organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Benzyl N-(4-pyrid­yl)carbamate

aThe Third Institute of Oceanography of the State Oceanic Administration, Xiamen 361005, People's Republic of China, and bDepartment of Pharmaceutical Science, Medical College, Xiamen University, Xiamen 361005, People's Republic of China
*Correspondence e-mail: fangmj@xmu.edu.cn

(Received 6 January 2010; accepted 8 January 2010; online 20 January 2010)

The title compound, C13H12N2O2, was obtained by the reaction of 4-amino­pyridine and benzyl chloro­formate in tetra­hydro­furan. The crystal structure contains N—H⋯N hydrogen bonds between two unique mol­ecules within layers and anti­parallel C—O⋯O—C inter­actions [O⋯O = 3.06 (3) Å] between the two mol­ecules of the asymmetric unit.

Related literature

The title compound was synthesized in order to investigate the nature of its reversion tetrodotoxin-induced cardiorespiratory depression, see: Chang et al. (1997[Chang, F. T. C., Spriggs, D. L., Benton, B. J., Keller, S. A. & Capacio, B. R. (1997). Fundam. Appl. Toxicol. 38, 75-88.]). For a related structure, see: Zheng et al. (2005[Zheng, P.-W., Wang, W. & Duan, X.-M. (2005). Acta Cryst. E61, o2970-o2971.]).

[Scheme 1]

Experimental

Crystal data
  • C13H12N2O2

  • Mr = 228.25

  • Monoclinic, P 21 /c

  • a = 11.9439 (5) Å

  • b = 13.2120 (6) Å

  • c = 14.6574 (7) Å

  • β = 98.418 (4)°

  • V = 2288.06 (18) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.30 × 0.22 × 0.18 mm

Data collection
  • Bruker SMART APEX area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SAINT, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.973, Tmax = 0.984

  • 11332 measured reflections

  • 4028 independent reflections

  • 2831 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.070

  • S = 1.05

  • 4028 reflections

  • 307 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2′—H2′C⋯N1i 0.86 2.09 2.9460 (16) 171
N2—H2C⋯N1′ii 0.86 2.11 2.9630 (18) 170
Symmetry codes: (i) -x+1, -y, -z; (ii) -x, -y, -z.

Data collection: SMART (Bruker, 2001[Bruker (2001). SAINT, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SAINT, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title compound, (I), a 4-aminopyridine analog, was synthesized for investigation of the nature of its reversion tetrodotoxin-induced cardiorespiratorydepression (Chang et al., 1997). The crystal packing is stabilized by stronger N-H···N hydrogen bonds between molecules within layers and antiparallel C-O ··· O-C interactions between the two molecules of the asymmetric unit, and bond lengths and angles are in agreement with values reported for a similar compound (Zheng et al., 2005). The dihedral angle between the planes of the phenzene ring and pyridine ring systems is 66.2 (3) °.

Related literature top

For related literature, see: Zheng et al. (2005); Chang et al. (1997).

Experimental top

A solution of dry tetrahydrofuran (15 ml) containing 4-aminopyridine (5 mmol, 0.47 g) and triethylamine (0.70 ml) was added dropwise to the solution of tetrahydrofuran (15 ml) containing the benzyl chloroformate (5 mmol, 0.85 g). The reaction mixture was stirred for 6 h in ice bath and the solvent was then removed under reduced pressure to give a residue, which was extracted with ethyl acetate (3 × 15 ml). The solution was dried over anhydrous MgSO4 and concentrated under vacuum to obtain a slurry residue, which was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 2:1) to give products I as colorless amorphous solids. Single crystals of (I) suitable for X-ray analysis were obtained by slow evaporation of a petroleum ether /dichloromethane solution (1:1 v/v).

Refinement top

All H atoms were placed in geometrically idealized positions and treated as riding on their parent atoms, with C—H = 0.93 (aromatic), 0.97 (CH2), N—H = 0.86 Å and Uiso(H) = 1.2Ueq (aromatic C, CH2 and N).

Structure description top

The title compound, (I), a 4-aminopyridine analog, was synthesized for investigation of the nature of its reversion tetrodotoxin-induced cardiorespiratorydepression (Chang et al., 1997). The crystal packing is stabilized by stronger N-H···N hydrogen bonds between molecules within layers and antiparallel C-O ··· O-C interactions between the two molecules of the asymmetric unit, and bond lengths and angles are in agreement with values reported for a similar compound (Zheng et al., 2005). The dihedral angle between the planes of the phenzene ring and pyridine ring systems is 66.2 (3) °.

For related literature, see: Zheng et al. (2005); Chang et al. (1997).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SMART (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEPII (Farrugia, 1997) plot of the title molecule with displacement ellipsoids srawn at the 30% probability level. H atoms are drawn as spheres of arbitrary radii.
[Figure 2] Fig. 2. The formation of the title compound.
Benzyl N-(4-pyridyl)carbamate top
Crystal data top
C13H12N2O2F(000) = 960
Mr = 228.25Dx = 1.325 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2895 reflections
a = 11.9439 (5) Åθ = 2.1–26.4°
b = 13.2120 (6) ŵ = 0.09 mm1
c = 14.6574 (7) ÅT = 293 K
β = 98.418 (4)°Chunk, colorless
V = 2288.06 (18) Å30.30 × 0.22 × 0.18 mm
Z = 8
Data collection top
Bruker APEX area-detector
diffractometer
4028 independent reflections
Radiation source: fine-focus sealed tube2831 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
φ and ω scanθmax = 25.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1412
Tmin = 0.973, Tmax = 0.984k = 1515
11332 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.070H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0229P)2 + 0.110P]
where P = (Fo2 + 2Fc2)/3
4028 reflections(Δ/σ)max < 0.001
307 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C13H12N2O2V = 2288.06 (18) Å3
Mr = 228.25Z = 8
Monoclinic, P21/cMo Kα radiation
a = 11.9439 (5) ŵ = 0.09 mm1
b = 13.2120 (6) ÅT = 293 K
c = 14.6574 (7) Å0.30 × 0.22 × 0.18 mm
β = 98.418 (4)°
Data collection top
Bruker APEX area-detector
diffractometer
4028 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2831 reflections with I > 2σ(I)
Tmin = 0.973, Tmax = 0.984Rint = 0.039
11332 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.070H-atom parameters constrained
S = 1.05Δρmax = 0.17 e Å3
4028 reflectionsΔρmin = 0.17 e Å3
307 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N2'0.16150 (9)0.18181 (9)0.00328 (9)0.0227 (3)
H2'C0.21400.14580.02160.027*
O10.42587 (8)0.17805 (9)0.26686 (8)0.0335 (3)
O20.24197 (8)0.13329 (8)0.22775 (8)0.0330 (3)
O1'0.13791 (8)0.32072 (8)0.08678 (8)0.0301 (3)
O2'0.30953 (8)0.27290 (8)0.05366 (8)0.0288 (3)
N20.36888 (9)0.04846 (9)0.16579 (9)0.0240 (3)
H2C0.30880.01790.14030.029*
C10.35408 (12)0.12531 (12)0.22453 (11)0.0241 (4)
N1'0.16725 (10)0.07480 (10)0.09588 (10)0.0297 (3)
C90.47128 (11)0.01402 (12)0.14254 (10)0.0217 (4)
C3'0.48132 (13)0.36576 (11)0.08454 (12)0.0269 (4)
C130.57368 (12)0.06602 (13)0.16021 (12)0.0292 (4)
H13A0.57890.12780.19090.035*
C100.47072 (12)0.07770 (12)0.09719 (11)0.0254 (4)
H10A0.40400.11470.08440.031*
C1'0.19585 (12)0.26347 (12)0.04966 (11)0.0229 (4)
C9'0.05051 (12)0.14969 (11)0.03138 (11)0.0200 (4)
C10'0.03345 (12)0.07278 (12)0.09590 (11)0.0244 (4)
H10B0.09480.04470.11930.029*
C13'0.04470 (12)0.18983 (12)0.00023 (11)0.0257 (4)
H13B0.03820.24210.04320.031*
N10.66870 (10)0.06576 (10)0.08657 (9)0.0290 (3)
C11'0.07391 (12)0.03782 (12)0.12545 (12)0.0281 (4)
H11A0.08270.01440.16840.034*
C30.09174 (12)0.16792 (12)0.31022 (11)0.0243 (4)
C110.56904 (12)0.11411 (12)0.07098 (12)0.0283 (4)
H11B0.56620.17600.04060.034*
C2'0.36095 (12)0.36077 (12)0.10249 (12)0.0333 (4)
H2'A0.35850.35430.16810.040*
H2'B0.32060.42180.08040.040*
C120.66733 (12)0.02252 (13)0.13053 (12)0.0328 (4)
H12A0.73520.05790.14220.039*
C80.00463 (13)0.21433 (13)0.26577 (12)0.0320 (4)
H8A0.00150.27120.22940.038*
C40.08082 (15)0.08481 (13)0.36471 (12)0.0367 (4)
H4A0.14540.05420.39610.044*
C20.20694 (13)0.20348 (13)0.29487 (12)0.0348 (5)
H2A0.20340.27210.27110.042*
H2B0.25940.20170.35200.042*
C4'0.50592 (14)0.36917 (12)0.00500 (13)0.0351 (4)
H4'A0.44720.36910.05430.042*
C8'0.56941 (14)0.36833 (13)0.15684 (13)0.0388 (5)
H8'A0.55450.36530.21730.047*
C12'0.14897 (12)0.14942 (12)0.03432 (12)0.0309 (4)
H12B0.21190.17670.01270.037*
C5'0.61669 (16)0.37268 (13)0.02173 (15)0.0465 (5)
H5'A0.63220.37260.08210.056*
C60.12000 (16)0.09262 (18)0.32858 (15)0.0521 (6)
H6A0.19110.06710.33450.063*
C70.11059 (14)0.17636 (16)0.27524 (14)0.0453 (5)
H7A0.17540.20790.24530.054*
C7'0.68094 (15)0.37554 (14)0.13934 (17)0.0522 (6)
H7'A0.74000.37990.18820.063*
C6'0.70368 (16)0.37628 (14)0.05031 (18)0.0524 (6)
H6'A0.77820.37920.03880.063*
C50.02418 (18)0.04609 (15)0.37357 (14)0.0495 (6)
H5A0.03040.01100.40960.059*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N2'0.0176 (7)0.0229 (7)0.0278 (8)0.0018 (5)0.0046 (6)0.0046 (7)
O10.0266 (6)0.0403 (7)0.0339 (7)0.0061 (5)0.0051 (6)0.0154 (6)
O20.0215 (6)0.0421 (7)0.0365 (7)0.0007 (5)0.0081 (5)0.0205 (6)
O1'0.0277 (6)0.0280 (7)0.0356 (7)0.0020 (5)0.0078 (5)0.0092 (6)
O2'0.0214 (6)0.0273 (7)0.0383 (7)0.0062 (4)0.0065 (5)0.0115 (6)
N20.0162 (7)0.0282 (8)0.0276 (8)0.0019 (5)0.0028 (6)0.0090 (7)
C10.0233 (9)0.0283 (10)0.0212 (9)0.0012 (7)0.0051 (7)0.0013 (8)
N1'0.0224 (7)0.0310 (9)0.0357 (9)0.0012 (6)0.0043 (6)0.0044 (7)
C90.0185 (8)0.0276 (10)0.0191 (9)0.0019 (6)0.0030 (7)0.0019 (8)
C3'0.0293 (9)0.0198 (9)0.0318 (11)0.0058 (7)0.0054 (8)0.0060 (8)
C130.0241 (9)0.0307 (10)0.0330 (11)0.0027 (7)0.0048 (8)0.0103 (9)
C100.0205 (8)0.0269 (10)0.0295 (10)0.0034 (7)0.0055 (7)0.0029 (8)
C1'0.0242 (9)0.0223 (9)0.0221 (9)0.0004 (7)0.0033 (7)0.0016 (8)
C9'0.0192 (8)0.0202 (9)0.0206 (9)0.0012 (6)0.0028 (7)0.0039 (7)
C10'0.0203 (8)0.0265 (9)0.0271 (10)0.0009 (7)0.0061 (7)0.0019 (8)
C13'0.0239 (9)0.0262 (10)0.0271 (10)0.0012 (7)0.0044 (7)0.0036 (8)
N10.0222 (7)0.0331 (9)0.0317 (9)0.0007 (6)0.0047 (6)0.0040 (7)
C11'0.0271 (9)0.0271 (10)0.0305 (10)0.0019 (7)0.0055 (8)0.0047 (8)
C30.0266 (9)0.0256 (9)0.0213 (10)0.0015 (7)0.0056 (7)0.0087 (8)
C110.0258 (9)0.0263 (10)0.0331 (11)0.0001 (7)0.0055 (8)0.0047 (8)
C2'0.0333 (10)0.0257 (10)0.0416 (12)0.0096 (7)0.0083 (9)0.0127 (9)
C120.0205 (9)0.0409 (12)0.0370 (11)0.0067 (7)0.0044 (8)0.0096 (9)
C80.0373 (10)0.0330 (11)0.0258 (10)0.0034 (8)0.0051 (8)0.0031 (8)
C40.0448 (11)0.0343 (11)0.0298 (11)0.0040 (8)0.0019 (9)0.0028 (9)
C20.0327 (10)0.0393 (11)0.0347 (11)0.0014 (8)0.0120 (8)0.0194 (9)
C4'0.0386 (10)0.0310 (10)0.0357 (11)0.0110 (8)0.0058 (9)0.0024 (9)
C8'0.0431 (11)0.0353 (11)0.0357 (12)0.0068 (8)0.0021 (9)0.0078 (9)
C12'0.0213 (9)0.0340 (11)0.0387 (11)0.0033 (7)0.0088 (8)0.0030 (9)
C5'0.0514 (13)0.0368 (12)0.0574 (14)0.0174 (9)0.0287 (11)0.0123 (10)
C60.0404 (12)0.0747 (16)0.0449 (14)0.0236 (11)0.0189 (11)0.0234 (12)
C70.0291 (10)0.0607 (14)0.0442 (13)0.0035 (9)0.0009 (9)0.0149 (12)
C7'0.0303 (11)0.0444 (13)0.0755 (17)0.0052 (8)0.0141 (11)0.0119 (12)
C6'0.0327 (11)0.0376 (12)0.090 (2)0.0091 (9)0.0212 (13)0.0203 (12)
C50.0732 (15)0.0442 (13)0.0340 (12)0.0213 (11)0.0174 (11)0.0027 (10)
Geometric parameters (Å, º) top
N2'—C1'1.3569 (19)N1—C111.3407 (19)
N2'—C9'1.3954 (17)C11'—H11A0.9300
N2'—H2'C0.8600C3—C41.375 (2)
O1—C11.2042 (18)C3—C81.380 (2)
O2—C11.3509 (16)C3—C21.502 (2)
O2—C21.4572 (17)C11—H11B0.9300
O1'—C1'1.2072 (17)C2'—H2'A0.9700
O2'—C1'1.3561 (16)C2'—H2'B0.9700
O2'—C2'1.4520 (17)C12—H12A0.9300
N2—C11.3595 (19)C8—C71.387 (2)
N2—C91.3932 (17)C8—H8A0.9300
N2—H2C0.8600C4—C51.378 (2)
N1'—C12'1.333 (2)C4—H4A0.9300
N1'—C11'1.3457 (18)C2—H2A0.9700
C9—C101.382 (2)C2—H2B0.9700
C9—C131.394 (2)C4'—C5'1.381 (2)
C3'—C4'1.387 (2)C4'—H4'A0.9300
C3'—C8'1.380 (2)C8'—C7'1.396 (2)
C3'—C2'1.500 (2)C8'—H8'A0.9300
C13—C121.383 (2)C12'—H12B0.9300
C13—H13A0.9300C5'—C6'1.369 (3)
C10—C111.3749 (19)C5'—H5'A0.9300
C10—H10A0.9300C6—C71.369 (3)
C9'—C10'1.383 (2)C6—C51.379 (3)
C9'—C13'1.3940 (19)C6—H6A0.9300
C10'—C11'1.372 (2)C7—H7A0.9300
C10'—H10B0.9300C7'—C6'1.371 (3)
C13'—C12'1.381 (2)C7'—H7'A0.9300
C13'—H13B0.9300C6'—H6'A0.9300
N1—C121.334 (2)C5—H5A0.9300
C1'—N2'—C9'127.25 (12)O2'—C2'—H2'A110.3
C1'—N2'—H2'C116.4C3'—C2'—H2'A110.3
C9'—N2'—H2'C116.4O2'—C2'—H2'B110.3
C1—O2—C2117.22 (12)C3'—C2'—H2'B110.3
C1'—O2'—C2'116.32 (11)H2'A—C2'—H2'B108.5
C1—N2—C9126.80 (13)N1—C12—C13125.66 (14)
C1—N2—H2C116.6N1—C12—H12A117.2
C9—N2—H2C116.6C13—C12—H12A117.2
O1—C1—O2124.86 (14)C7—C8—C3120.14 (17)
O1—C1—N2127.57 (13)C7—C8—H8A119.9
O2—C1—N2107.58 (13)C3—C8—H8A119.9
C12'—N1'—C11'115.17 (13)C3—C4—C5121.07 (18)
C10—C9—N2117.48 (13)C3—C4—H4A119.5
C10—C9—C13117.66 (13)C5—C4—H4A119.5
N2—C9—C13124.85 (14)O2—C2—C3105.19 (12)
C4'—C3'—C8'118.84 (15)O2—C2—H2A110.7
C4'—C3'—C2'120.56 (16)C3—C2—H2A110.7
C8'—C3'—C2'120.59 (15)O2—C2—H2B110.7
C12—C13—C9117.70 (15)C3—C2—H2B110.7
C12—C13—H13A121.2H2A—C2—H2B108.8
C9—C13—H13A121.2C3'—C4'—C5'120.68 (18)
C9—C10—C11119.81 (14)C3'—C4'—H4'A119.7
C9—C10—H10A120.1C5'—C4'—H4'A119.7
C11—C10—H10A120.1C3'—C8'—C7'120.08 (18)
O1'—C1'—O2'124.01 (14)C3'—C8'—H8'A120.0
O1'—C1'—N2'127.63 (14)C7'—C8'—H8'A120.0
O2'—C1'—N2'108.35 (12)N1'—C12'—C13'125.71 (14)
C10'—C9'—N2'117.64 (12)N1'—C12'—H12B117.1
C10'—C9'—C13'117.46 (14)C13'—C12'—H12B117.1
N2'—C9'—C13'124.90 (14)C6'—C5'—C4'120.17 (19)
C9'—C10'—C11'120.04 (13)C6'—C5'—H5'A119.9
C9'—C10'—H10B120.0C4'—C5'—H5'A119.9
C11'—C10'—H10B120.0C7—C6—C5120.11 (17)
C12'—C13'—C9'117.82 (15)C7—C6—H6A119.9
C12'—C13'—H13B121.1C5—C6—H6A119.9
C9'—C13'—H13B121.1C6—C7—C8120.13 (18)
C12—N1—C11115.19 (12)C6—C7—H7A119.9
N1'—C11'—C10'123.78 (16)C8—C7—H7A119.9
N1'—C11'—H11A118.1C6'—C7'—C8'120.2 (2)
C10'—C11'—H11A118.1C6'—C7'—H7'A119.9
C4—C3—C8119.03 (15)C8'—C7'—H7'A119.9
C4—C3—C2120.24 (15)C5'—C6'—C7'119.99 (17)
C8—C3—C2120.62 (16)C5'—C6'—H6'A120.0
N1—C11—C10123.99 (15)C7'—C6'—H6'A120.0
N1—C11—H11B118.0C6—C5—C4119.50 (19)
C10—C11—H11B118.0C6—C5—H5A120.2
O2'—C2'—C3'107.20 (12)C4—C5—H5A120.2
C2—O2—C1—O17.0 (2)C4'—C3'—C2'—O2'56.18 (19)
C2—O2—C1—N2173.09 (13)C8'—C3'—C2'—O2'124.65 (17)
C9—N2—C1—O10.4 (3)C11—N1—C12—C130.1 (3)
C9—N2—C1—O2179.66 (14)C9—C13—C12—N10.4 (3)
C1—N2—C9—C10166.73 (15)C4—C3—C8—C70.9 (2)
C1—N2—C9—C1314.4 (2)C2—C3—C8—C7175.37 (15)
C10—C9—C13—C120.5 (2)C8—C3—C4—C51.6 (2)
N2—C9—C13—C12178.37 (15)C2—C3—C4—C5174.66 (15)
N2—C9—C10—C11178.65 (15)C1—O2—C2—C3157.99 (14)
C13—C9—C10—C110.3 (2)C4—C3—C2—O277.04 (18)
C2'—O2'—C1'—O1'3.0 (2)C8—C3—C2—O299.19 (16)
C2'—O2'—C1'—N2'175.94 (13)C8'—C3'—C4'—C5'1.5 (2)
C9'—N2'—C1'—O1'4.4 (3)C2'—C3'—C4'—C5'179.31 (14)
C9'—N2'—C1'—O2'174.45 (13)C4'—C3'—C8'—C7'0.8 (3)
C1'—N2'—C9'—C10'171.04 (15)C2'—C3'—C8'—C7'178.39 (15)
C1'—N2'—C9'—C13'8.5 (2)C11'—N1'—C12'—C13'0.2 (2)
N2'—C9'—C10'—C11'179.55 (14)C9'—C13'—C12'—N1'0.1 (2)
C13'—C9'—C10'—C11'0.9 (2)C3'—C4'—C5'—C6'2.2 (3)
C10'—C9'—C13'—C12'0.6 (2)C5—C6—C7—C80.4 (3)
N2'—C9'—C13'—C12'179.87 (14)C3—C8—C7—C60.1 (3)
C12'—N1'—C11'—C10'0.1 (2)C3'—C8'—C7'—C6'2.4 (3)
C9'—C10'—C11'—N1'0.7 (2)C4'—C5'—C6'—C7'0.5 (3)
C12—N1—C11—C100.1 (2)C8'—C7'—C6'—C5'1.8 (3)
C9—C10—C11—N10.0 (3)C7—C6—C5—C40.3 (3)
C1'—O2'—C2'—C3'170.42 (13)C3—C4—C5—C61.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2C···N1i0.862.092.9460 (16)171
N2—H2C···N1ii0.862.112.9630 (18)170
Symmetry codes: (i) x+1, y, z; (ii) x, y, z.

Experimental details

Crystal data
Chemical formulaC13H12N2O2
Mr228.25
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)11.9439 (5), 13.2120 (6), 14.6574 (7)
β (°) 98.418 (4)
V3)2288.06 (18)
Z8
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.30 × 0.22 × 0.18
Data collection
DiffractometerBruker APEX area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.973, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
11332, 4028, 2831
Rint0.039
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.070, 1.05
No. of reflections4028
No. of parameters307
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.17

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2'—H2'C···N1i0.862.092.9460 (16)171.1
N2—H2C···N1'ii0.862.112.9630 (18)170.4
Symmetry codes: (i) x+1, y, z; (ii) x, y, z.
 

Acknowledgements

This work was supported by the Science and Technology Program of the Oceans and Fisheries Bureau of Xiamen (grant No. 200911) and the Natural Science Foundation of Fujian Province of China (grant No. 2009 J05099).

References

First citationBruker (2001). SAINT, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChang, F. T. C., Spriggs, D. L., Benton, B. J., Keller, S. A. & Capacio, B. R. (1997). Fundam. Appl. Toxicol. 38, 75–88.  CrossRef CAS PubMed Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZheng, P.-W., Wang, W. & Duan, X.-M. (2005). Acta Cryst. E61, o2970–o2971.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds