence this position was excluded from the final refinement.

Structure description top

There has been extensive interest in heteropolyoxometalates, owing to their fascinating properties and great potential applications in many fields (such as, catalysis, material science, medicine, and magnetochemistry) as well as their unusual topological properties (Pope et al., 1991). The organic amines, such as 3-(2-pyridyl)pyrazole and pyrazine, are used to effectively modify heteropolyoxomolybdates under hydrothermal condictions (Zhang et al., 2009a,b). Here, we describe the synthesis and structural characterization of the title compound.

As shown in Figure 1, the title compound consists of two subunits, viz. of a heteropolyanion [SiMo12O40]4- anion, a complex [Mn(C8H7N3)3]4+ cation, and six lattice water molecules. The MnII ion is Hexa-coordinated in a distorted octahedron by six N atoms from three chelating 3-(2-pyridyl)pyrazole ligands. The Mn—N bond lengths are in the range of 2.207 (9)—2.272 (9) Å. In the Keggin structure anion, each Mo atom is surrounded by six O atoms and the Si atom is located at the center of the anion. There exists four kinds of O atoms according to their coordination environment: Oa (O atoms in the SiO4 trahedron), Ob (bridging O atoms between two triplet groups of MoO6 octahedra), Oc (bridging O atoms within one triplet group of MoO6 octahedra) and Od (terminal O atoms). The Si—O bond distances are in the normal range of 1.587 (2)—1.667 (2) compared to reported ones (Wu et al., 2003). The Mo—O bond distances vary widely from 1.638 (10) to 2.444 (8) Å. The shortest Mo—O bonds are in the range of 1.638 (5)—1.665 (5) Å for the terminal oxygen atoms. The longest Mo—O lengths are in the range of 2.335 (3)—2.451 (8) Å for those oxygen atoms connected with both Mo and Si atoms. The Mo—O bond distances for the bridging oxygen atoms are from 1.809 (3) to 2.009 (1) Å. N—H···O and O—H···O hydrogen bonding between the neutral molecules and the water molecules leads to a consolidation of the structure (Fig. 2; Table 2).

For background to polyoxometalates, see: Pope & Müller (1991). For polyoxometalates modified with amines, see: Zhang, Dou et al. (2009); Zhang, Wei, Shi et al. (2010a,b); Zhang, Wei, Sun et al. (2009); Zhang, Wei, Zhu et al. (2010); Zhang, Yuan et al. (2010). For another dodecamolybdosilicate, see: Wu et al. (2003).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The cation and anion of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level; H atoms are given as spheres of arbitrary radius.
[Figure 2] Fig. 2. The crystal packing of the title compound, displayed with hydrogen bonds as dashed lines.
Bis{tris[3-(2-pyridyl)pyrazole]manganese(II)} dodecamolybdosilicate hexahydrate top
Crystal data top
[Mn(C8H7N3)3]2[SiMo12O40]·6H2OF(000) = 5616
Mr = 2908.34Dx = 2.344 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 7045 reflections
a = 18.907 (4) Åθ = 1.5–25.0°
b = 16.385 (3) ŵ = 2.17 mm1
c = 27.552 (6) ÅT = 293 K
β = 105.09 (3)°Block, pink
V = 8241 (3) Å30.12 × 0.10 × 0.08 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
7045 independent reflections
Radiation source: fine-focus sealed tube5381 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.054
phi and ω scansθmax = 25.0°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 2222
Tmin = 0.780, Tmax = 0.845k = 1919
27737 measured reflectionsl = 3232
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.144H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.060P)2 + 127.9076P]
where P = (Fo2 + 2Fc2)/3
7045 reflections(Δ/σ)max = 0.001
615 parametersΔρmax = 1.13 e Å3
9 restraintsΔρmin = 0.63 e Å3
Crystal data top
[Mn(C8H7N3)3]2[SiMo12O40]·6H2OV = 8241 (3) Å3
Mr = 2908.34Z = 4
Monoclinic, C2/cMo Kα radiation
a = 18.907 (4) ŵ = 2.17 mm1
b = 16.385 (3) ÅT = 293 K
c = 27.552 (6) Å0.12 × 0.10 × 0.08 mm
β = 105.09 (3)°
Data collection top
Bruker APEXII CCD
diffractometer
7045 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
5381 reflections with I > 2σ(I)
Tmin = 0.780, Tmax = 0.845Rint = 0.054
27737 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0599 restraints
wR(F2) = 0.144H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.060P)2 + 127.9076P]
where P = (Fo2 + 2Fc2)/3
7045 reflectionsΔρmax = 1.13 e Å3
615 parametersΔρmin = 0.63 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Si10.25000.25000.00000.0238 (6)
Mn80.20275 (8)0.32148 (10)0.30305 (6)0.0499 (4)
Mo10.35094 (4)0.40389 (5)0.07736 (3)0.0410 (2)
Mo20.41814 (4)0.31787 (6)0.01901 (3)0.0438 (2)
Mo30.17562 (5)0.34714 (6)0.08913 (3)0.0440 (2)
Mo40.41640 (4)0.20104 (6)0.08819 (3)0.0469 (2)
Mo50.19369 (5)0.45425 (5)0.01788 (4)0.0468 (2)
Mo60.24655 (6)0.14836 (6)0.11242 (3)0.0511 (3)
C10.0885 (6)0.2487 (7)0.2033 (5)0.062 (3)
H10.08350.30290.19300.075*
C20.0494 (8)0.1908 (11)0.1719 (6)0.088 (4)
H20.01880.20530.14080.106*
C30.0563 (8)0.1110 (9)0.1870 (6)0.091 (5)
H30.03090.06970.16660.109*
C40.1015 (8)0.0941 (9)0.2331 (6)0.088 (4)
H40.10560.04060.24480.105*
C50.1400 (6)0.1527 (7)0.2617 (4)0.057 (3)
C60.1915 (6)0.1368 (7)0.3104 (4)0.054 (3)
C70.2133 (8)0.0644 (8)0.3366 (5)0.078 (4)
H70.19540.01240.32690.094*
C80.2654 (8)0.0840 (8)0.3787 (5)0.080 (4)
H80.29040.04830.40360.096*
C90.1679 (7)0.4862 (7)0.2345 (5)0.063 (3)
H90.19760.46500.21550.075*
C100.1422 (7)0.5620 (8)0.2259 (5)0.068 (3)
H100.15550.59300.20140.082*
C110.0997 (9)0.5939 (12)0.2501 (7)0.101 (5)
H110.08210.64660.24260.122*
C120.0815 (7)0.5535 (10)0.2844 (7)0.090 (5)
H120.05080.57640.30210.109*
C130.1085 (6)0.4732 (8)0.2952 (5)0.063 (3)
C140.0871 (6)0.4282 (8)0.3333 (4)0.059 (3)
C150.0374 (8)0.4441 (11)0.3619 (6)0.096 (5)
H150.00740.48940.36070.115*
C160.0447 (7)0.3695 (14)0.3953 (6)0.113 (7)
H160.01940.35820.41920.135*
C170.2995 (6)0.3995 (6)0.4069 (4)0.048 (2)
H170.25670.39380.41740.057*
C180.3587 (7)0.4342 (7)0.4391 (4)0.060 (3)
H180.35590.45310.47030.072*
C190.4236 (6)0.4412 (7)0.4246 (4)0.054 (3)
H190.46510.46400.44600.065*
C200.4246 (5)0.4140 (7)0.3785 (4)0.054 (3)
H200.46740.41820.36810.065*
C210.3615 (5)0.3793 (6)0.3461 (4)0.042 (2)
C220.3585 (5)0.3527 (6)0.2960 (4)0.045 (2)
C230.4141 (6)0.3462 (9)0.2710 (4)0.068 (3)
H230.46350.35830.28350.082*
C240.3795 (7)0.3180 (9)0.2241 (5)0.072 (4)
H240.40120.30880.19790.087*
N10.1336 (5)0.2310 (6)0.2482 (4)0.054 (2)
N20.2303 (5)0.1991 (6)0.3359 (3)0.056 (2)
N30.2743 (5)0.1662 (7)0.3777 (4)0.064 (3)
N40.2995 (4)0.3733 (5)0.3613 (3)0.0421 (19)
N50.2962 (5)0.3277 (5)0.2663 (3)0.051 (2)
N60.3102 (5)0.3063 (6)0.2225 (3)0.061 (3)
H60.27800.28750.19700.073*
N70.1515 (5)0.4406 (6)0.2700 (4)0.064 (3)
N80.1227 (5)0.3571 (6)0.3462 (4)0.060 (3)
N90.0967 (6)0.3225 (8)0.3825 (4)0.084 (4)
H9A0.11110.27610.39600.101*
O10.4018 (5)0.2154 (5)0.0598 (4)0.109 (4)
O20.3538 (5)0.3658 (5)0.0743 (4)0.106 (4)
O30.4979 (4)0.3440 (5)0.0290 (3)0.062 (2)
O40.4530 (5)0.2433 (5)0.0359 (3)0.071 (2)
O50.4039 (5)0.3952 (5)0.0236 (3)0.073 (2)
O60.4010 (4)0.4783 (5)0.1107 (3)0.066 (2)
O70.4045 (5)0.3127 (5)0.1067 (3)0.075 (2)
O80.4923 (4)0.1803 (5)0.1310 (3)0.069 (2)
O90.3467 (5)0.1770 (5)0.1265 (4)0.083 (3)
O100.2789 (4)0.3891 (6)0.1087 (3)0.076 (2)
O110.3948 (5)0.1018 (6)0.0552 (4)0.096 (4)
O120.2946 (6)0.1829 (6)0.0405 (4)0.028 (2)0.50
O130.3293 (6)0.2834 (6)0.0270 (4)0.025 (2)0.50
O140.2846 (4)0.4671 (6)0.0256 (3)0.083 (3)
O150.2325 (5)0.4385 (6)0.0712 (4)0.103 (4)
O160.1658 (4)0.5493 (4)0.0260 (3)0.068 (2)
O170.2006 (6)0.2371 (6)0.0415 (4)0.027 (2)0.50
O180.1577 (4)0.4246 (6)0.0403 (3)0.081 (3)
O190.1482 (4)0.3937 (5)0.1343 (3)0.063 (2)
O200.2231 (5)0.2542 (5)0.1287 (3)0.087 (3)
O210.2460 (4)0.0986 (5)0.1638 (2)0.059 (2)
O220.2488 (6)0.3354 (6)0.0285 (4)0.025 (2)0.50
O1W0.3845 (6)0.2182 (8)0.4579 (5)0.114 (4)
O2W0.4625 (13)0.0738 (17)0.4742 (14)0.292 (16)
O3W0.6311 (8)0.3371 (13)0.9351 (6)0.195 (8)
H1W0.407 (2)0.175 (2)0.465 (4)0.180*
H2W0.352 (5)0.225 (6)0.473 (4)0.180*
H3W0.483 (7)0.059 (9)0.453 (4)0.380*
H3WB0.420 (14)0.07 (5)0.48 (3)0.380*
H5W0.590 (2)0.348 (7)0.938 (3)0.280*
H6W0.636 (5)0.343 (9)0.9065 (17)0.280*
H3A0.312 (3)0.203 (4)0.396 (4)0.07 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Si10.0229 (15)0.0222 (16)0.0245 (16)0.0009 (13)0.0027 (12)0.0004 (12)
Mn80.0404 (8)0.0423 (9)0.0661 (11)0.0054 (7)0.0121 (8)0.0092 (8)
Mo10.0326 (4)0.0433 (5)0.0447 (5)0.0086 (4)0.0061 (4)0.0126 (4)
Mo20.0284 (4)0.0507 (5)0.0529 (5)0.0092 (4)0.0119 (4)0.0028 (4)
Mo30.0469 (5)0.0486 (5)0.0361 (5)0.0103 (4)0.0103 (4)0.0108 (4)
Mo40.0301 (4)0.0578 (6)0.0447 (5)0.0007 (4)0.0046 (4)0.0053 (4)
Mo50.0527 (5)0.0300 (4)0.0614 (6)0.0079 (4)0.0214 (4)0.0026 (4)
Mo60.0720 (6)0.0474 (5)0.0323 (5)0.0099 (5)0.0104 (4)0.0065 (4)
C10.056 (7)0.057 (7)0.066 (8)0.000 (6)0.002 (6)0.010 (6)
C20.075 (9)0.111 (13)0.072 (9)0.009 (9)0.006 (7)0.018 (9)
C30.090 (10)0.068 (10)0.102 (12)0.022 (8)0.000 (9)0.038 (9)
C40.088 (8)0.070 (7)0.091 (8)0.016 (6)0.002 (6)0.009 (6)
C50.055 (7)0.053 (7)0.066 (7)0.010 (5)0.019 (6)0.016 (6)
C60.063 (7)0.045 (6)0.060 (7)0.010 (5)0.028 (6)0.005 (5)
C70.098 (10)0.063 (9)0.077 (9)0.015 (7)0.029 (8)0.000 (7)
C80.111 (12)0.049 (8)0.077 (9)0.004 (7)0.021 (8)0.019 (7)
C90.073 (8)0.050 (7)0.073 (8)0.003 (6)0.033 (7)0.018 (6)
C100.077 (7)0.062 (7)0.059 (6)0.004 (6)0.007 (5)0.000 (5)
C110.099 (9)0.102 (9)0.098 (9)0.008 (7)0.016 (7)0.019 (8)
C120.051 (8)0.101 (12)0.102 (12)0.009 (8)0.009 (8)0.036 (10)
C130.041 (6)0.062 (8)0.076 (8)0.009 (6)0.005 (6)0.025 (6)
C140.042 (5)0.074 (7)0.060 (6)0.003 (5)0.009 (5)0.017 (5)
C150.072 (7)0.112 (9)0.097 (8)0.009 (7)0.010 (6)0.041 (7)
C160.041 (7)0.23 (2)0.075 (10)0.066 (10)0.036 (7)0.070 (12)
C170.054 (6)0.047 (6)0.048 (6)0.007 (5)0.021 (5)0.017 (5)
C180.077 (8)0.047 (6)0.049 (6)0.015 (6)0.003 (6)0.013 (5)
C190.050 (6)0.058 (7)0.042 (6)0.014 (5)0.010 (5)0.011 (5)
C200.031 (5)0.079 (8)0.046 (6)0.001 (5)0.001 (4)0.002 (6)
C210.040 (5)0.038 (5)0.048 (6)0.003 (4)0.011 (4)0.002 (4)
C220.044 (6)0.048 (6)0.040 (5)0.001 (5)0.007 (4)0.002 (5)
C230.044 (6)0.114 (11)0.052 (7)0.000 (7)0.022 (5)0.016 (7)
C240.067 (8)0.103 (11)0.049 (7)0.000 (7)0.021 (6)0.004 (7)
N10.042 (5)0.054 (6)0.065 (6)0.007 (4)0.010 (4)0.008 (5)
N20.050 (5)0.054 (6)0.061 (6)0.005 (4)0.007 (5)0.002 (5)
N30.062 (6)0.075 (7)0.052 (6)0.014 (5)0.012 (5)0.002 (5)
N40.039 (4)0.040 (5)0.050 (5)0.007 (4)0.016 (4)0.011 (4)
N50.046 (5)0.062 (6)0.041 (5)0.000 (4)0.005 (4)0.007 (4)
N60.066 (6)0.079 (7)0.033 (5)0.004 (5)0.005 (4)0.012 (5)
N70.042 (5)0.056 (6)0.089 (7)0.000 (5)0.009 (5)0.010 (6)
N80.041 (5)0.073 (7)0.071 (6)0.018 (5)0.019 (5)0.016 (5)
N90.066 (7)0.092 (9)0.088 (8)0.042 (6)0.008 (6)0.009 (7)
O10.101 (7)0.039 (5)0.129 (8)0.015 (5)0.075 (6)0.013 (5)
O20.108 (7)0.042 (5)0.116 (8)0.028 (5)0.066 (6)0.027 (5)
O30.048 (4)0.063 (5)0.088 (6)0.005 (4)0.041 (4)0.003 (4)
O40.108 (6)0.058 (4)0.060 (4)0.031 (4)0.044 (4)0.012 (4)
O50.107 (6)0.062 (5)0.061 (5)0.042 (4)0.043 (4)0.013 (4)
O60.077 (5)0.060 (5)0.057 (5)0.024 (4)0.013 (4)0.024 (4)
O70.111 (6)0.065 (5)0.068 (5)0.023 (4)0.058 (4)0.010 (4)
O80.054 (5)0.092 (6)0.049 (5)0.023 (4)0.007 (4)0.003 (4)
O90.091 (5)0.083 (5)0.095 (6)0.043 (4)0.059 (5)0.042 (5)
O100.042 (4)0.113 (6)0.072 (5)0.012 (4)0.016 (4)0.039 (5)
O110.103 (7)0.113 (8)0.099 (7)0.067 (6)0.073 (6)0.068 (6)
O120.032 (6)0.019 (6)0.033 (6)0.003 (5)0.007 (5)0.008 (5)
O130.025 (6)0.020 (6)0.029 (6)0.006 (4)0.008 (5)0.002 (4)
O140.049 (4)0.127 (7)0.074 (5)0.019 (4)0.021 (4)0.051 (5)
O150.081 (6)0.133 (8)0.126 (8)0.073 (6)0.080 (6)0.085 (7)
O160.055 (5)0.035 (4)0.110 (7)0.012 (3)0.013 (4)0.017 (4)
O170.022 (5)0.030 (6)0.024 (6)0.000 (5)0.000 (4)0.003 (5)
O180.040 (4)0.123 (6)0.075 (5)0.006 (4)0.010 (4)0.038 (5)
O190.050 (4)0.087 (6)0.056 (5)0.002 (4)0.023 (4)0.030 (4)
O200.084 (5)0.050 (4)0.091 (6)0.001 (4)0.040 (4)0.007 (4)
O210.072 (5)0.071 (5)0.034 (4)0.009 (4)0.013 (3)0.011 (4)
O220.031 (6)0.026 (6)0.020 (5)0.006 (5)0.008 (5)0.005 (4)
O1W0.079 (8)0.144 (11)0.106 (9)0.012 (7)0.003 (6)0.000 (8)
O2W0.22 (2)0.23 (2)0.51 (5)0.002 (18)0.26 (3)0.08 (3)
O3W0.207 (17)0.226 (19)0.208 (18)0.037 (15)0.153 (15)0.054 (15)
Geometric parameters (Å, º) top
Si1—O131.587 (10)C4—C51.332 (16)
Si1—O13i1.587 (10)C4—H40.9300
Si1—O22i1.607 (10)C5—N11.332 (14)
Si1—O221.607 (10)C5—C61.462 (16)
Si1—O12i1.635 (11)C6—N21.343 (13)
Si1—O121.635 (11)C6—C71.395 (17)
Si1—O17i1.667 (11)C7—C81.352 (18)
Si1—O171.667 (11)C7—H70.9300
Mn8—N22.207 (9)C8—N31.358 (15)
Mn8—N82.232 (9)C8—H80.9300
Mn8—N52.255 (9)C9—N71.330 (15)
Mn8—N72.262 (10)C9—C101.333 (16)
Mn8—N42.262 (8)C9—H90.9300
Mn8—N12.272 (9)C10—C111.281 (19)
Mo1—O61.665 (7)C10—H100.9300
Mo1—O101.809 (7)C11—C121.27 (2)
Mo1—O71.866 (8)C11—H110.9300
Mo1—O141.935 (8)C12—C131.414 (19)
Mo1—O51.998 (7)C12—H120.9300
Mo1—O222.334 (10)C13—N71.312 (15)
Mo1—O132.386 (10)C13—C141.426 (18)
Mo2—O31.659 (7)C14—N81.347 (15)
Mo2—O51.794 (7)C14—C151.398 (19)
Mo2—O21.858 (8)C15—C161.51 (2)
Mo2—O41.922 (8)C15—H150.9300
Mo2—O11.999 (8)C16—N91.364 (19)
Mo2—O17i2.348 (10)C16—H160.9300
Mo2—O132.421 (10)C17—N41.328 (12)
Mo3—O191.655 (7)C17—C181.359 (15)
Mo3—O1i1.797 (8)C17—H170.9300
Mo3—O181.816 (8)C18—C191.390 (16)
Mo3—O201.950 (8)C18—H180.9300
Mo3—O102.007 (8)C19—C201.349 (14)
Mo3—O172.349 (11)C19—H190.9300
Mo3—O222.439 (10)C20—C211.410 (13)
Mo4—O81.639 (7)C20—H200.9300
Mo4—O111.856 (8)C21—N41.348 (11)
Mo4—O41.886 (8)C21—C221.435 (13)
Mo4—O71.928 (8)C22—N51.313 (12)
Mo4—O91.932 (8)C22—C231.403 (14)
Mo4—O122.355 (10)C23—C241.367 (16)
Mo4—O132.434 (10)C23—H230.9300
Mo5—O161.641 (7)C24—N61.315 (15)
Mo5—O151.825 (8)C24—H240.9300
Mo5—O141.834 (8)N2—N31.344 (12)
Mo5—O11i1.951 (8)N3—H3A0.97 (8)
Mo5—O181.960 (8)N5—N61.346 (11)
Mo5—O12i2.359 (10)N6—H60.8600
Mo5—O222.413 (11)N8—N91.348 (14)
Mo6—O211.637 (7)N9—H9A0.8600
Mo6—O201.873 (8)O1—Mo3i1.797 (8)
Mo6—O91.890 (8)O2—Mo6i1.929 (8)
Mo6—O2i1.929 (8)O11—Mo5i1.951 (8)
Mo6—O15i1.925 (8)O12—Mo5i2.359 (10)
Mo6—O172.409 (10)O13—O221.753 (15)
Mo6—O122.451 (11)O15—Mo6i1.925 (8)
C1—N11.340 (14)O17—Mo2i2.348 (10)
C1—C21.364 (17)O1W—H1W0.82 (5)
C1—H10.9300O1W—H2W0.83 (10)
C2—C31.37 (2)O2W—H3W0.82 (13)
C2—H20.9300O2W—H3WB0.9 (6)
C3—C41.361 (19)O3W—H5W0.82 (6)
C3—H30.9300O3W—H6W0.82 (7)
O13—Si1—O13i180.0 (12)O21—Mo6—O17157.0 (4)
O13—Si1—O22i113.4 (5)O20—Mo6—O1765.0 (4)
O13i—Si1—O22i66.6 (5)O9—Mo6—O1798.5 (4)
O13—Si1—O2266.6 (5)O2i—Mo6—O1762.3 (4)
O13i—Si1—O22113.4 (5)O15i—Mo6—O1793.1 (5)
O22i—Si1—O22180.0 (9)O21—Mo6—O12154.4 (4)
O13—Si1—O12i110.2 (5)O20—Mo6—O1298.0 (4)
O13i—Si1—O12i69.8 (5)O9—Mo6—O1263.1 (4)
O22i—Si1—O12i108.7 (5)O2i—Mo6—O1296.1 (4)
O22—Si1—O12i71.3 (5)O15i—Mo6—O1261.2 (4)
O13—Si1—O1269.8 (5)O17—Mo6—O1248.4 (4)
O13i—Si1—O12110.2 (5)N1—C1—C2123.1 (12)
O22i—Si1—O1271.3 (5)N1—C1—H1118.5
O22—Si1—O12108.7 (5)C2—C1—H1118.5
O12i—Si1—O12180.0 (12)C1—C2—C3118.5 (14)
O13—Si1—O17i69.5 (5)C1—C2—H2120.7
O13i—Si1—O17i110.5 (5)C3—C2—H2120.7
O22i—Si1—O17i72.1 (5)C4—C3—C2117.7 (13)
O22—Si1—O17i107.9 (5)C4—C3—H3121.2
O12i—Si1—O17i74.2 (5)C2—C3—H3121.2
O12—Si1—O17i105.8 (5)C5—C4—C3121.3 (14)
O13—Si1—O17110.5 (5)C5—C4—H4119.4
O13i—Si1—O1769.5 (5)C3—C4—H4119.4
O22i—Si1—O17107.9 (5)N1—C5—C4122.2 (12)
O22—Si1—O1772.1 (5)N1—C5—C6114.7 (9)
O12i—Si1—O17105.8 (5)C4—C5—C6123.1 (12)
O12—Si1—O1774.2 (5)N2—C6—C7109.1 (11)
O17i—Si1—O17180.0 (9)N2—C6—C5119.2 (10)
N2—Mn8—N898.0 (4)C7—C6—C5131.5 (11)
N2—Mn8—N595.6 (3)C8—C7—C6107.0 (12)
N8—Mn8—N5161.1 (3)C8—C7—H7126.5
N2—Mn8—N7168.5 (3)C6—C7—H7126.5
N8—Mn8—N773.2 (4)C7—C8—N3106.5 (12)
N5—Mn8—N794.8 (3)C7—C8—H8126.8
N2—Mn8—N489.4 (3)N3—C8—H8126.8
N8—Mn8—N493.4 (3)N7—C9—C10120.7 (11)
N5—Mn8—N473.6 (3)N7—C9—H9119.6
N7—Mn8—N498.3 (3)C10—C9—H9119.6
N2—Mn8—N173.3 (3)C11—C10—C9122.4 (15)
N8—Mn8—N1100.0 (3)C11—C10—H10118.8
N5—Mn8—N196.5 (3)C9—C10—H10118.8
N7—Mn8—N1100.6 (3)C12—C11—C10120.1 (19)
N4—Mn8—N1159.4 (3)C12—C11—H11119.9
O6—Mo1—O10103.1 (4)C10—C11—H11119.9
O6—Mo1—O7100.4 (4)C11—C12—C13119.2 (16)
O10—Mo1—O794.4 (4)C11—C12—H12120.4
O6—Mo1—O14100.4 (4)C13—C12—H12120.4
O10—Mo1—O1489.9 (3)N7—C13—C12120.4 (14)
O7—Mo1—O14157.2 (4)N7—C13—C14120.9 (11)
O6—Mo1—O597.9 (4)C12—C13—C14118.7 (13)
O10—Mo1—O5158.4 (4)N8—C14—C15112.1 (13)
O7—Mo1—O586.8 (3)N8—C14—C13115.1 (10)
O14—Mo1—O581.2 (3)C15—C14—C13132.8 (14)
O6—Mo1—O22159.5 (4)C14—C15—C16102.9 (13)
O10—Mo1—O2266.3 (4)C14—C15—H15128.6
O7—Mo1—O2298.0 (4)C16—C15—H15128.6
O14—Mo1—O2263.4 (4)N9—C16—C15104.9 (12)
O5—Mo1—O2292.1 (4)N9—C16—H16127.6
O6—Mo1—O13155.9 (4)C15—C16—H16127.5
O10—Mo1—O1397.4 (4)N4—C17—C18123.3 (10)
O7—Mo1—O1365.2 (4)N4—C17—H17118.4
O14—Mo1—O1392.0 (4)C18—C17—H17118.4
O5—Mo1—O1363.5 (4)C17—C18—C19119.1 (10)
O22—Mo1—O1343.6 (4)C17—C18—H18120.5
O3—Mo2—O5102.9 (4)C19—C18—H18120.5
O3—Mo2—O2100.6 (5)C20—C19—C18118.2 (10)
O5—Mo2—O293.5 (4)C20—C19—H19120.9
O3—Mo2—O498.9 (4)C18—C19—H19120.9
O5—Mo2—O490.8 (3)C19—C20—C21120.8 (10)
O2—Mo2—O4158.6 (5)C19—C20—H20119.6
O3—Mo2—O197.9 (4)C21—C20—H20119.6
O5—Mo2—O1158.9 (5)N4—C21—C20119.6 (9)
O2—Mo2—O185.5 (3)N4—C21—C22117.2 (9)
O4—Mo2—O183.1 (4)C20—C21—C22123.2 (9)
O3—Mo2—O17i154.7 (4)N5—C22—C23109.6 (9)
O5—Mo2—O17i98.5 (4)N5—C22—C21119.9 (9)
O2—Mo2—O17i64.5 (4)C23—C22—C21130.5 (9)
O4—Mo2—O17i94.2 (4)C24—C23—C22104.8 (10)
O1—Mo2—O17i62.1 (4)C24—C23—H23127.6
O3—Mo2—O13158.8 (4)C22—C23—H23127.6
O5—Mo2—O1365.2 (4)N6—C24—C23107.8 (11)
O2—Mo2—O1397.7 (5)N6—C24—H24126.1
O4—Mo2—O1365.3 (4)C23—C24—H24126.1
O1—Mo2—O1394.1 (5)C5—N1—C1117.1 (10)
O17i—Mo2—O1345.8 (4)C5—N1—Mn8116.6 (7)
O19—Mo3—O1i102.9 (5)C1—N1—Mn8126.3 (8)
O19—Mo3—O18101.6 (4)C6—N2—N3106.0 (9)
O1i—Mo3—O1895.3 (4)C6—N2—Mn8115.9 (7)
O19—Mo3—O2097.4 (4)N3—N2—Mn8138.0 (7)
O1i—Mo3—O2090.5 (4)N2—N3—C8111.4 (10)
O18—Mo3—O20158.4 (4)N2—N3—H3A114 (7)
O19—Mo3—O1096.5 (4)C8—N3—H3A133 (6)
O1i—Mo3—O10159.6 (5)C17—N4—C21119.0 (8)
O18—Mo3—O1086.6 (3)C17—N4—Mn8126.4 (6)
O20—Mo3—O1080.9 (4)C21—N4—Mn8114.5 (6)
O19—Mo3—O17157.3 (4)C22—N5—N6106.6 (8)
O1i—Mo3—O1764.5 (4)C22—N5—Mn8114.5 (7)
O18—Mo3—O1798.6 (4)N6—N5—Mn8138.6 (7)
O20—Mo3—O1765.3 (4)C24—N6—N5111.1 (9)
O10—Mo3—O1795.1 (4)C24—N6—H6124.4
O19—Mo3—O22153.8 (4)N5—N6—H6124.4
O1i—Mo3—O22100.8 (5)C13—N7—C9117.1 (11)
O18—Mo3—O2265.0 (4)C13—N7—Mn8113.4 (9)
O20—Mo3—O2293.4 (4)C9—N7—Mn8128.6 (8)
O10—Mo3—O2261.6 (3)C14—N8—N9107.8 (10)
O17—Mo3—O2247.5 (4)C14—N8—Mn8116.6 (8)
O8—Mo4—O11102.2 (5)N9—N8—Mn8135.6 (9)
O8—Mo4—O4101.5 (4)N8—N9—C16112.4 (13)
O11—Mo4—O491.5 (4)N8—N9—H9A123.8
O8—Mo4—O798.4 (4)C16—N9—H9A123.8
O11—Mo4—O7159.2 (5)Mo3i—O1—Mo2136.1 (6)
O4—Mo4—O786.8 (3)Mo2—O2—Mo6i137.5 (7)
O8—Mo4—O999.1 (4)Mo4—O4—Mo2135.7 (5)
O11—Mo4—O989.7 (3)Mo2—O5—Mo1136.4 (5)
O4—Mo4—O9158.6 (4)Mo1—O7—Mo4137.1 (5)
O7—Mo4—O984.6 (3)Mo6—O9—Mo4136.7 (5)
O8—Mo4—O12157.2 (4)Mo1—O10—Mo3135.9 (5)
O11—Mo4—O1263.8 (4)Mo4—O11—Mo5i136.0 (6)
O4—Mo4—O1296.9 (4)Si1—O12—Mo4123.5 (6)
O7—Mo4—O1295.9 (4)Si1—O12—Mo5i121.8 (5)
O9—Mo4—O1264.6 (4)Mo4—O12—Mo5i97.0 (4)
O8—Mo4—O13157.1 (4)Si1—O12—Mo6118.3 (5)
O11—Mo4—O1397.1 (4)Mo4—O12—Mo695.3 (4)
O4—Mo4—O1365.4 (3)Mo5i—O12—Mo694.2 (4)
O7—Mo4—O1363.4 (4)Si1—O13—O2257.3 (5)
O9—Mo4—O1393.2 (4)Si1—O13—Mo1123.8 (6)
O12—Mo4—O1345.3 (3)O22—O13—Mo166.6 (5)
O16—Mo5—O15101.9 (5)Si1—O13—Mo2122.3 (5)
O16—Mo5—O14101.2 (4)O22—O13—Mo2128.5 (6)
O15—Mo5—O1492.2 (4)Mo1—O13—Mo294.2 (3)
O16—Mo5—O11i100.0 (4)Si1—O13—Mo4121.4 (5)
O15—Mo5—O11i88.8 (3)O22—O13—Mo4133.5 (6)
O14—Mo5—O11i158.1 (5)Mo1—O13—Mo494.2 (4)
O16—Mo5—O18100.3 (4)Mo2—O13—Mo493.2 (4)
O15—Mo5—O18157.4 (5)Mo5—O14—Mo1137.5 (5)
O14—Mo5—O1887.7 (3)Mo5—O15—Mo6i140.1 (6)
O11i—Mo5—O1883.2 (4)Si1—O17—Mo3121.1 (5)
O16—Mo5—O12i156.5 (4)Si1—O17—Mo2i122.3 (5)
O15—Mo5—O12i64.4 (4)Mo3—O17—Mo2i97.1 (4)
O14—Mo5—O12i98.4 (4)Si1—O17—Mo6119.0 (5)
O11i—Mo5—O12i62.5 (4)Mo3—O17—Mo695.3 (4)
O18—Mo5—O12i93.3 (4)Mo2i—O17—Mo695.8 (4)
O16—Mo5—O22156.6 (4)Mo3—O18—Mo5137.9 (5)
O15—Mo5—O2296.0 (5)Mo6—O20—Mo3133.8 (5)
O14—Mo5—O2262.9 (4)Si1—O22—O1356.2 (5)
O11i—Mo5—O2295.3 (4)Si1—O22—Mo1125.9 (6)
O18—Mo5—O2263.9 (4)O13—O22—Mo169.8 (5)
O12i—Mo5—O2246.6 (4)Si1—O22—Mo5120.2 (5)
O21—Mo6—O20101.5 (4)O13—O22—Mo5129.6 (6)
O21—Mo6—O9100.2 (4)Mo1—O22—Mo595.5 (4)
O20—Mo6—O990.4 (4)Si1—O22—Mo3119.1 (5)
O21—Mo6—O2i100.6 (4)O13—O22—Mo3134.8 (6)
O20—Mo6—O2i88.9 (3)Mo1—O22—Mo395.7 (3)
O9—Mo6—O2i158.9 (5)Mo5—O22—Mo393.1 (4)
O21—Mo6—O15i100.9 (4)H1W—O1W—H2W114 (9)
O20—Mo6—O15i157.5 (5)H3W—O2W—H3WB139.00
O9—Mo6—O15i87.5 (3)H5W—O3W—H6W114 (9)
O2i—Mo6—O15i85.1 (4)
Symmetry code: (i) x+1/2, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N6—H6···O200.861.972.812 (12)165
O1W—H1W···O2W0.82 (5)1.94 (3)2.76 (3)174 (12)
N9—H9A···O3Wii0.862.132.98 (2)170
O3W—H5W···O3iii0.82 (6)2.16 (4)2.937 (15)157 (10)
O2W—H3W···O11iv0.82 (13)2.48 (12)3.046 (19)127 (12)
O2W—H3WB···O16v0.9 (6)2.4 (4)3.14 (2)158
Symmetry codes: (ii) x1/2, y+1/2, z1/2; (iii) x, y, z+1; (iv) x+1, y, z+1/2; (v) x+1/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Mn(C8H7N3)3]2[SiMo12O40]·6H2O
Mr2908.34
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)18.907 (4), 16.385 (3), 27.552 (6)
β (°) 105.09 (3)
V3)8241 (3)
Z4
Radiation typeMo Kα
µ (mm1)2.17
Crystal size (mm)0.12 × 0.10 × 0.08
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.780, 0.845
No. of measured, independent and
observed [I > 2σ(I)] reflections
27737, 7045, 5381
Rint0.054
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.144, 1.01
No. of reflections7045
No. of parameters615
No. of restraints9
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
w = 1/[σ2(Fo2) + (0.060P)2 + 127.9076P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)1.13, 0.63

Computer programs: APEX2 (Bruker, 2004), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N6—H6···O200.861.972.812 (12)164.7
O1W—H1W···O2W0.82 (5)1.94 (3)2.76 (3)174 (12)
N9—H9A···O3Wi0.862.132.98 (2)170.0
O3W—H5W···O3ii0.82 (6)2.16 (4)2.937 (15)157 (10)
O2W—H3W···O11iii0.82 (13)2.48 (12)3.046 (19)127 (12)
O2W—H3WB···O16iv0.9 (6)2.4 (4)3.14 (2)158.00
Symmetry codes: (i) x1/2, y+1/2, z1/2; (ii) x, y, z+1; (iii) x+1, y, z+1/2; (iv) x+1/2, y1/2, z+1/2.
 

Acknowledgements

The authors are grateful for financial support from Henan University.

References

First citationBruker (2001). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationPope, M. T. & Müller, A. (1991). Angew. Chem. Int. Ed. 30, 34–38.  CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWu, C. D., Lu, C. Z., Chen, S. M., Zhuang, H. H. & Huang, J. S. (2003). Polyhedron, 22, 3091–3098.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhang, X. T., Dou, J. M., Wei, P. H., Li, D. C., Li, B., Shi, C. W. & Hu, B. (2009). Inorg. Chim. Acta, 362, 3325–3332.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhang, X., Wei, P., Shi, C., Li, B. & Hu, B. (2010a). Acta Cryst. E66, m26–m27.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, X., Wei, P., Shi, C., Li, B. & Hu, B. (2010b). Acta Cryst. E66, m174–m175.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, X. T., Wei, P. H., Sun, D. F., Ni, Z. H., Dou, J. M., Li, B., Shi, C. W. & Hu, B. (2009). Cryst. Growth Des. 9, 4424–4428.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhang, X., Wei, P., Zhu, W., Li, B. & Hu, B. (2010). Acta Cryst. E66, m127–m128.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, X., Yuan, D., Wei, P., Li, B. & Hu, B. (2010). Acta Cryst. E66, m152–m153.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds