metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis{2-hy­droxy­imino-N′-[1-(2-pyrid­yl)ethyl­­idene]propanohydrazidato}zinc(II) dihydrate

aNational Taras Shevchenko University, Department of Chemistry, Volodymyrska Str. 64, 01601 Kyiv, Ukraine, and bDepartment of Chemistry, University of Joensuu, PO Box 111, 80101 Joensuu, Finland
*Correspondence e-mail: ysmoroz@yahoo.com

(Received 26 January 2010; accepted 27 January 2010; online 30 January 2010)

The title compound, [Zn(C10H11N4O2)2]·2H2O, was prepared by the reaction between Zn(CH3COO)2·2H2O and 2-hydroxy­imino-N′-[1-(2-pyrid­yl)ethyl­idene]propano­hydrazide (Hpop). The central ZnII atom has a distorted tetra­gonal-bipyramidal coordination geometry formed by two amide O atoms and four N atoms of two azomethine and two pyridine groups. In the crystal, complex mol­ecules form layers parallel to the crystallographic b direction. The layers are connected by O—H⋯N and O—H⋯O hydrogen bonds involving the solvent water mol­ecules.

Related literature

For zinc(II)-containing complexes with similiar ligands, see: Petrusenko et al. (1997[Petrusenko, S. R., Kokozay, V. N. & Fritsky, I. O. (1997). Polyhedron, 16, 267-274.]); Comba et al. (2002[Comba, P., Kerscher, M., Merz, M., Muller, V., Pritzkow, H., Remenyi, R., Schiek, W. & Xiong, Y. (2002). Chem. Eur. J. 8, 5750-5760.]); Kasuga et al. (2003[Kasuga, N. C., Sekino, K., Ishikawa, M., Honda, A., Yokoyama, M., Nakano, S., Shimada, N., Koumo, S. & Nomiya, K. (2003). J. Inorg. Biochem. 96, 298-310.]). For the structural parameters of amide derivatives of 2-hydroxy­imino­propanoic acid, see: Onindo et al. (1995[Onindo, C. O., Sliva, T. Yu., Kowalik-Jankowska, T., Fritsky, I. O., Buglyo, P., Pettit, L. D., Kozłowski, H. & Kiss, T. (1995). J. Chem. Soc. Dalton Trans. pp. 3911-3915.]); Sliva et al. (1997a[Sliva, T. Yu., Duda, A. M., Głowiak, T., Fritsky, I. O., Amirkhanov, V. M., Mokhir, A. A. & Kozłowski, H. (1997a). J. Chem. Soc. Dalton Trans. pp. 273-276.],b[Sliva, T. Yu., Kowalik-Jankowska, T., Amirkhanov, V. M., Głowiak, T., Onindo, C. O., Fritsky, I. O. & Kozłowski, H. (1997b). J. Inorg. Biochem. 65, 287-294.]); Mokhir et al. (2002[Mokhir, A. A., Gumienna-Kontecka, E. S., Wiatek-Kozłowska, J., Petkova, E. G., Fritsky, I. O., Jerzykiewicz, L., Kapshuk, A. A. & Sliva, T. Yu. (2002). Inorg. Chim. Acta, 329, 113-121.]); Moroz et al. (2009a[Moroz, Y. S., Kalibabchuk, V. A., Gumienna-Kontecka, E., Skopenko, V. V. & Pavlova, S. V. (2009a). Acta Cryst. E65, o2413.],b[Moroz, Y. S., Konovalova, I. S., Iskenderov, T. S., Pavlova, S. V. & Shishkin, O. V. (2009b). Acta Cryst. E65, o2242.]). For the preparation and characterization of 3d-metal complexes with 2-hydroxy­imino-N′-[1-(2-pyrid­yl)ethyl­idene]propanohydrazone, see: Moroz et al. (2008a[Moroz, Yu. S., Kulon, K., Haukka, M., Gumienna-Kontecka, E., Kozłowski, H., Meyer, F. & Fritsky, I. O. (2008a). Inorg. Chem. 47, 5656-5665.],b[Moroz, Y. S., Sliva, T. Yu., Kulon, K., Kozłowski, H. & Fritsky, I. O. (2008b). Acta Cryst. E64, m353-m354.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C10H11N4O2)2]·2H2O

  • Mr = 539.86

  • Triclinic, [P \overline 1]

  • a = 8.3241 (3) Å

  • b = 10.6299 (4) Å

  • c = 13.9006 (5) Å

  • α = 94.184 (2)°

  • β = 101.389 (2)°

  • γ = 108.052 (2)°

  • V = 1134.48 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.14 mm−1

  • T = 100 K

  • 0.28 × 0.07 × 0.02 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) Tmin = 0.743, Tmax = 0.977

  • 21551 measured reflections

  • 5171 independent reflections

  • 4253 reflections with I > 2σ(I)

  • Rint = 0.048

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.092

  • S = 1.05

  • 5171 reflections

  • 320 parameters

  • H-atom parameters constrained

  • Δρmax = 0.95 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Selected geometric parameters (Å, °)

Zn1—N2 2.061 (2)
Zn1—N6 2.085 (2)
Zn1—O1 2.0880 (15)
Zn1—O3 2.1470 (15)
Zn1—N5 2.1955 (19)
Zn1—N1 2.2877 (19)
N2—Zn1—O1 76.10 (7)
N6—Zn1—O3 74.17 (6)
N6—Zn1—N5 75.07 (7)
N2—Zn1—N1 73.97 (7)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2O⋯N7i 0.92 1.89 2.801 (3) 170
O4—H4O⋯O5ii 0.93 1.77 2.675 (3) 164
O5—H5P⋯O3 0.91 1.93 2.811 (3) 161
O5—H5O⋯O6 0.86 2.08 2.889 (3) 157
O6—H6O⋯N4iii 0.92 2.12 2.934 (3) 148
O6—H6P⋯N8ii 0.93 2.10 2.971 (3) 154
Symmetry codes: (i) x-1, y-1, z; (ii) -x+1, -y+1, -z; (iii) -x, -y, -z.

Data collection: COLLECT (Bruker, 2004[Bruker (2004). COLLECT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As a part of our study of coordination compounds based on oxime-containing Schiff bases we would like to present the structure of the title compound 1, Fig. 1, which is based on polynucleative strand-type ligand 2-hydroxyimino-N'-[1-(2-pyridyl)ethylidene]propanohydrazone (Hpop) (Fig. 1). It has been shown previously that Hpop is able to form mono- and tetranuclear [2 x 2] grid-like assemblies with 3d-metal ions (Moroz et al., 2008a,b).

The title compound consists of neutral complex molecules and solvating water molecules. Zinc ion has a distorted tetragonal bipyramidal geometry. The coordination polyhedron is formed by two oxygen atoms from the amide groups and four nitrogen atoms belonging to two azomethine and two pyridine groups. The Zn—N and Zn—O bond lengths are comparable to previously reported zinc complexes with thiosemicarbasone and semicarbasone derivatives (Kasuga et al., (2003)), ligands with pyridine groups complexed to the metal ion (Petrusenko et al. (1997), Comba et al., (2002)) and the zinc-containing complex based on Hpop (Moroz et al., 2008b) (Table 1). The bite angles around the central atom deviate from an ideal square-planar configuration, that is a consequence of the formation of four almost flat five-membered chelate rings (Table 1). The ligands exist in complex molecule in singly charged form due to deprotonation of the amide group, C–N, C–O and N–N' bond distances are typical for deprotonated functions. In Hpop the oxime group is situated in anti- position to the amide group which was early shown in the structures of the free ligand and similiar compounds - amide derivatives of 2-hydroxyiminopropanoic acid (Onindo et al. (1995); Sliva et al. (1997a,b); Mokhir et al. (2002); Moroz et al., 2009a,b).

In the crystal packing the molecules of 1 form columns along a crystallographic direction due to hydrogen bonds and π-stacking interaction (Fig. 2). The columns are connected in 3D structure by a variety of hydrogen bonds where solvated water molecules act as donors and O and N atoms of the oxime group and O atom of the amide group of the ligand act as acceptors (Table 2).

Related literature top

For zinc(II)-containing complexes with similiar ligands, see: Petrusenko et al. (1997); Comba et al. (2002); Kasuga et al. (2003). For the structural parameters of amide derivatives of 2-hydroxyiminopropanoic acid, see: Onindo et al. (1995); Sliva et al. (1997a,b); Mokhir et al. (2002); Moroz et al. (2009a,b). For the preparation and characterization of 3d-metal complexes with 2-hydroxyimino-N'-[1-(2-pyridyl)ethylidene]propanohydrazone, see: Moroz et al. (2008a,b).

Experimental top

Zinc(II) acetate (0.011 g, 0.05 mmol) in 5 ml H2O was added to 10 ml of hot methanol solution of Hpop (0.022 g, 0.1 mmol) and followed by 1 ml of alkali solution (0.1 M KOH). The mixture was left for slow evaporation at room temperature. After 5 days cubic yellowish crystals of 1 suitable for X-ray analysis were obtained.

Refinement top

The H2O hydrogen atoms were located from the difference Fourier map but constrained to ride on their parent atom, with Uiso = 1.5 Ueq(parent atom). Other hydrogen atoms were positioned geometrically and were also constrained to ride on their parent atoms, with C—H = 0.95-0.98 Å, and Uiso = 1.2-1.5 Ueq(parent atom). The highest peak is located 1.15 Å from atom H5O and the deepest hole is located 0.82 Å from atom Zn1.

Structure description top

As a part of our study of coordination compounds based on oxime-containing Schiff bases we would like to present the structure of the title compound 1, Fig. 1, which is based on polynucleative strand-type ligand 2-hydroxyimino-N'-[1-(2-pyridyl)ethylidene]propanohydrazone (Hpop) (Fig. 1). It has been shown previously that Hpop is able to form mono- and tetranuclear [2 x 2] grid-like assemblies with 3d-metal ions (Moroz et al., 2008a,b).

The title compound consists of neutral complex molecules and solvating water molecules. Zinc ion has a distorted tetragonal bipyramidal geometry. The coordination polyhedron is formed by two oxygen atoms from the amide groups and four nitrogen atoms belonging to two azomethine and two pyridine groups. The Zn—N and Zn—O bond lengths are comparable to previously reported zinc complexes with thiosemicarbasone and semicarbasone derivatives (Kasuga et al., (2003)), ligands with pyridine groups complexed to the metal ion (Petrusenko et al. (1997), Comba et al., (2002)) and the zinc-containing complex based on Hpop (Moroz et al., 2008b) (Table 1). The bite angles around the central atom deviate from an ideal square-planar configuration, that is a consequence of the formation of four almost flat five-membered chelate rings (Table 1). The ligands exist in complex molecule in singly charged form due to deprotonation of the amide group, C–N, C–O and N–N' bond distances are typical for deprotonated functions. In Hpop the oxime group is situated in anti- position to the amide group which was early shown in the structures of the free ligand and similiar compounds - amide derivatives of 2-hydroxyiminopropanoic acid (Onindo et al. (1995); Sliva et al. (1997a,b); Mokhir et al. (2002); Moroz et al., 2009a,b).

In the crystal packing the molecules of 1 form columns along a crystallographic direction due to hydrogen bonds and π-stacking interaction (Fig. 2). The columns are connected in 3D structure by a variety of hydrogen bonds where solvated water molecules act as donors and O and N atoms of the oxime group and O atom of the amide group of the ligand act as acceptors (Table 2).

For zinc(II)-containing complexes with similiar ligands, see: Petrusenko et al. (1997); Comba et al. (2002); Kasuga et al. (2003). For the structural parameters of amide derivatives of 2-hydroxyiminopropanoic acid, see: Onindo et al. (1995); Sliva et al. (1997a,b); Mokhir et al. (2002); Moroz et al. (2009a,b). For the preparation and characterization of 3d-metal complexes with 2-hydroxyimino-N'-[1-(2-pyridyl)ethylidene]propanohydrazone, see: Moroz et al. (2008a,b).

Computing details top

Data collection: COLLECT (Bruker, 2004); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. 1 A view of compound 1, with displacement ellipsoids shown at the 40% probability level.
[Figure 2] Fig. 2. A packing diagram for 1 viewed in projection down the a axis. Hydrogen bonds are indicated by dashed lines; H atoms are omitted for clarity.
Bis{2-hydroxyimino-N'-[1-(2- pyridyl)ethylidene]propanohydrazidato}zinc(II) dihydrate top
Crystal data top
[Zn(C10H11N4O2)2]·2H2OZ = 2
Mr = 539.86F(000) = 560
Triclinic, P1Dx = 1.580 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.3241 (3) ÅCell parameters from 4952 reflections
b = 10.6299 (4) Åθ = 1.0–27.5°
c = 13.9006 (5) ŵ = 1.14 mm1
α = 94.184 (2)°T = 100 K
β = 101.389 (2)°Needle, yellow
γ = 108.052 (2)°0.28 × 0.07 × 0.02 mm
V = 1134.48 (7) Å3
Data collection top
Nonius KappaCCD
diffractometer
5171 independent reflections
Radiation source: fine-focus sealed tube4253 reflections with I > 2σ(I)
Horizontally mounted graphite crystal monochromatorRint = 0.048
Detector resolution: 9 pixels mm-1θmax = 27.5°, θmin = 2.4°
φ scans and ω scans with κ offseth = 1010
Absorption correction: multi-scan
(SADABS; Version 2008/1; Sheldrick, 2008)
k = 1313
Tmin = 0.743, Tmax = 0.977l = 1818
21551 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0417P)2 + 0.8841P]
where P = (Fo2 + 2Fc2)/3
5171 reflections(Δ/σ)max < 0.001
320 parametersΔρmax = 0.95 e Å3
0 restraintsΔρmin = 0.39 e Å3
Crystal data top
[Zn(C10H11N4O2)2]·2H2Oγ = 108.052 (2)°
Mr = 539.86V = 1134.48 (7) Å3
Triclinic, P1Z = 2
a = 8.3241 (3) ÅMo Kα radiation
b = 10.6299 (4) ŵ = 1.14 mm1
c = 13.9006 (5) ÅT = 100 K
α = 94.184 (2)°0.28 × 0.07 × 0.02 mm
β = 101.389 (2)°
Data collection top
Nonius KappaCCD
diffractometer
5171 independent reflections
Absorption correction: multi-scan
(SADABS; Version 2008/1; Sheldrick, 2008)
4253 reflections with I > 2σ(I)
Tmin = 0.743, Tmax = 0.977Rint = 0.048
21551 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.092H-atom parameters constrained
S = 1.05Δρmax = 0.95 e Å3
5171 reflectionsΔρmin = 0.39 e Å3
320 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.39746 (3)0.27581 (3)0.304853 (19)0.01820 (9)
O10.16169 (19)0.20226 (15)0.34643 (12)0.0202 (3)
O20.32670 (19)0.16202 (17)0.32111 (13)0.0239 (4)
H2O0.35760.25260.30120.036*
O30.30726 (19)0.37780 (16)0.18911 (12)0.0204 (3)
O40.4981 (2)0.70910 (18)0.00903 (13)0.0290 (4)
H4O0.60650.76010.00130.044*
O50.1803 (2)0.1858 (2)0.01793 (14)0.0367 (4)
H5P0.21190.25960.06460.055*
H5O0.12640.19840.03830.055*
O60.0879 (2)0.29498 (19)0.16109 (14)0.0351 (4)
H6O0.06970.21770.20170.053*
H6P0.20770.33840.14710.053*
N10.5988 (2)0.2424 (2)0.22445 (14)0.0207 (4)
N20.3039 (2)0.07661 (19)0.24489 (14)0.0175 (4)
N30.1450 (2)0.00054 (19)0.25994 (14)0.0181 (4)
N40.1642 (2)0.11100 (19)0.29900 (15)0.0205 (4)
N50.5549 (2)0.2876 (2)0.45404 (14)0.0212 (4)
N60.5524 (2)0.4762 (2)0.34417 (14)0.0190 (4)
N70.5460 (2)0.55914 (19)0.27198 (14)0.0188 (4)
N80.5314 (3)0.6441 (2)0.09127 (15)0.0230 (4)
C10.7541 (3)0.3275 (3)0.22043 (18)0.0258 (5)
H10.78570.41850.24820.031*
C20.8707 (3)0.2868 (3)0.17679 (19)0.0306 (6)
H20.98110.34860.17670.037*
C30.8235 (3)0.1560 (3)0.13393 (18)0.0288 (6)
H30.90050.12630.10350.035*
C40.6620 (3)0.0680 (3)0.13569 (18)0.0255 (5)
H40.62570.02240.10550.031*
C50.5538 (3)0.1148 (2)0.18269 (16)0.0203 (5)
C60.3825 (3)0.0232 (2)0.19170 (16)0.0190 (5)
C70.3161 (3)0.1184 (3)0.14258 (19)0.0264 (5)
H7A0.38980.16700.17440.040*
H7B0.31810.12090.07220.040*
H7C0.19660.16060.14880.040*
C80.0873 (3)0.0788 (2)0.31405 (16)0.0165 (4)
C90.0868 (3)0.0123 (2)0.33642 (16)0.0174 (4)
C100.1580 (3)0.0927 (2)0.39855 (18)0.0223 (5)
H10A0.28520.05830.37950.034*
H10B0.11680.18650.38830.034*
H10C0.11870.08600.46860.034*
C110.5453 (3)0.1915 (3)0.51063 (18)0.0249 (5)
H110.46000.10610.48650.030*
C120.6559 (3)0.2109 (3)0.60431 (19)0.0302 (6)
H120.65000.13890.64170.036*
C130.7726 (3)0.3356 (3)0.64108 (19)0.0305 (6)
H130.84730.35140.70510.037*
C140.7817 (3)0.4389 (3)0.58458 (18)0.0270 (5)
H140.86020.52650.60990.032*
C150.6724 (3)0.4112 (2)0.48927 (17)0.0212 (5)
C160.6797 (3)0.5119 (2)0.42118 (16)0.0194 (5)
C170.8289 (3)0.6397 (2)0.44150 (18)0.0255 (5)
H17A0.84760.67080.37860.038*
H17B0.93380.62500.47740.038*
H17C0.80320.70740.48180.038*
C180.4150 (3)0.4947 (2)0.19584 (17)0.0183 (4)
C190.3910 (3)0.5686 (2)0.10840 (17)0.0199 (5)
C200.2114 (3)0.5440 (3)0.04913 (19)0.0290 (6)
H20A0.21240.61320.00610.043*
H20B0.13490.54680.09400.043*
H20C0.16880.45600.00830.043*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.01308 (13)0.01868 (15)0.01989 (15)0.00111 (10)0.00272 (10)0.00585 (10)
O10.0168 (8)0.0165 (8)0.0252 (9)0.0013 (6)0.0066 (6)0.0030 (7)
O20.0147 (8)0.0208 (9)0.0335 (10)0.0003 (7)0.0097 (7)0.0043 (7)
O30.0172 (8)0.0173 (8)0.0217 (8)0.0009 (6)0.0003 (6)0.0054 (7)
O40.0324 (9)0.0346 (10)0.0252 (9)0.0134 (8)0.0100 (7)0.0171 (8)
O50.0357 (10)0.0396 (12)0.0305 (10)0.0057 (9)0.0089 (8)0.0057 (9)
O60.0248 (9)0.0351 (11)0.0401 (11)0.0065 (8)0.0062 (8)0.0079 (9)
N10.0138 (9)0.0276 (11)0.0197 (10)0.0043 (8)0.0034 (7)0.0100 (8)
N20.0132 (8)0.0207 (10)0.0195 (10)0.0047 (7)0.0051 (7)0.0083 (8)
N30.0134 (9)0.0175 (10)0.0224 (10)0.0016 (7)0.0067 (7)0.0050 (8)
N40.0154 (9)0.0199 (10)0.0255 (10)0.0022 (8)0.0084 (8)0.0050 (8)
N50.0182 (9)0.0266 (11)0.0214 (10)0.0080 (8)0.0076 (8)0.0088 (8)
N60.0158 (9)0.0230 (10)0.0161 (9)0.0039 (8)0.0025 (7)0.0038 (8)
N70.0169 (9)0.0198 (10)0.0183 (9)0.0038 (8)0.0035 (7)0.0065 (8)
N80.0282 (11)0.0239 (11)0.0213 (10)0.0116 (9)0.0080 (8)0.0113 (8)
C10.0178 (11)0.0333 (14)0.0240 (12)0.0037 (10)0.0042 (9)0.0119 (11)
C20.0159 (11)0.0499 (18)0.0265 (13)0.0069 (11)0.0083 (10)0.0175 (12)
C30.0204 (12)0.0486 (17)0.0238 (13)0.0153 (12)0.0098 (10)0.0134 (12)
C40.0224 (12)0.0377 (15)0.0207 (12)0.0136 (11)0.0072 (10)0.0092 (11)
C50.0171 (11)0.0318 (14)0.0146 (11)0.0095 (10)0.0044 (9)0.0112 (10)
C60.0156 (10)0.0267 (13)0.0153 (11)0.0068 (9)0.0037 (8)0.0071 (9)
C70.0252 (12)0.0289 (14)0.0269 (13)0.0087 (10)0.0110 (10)0.0032 (11)
C80.0141 (10)0.0185 (11)0.0163 (11)0.0044 (9)0.0023 (8)0.0070 (9)
C90.0132 (10)0.0196 (12)0.0189 (11)0.0039 (9)0.0040 (8)0.0060 (9)
C100.0161 (11)0.0220 (12)0.0270 (12)0.0026 (9)0.0072 (9)0.0019 (10)
C110.0239 (12)0.0290 (14)0.0259 (13)0.0099 (10)0.0104 (10)0.0115 (10)
C120.0324 (14)0.0428 (16)0.0264 (13)0.0204 (12)0.0137 (11)0.0198 (12)
C130.0254 (13)0.0471 (17)0.0229 (13)0.0151 (12)0.0068 (10)0.0128 (12)
C140.0197 (11)0.0385 (15)0.0204 (12)0.0073 (10)0.0022 (9)0.0057 (11)
C150.0149 (10)0.0300 (13)0.0189 (11)0.0074 (9)0.0052 (9)0.0035 (10)
C160.0154 (10)0.0240 (12)0.0164 (11)0.0041 (9)0.0028 (8)0.0015 (9)
C170.0200 (11)0.0252 (13)0.0238 (12)0.0005 (10)0.0001 (9)0.0016 (10)
C180.0136 (10)0.0202 (12)0.0218 (11)0.0053 (9)0.0054 (9)0.0054 (9)
C190.0207 (11)0.0176 (11)0.0205 (11)0.0058 (9)0.0034 (9)0.0029 (9)
C200.0241 (12)0.0321 (15)0.0277 (13)0.0083 (11)0.0011 (10)0.0096 (11)
Geometric parameters (Å, º) top
Zn1—N22.061 (2)C3—C41.385 (3)
Zn1—N62.085 (2)C3—H30.9500
Zn1—O12.0880 (15)C4—C51.396 (3)
Zn1—O32.1470 (15)C4—H40.9500
Zn1—N52.1955 (19)C5—C61.492 (3)
Zn1—N12.2877 (19)C6—C71.491 (3)
O1—C81.268 (3)C7—H7A0.9800
O2—N41.397 (2)C7—H7B0.9800
O2—H2O0.9213C7—H7C0.9800
O3—C181.272 (3)C8—C91.508 (3)
O4—N81.404 (2)C9—C101.495 (3)
O4—H4O0.9287C10—H10A0.9800
O5—H5P0.9140C10—H10B0.9800
O5—H5O0.8626C10—H10C0.9800
O6—H6O0.9154C11—C121.398 (4)
O6—H6P0.9335C11—H110.9500
N1—C51.342 (3)C12—C131.367 (4)
N1—C11.343 (3)C12—H120.9500
N2—C61.287 (3)C13—C141.388 (4)
N2—N31.385 (2)C13—H130.9500
N3—C81.337 (3)C14—C151.404 (3)
N4—C91.284 (3)C14—H140.9500
N5—C111.327 (3)C15—C161.475 (3)
N5—C151.357 (3)C16—C171.492 (3)
N6—C161.287 (3)C17—H17A0.9800
N6—N71.387 (3)C17—H17B0.9800
N7—C181.325 (3)C17—H17C0.9800
N8—C191.274 (3)C18—C191.508 (3)
C1—C21.398 (4)C19—C201.491 (3)
C1—H10.9500C20—H20A0.9800
C2—C31.375 (4)C20—H20B0.9800
C2—H20.9500C20—H20C0.9800
N2—Zn1—N6162.52 (7)C6—C7—H7A109.5
N2—Zn1—O176.10 (7)C6—C7—H7B109.5
N6—Zn1—O1121.37 (7)H7A—C7—H7B109.5
N2—Zn1—O3105.12 (7)C6—C7—H7C109.5
N6—Zn1—O374.17 (6)H7A—C7—H7C109.5
O1—Zn1—O396.43 (6)H7B—C7—H7C109.5
N2—Zn1—N5106.20 (7)O1—C8—N3127.01 (19)
N6—Zn1—N575.07 (7)O1—C8—C9117.25 (19)
O1—Zn1—N593.88 (7)N3—C8—C9115.72 (19)
O3—Zn1—N5148.54 (7)N4—C9—C10124.75 (19)
N2—Zn1—N173.97 (7)N4—C9—C8116.43 (19)
N6—Zn1—N188.55 (7)C10—C9—C8118.82 (19)
O1—Zn1—N1150.07 (7)C9—C10—H10A109.5
O3—Zn1—N190.90 (6)C9—C10—H10B109.5
N5—Zn1—N194.81 (7)H10A—C10—H10B109.5
C8—O1—Zn1111.22 (13)C9—C10—H10C109.5
N4—O2—H2O103.0H10A—C10—H10C109.5
C18—O3—Zn1110.35 (13)H10B—C10—H10C109.5
N8—O4—H4O105.6N5—C11—C12122.6 (2)
H5P—O5—H5O111.3N5—C11—H11118.7
H6O—O6—H6P104.7C12—C11—H11118.7
C5—N1—C1118.2 (2)C13—C12—C11118.7 (2)
C5—N1—Zn1112.02 (14)C13—C12—H12120.7
C1—N1—Zn1129.54 (18)C11—C12—H12120.7
C6—N2—N3119.76 (19)C12—C13—C14119.8 (2)
C6—N2—Zn1123.02 (15)C12—C13—H13120.1
N3—N2—Zn1117.15 (14)C14—C13—H13120.1
C8—N3—N2108.51 (18)C13—C14—C15118.6 (2)
C9—N4—O2112.04 (18)C13—C14—H14120.7
C11—N5—C15119.1 (2)C15—C14—H14120.7
C11—N5—Zn1127.97 (17)N5—C15—C14121.1 (2)
C15—N5—Zn1112.92 (14)N5—C15—C16116.1 (2)
C16—N6—N7120.20 (19)C14—C15—C16122.7 (2)
C16—N6—Zn1119.99 (16)N6—C16—C15114.0 (2)
N7—N6—Zn1117.29 (14)N6—C16—C17125.2 (2)
C18—N7—N6108.84 (18)C15—C16—C17120.8 (2)
C19—N8—O4111.39 (19)C16—C17—H17A109.5
N1—C1—C2122.3 (3)C16—C17—H17B109.5
N1—C1—H1118.9H17A—C17—H17B109.5
C2—C1—H1118.9C16—C17—H17C109.5
C3—C2—C1119.1 (2)H17A—C17—H17C109.5
C3—C2—H2120.5H17B—C17—H17C109.5
C1—C2—H2120.5O3—C18—N7126.8 (2)
C2—C3—C4119.1 (2)O3—C18—C19116.84 (19)
C2—C3—H3120.4N7—C18—C19116.34 (19)
C4—C3—H3120.4N8—C19—C20126.5 (2)
C3—C4—C5118.7 (3)N8—C19—C18114.9 (2)
C3—C4—H4120.6C20—C19—C18118.58 (19)
C5—C4—H4120.6C19—C20—H20A109.5
N1—C5—C4122.5 (2)C19—C20—H20B109.5
N1—C5—C6116.25 (19)H20A—C20—H20B109.5
C4—C5—C6121.2 (2)C19—C20—H20C109.5
N2—C6—C7125.1 (2)H20A—C20—H20C109.5
N2—C6—C5114.6 (2)H20B—C20—H20C109.5
C7—C6—C5120.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2O···N7i0.921.892.801 (3)170
O4—H4O···O5ii0.931.772.675 (3)164
O5—H5P···O30.911.932.811 (3)161
O5—H5O···O60.862.082.889 (3)157
O6—H6O···N4iii0.922.122.934 (3)148
O6—H6P···N8ii0.932.102.971 (3)154
Symmetry codes: (i) x1, y1, z; (ii) x+1, y+1, z; (iii) x, y, z.

Experimental details

Crystal data
Chemical formula[Zn(C10H11N4O2)2]·2H2O
Mr539.86
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)8.3241 (3), 10.6299 (4), 13.9006 (5)
α, β, γ (°)94.184 (2), 101.389 (2), 108.052 (2)
V3)1134.48 (7)
Z2
Radiation typeMo Kα
µ (mm1)1.14
Crystal size (mm)0.28 × 0.07 × 0.02
Data collection
DiffractometerNonius KappaCCD
Absorption correctionMulti-scan
(SADABS; Version 2008/1; Sheldrick, 2008)
Tmin, Tmax0.743, 0.977
No. of measured, independent and
observed [I > 2σ(I)] reflections
21551, 5171, 4253
Rint0.048
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.092, 1.05
No. of reflections5171
No. of parameters320
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.95, 0.39

Computer programs: COLLECT (Bruker, 2004), DENZO/SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997).

Selected geometric parameters (Å, º) top
Zn1—N22.061 (2)Zn1—O32.1470 (15)
Zn1—N62.085 (2)Zn1—N52.1955 (19)
Zn1—O12.0880 (15)Zn1—N12.2877 (19)
N2—Zn1—O176.10 (7)N6—Zn1—N575.07 (7)
N6—Zn1—O374.17 (6)N2—Zn1—N173.97 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2O···N7i0.921.892.801 (3)169.7
O4—H4O···O5ii0.931.772.675 (3)164.4
O5—H5P···O30.911.932.811 (3)161.4
O5—H5O···O60.862.082.889 (3)156.7
O6—H6O···N4iii0.922.122.934 (3)148.0
O6—H6P···N8ii0.932.102.971 (3)154.4
Symmetry codes: (i) x1, y1, z; (ii) x+1, y+1, z; (iii) x, y, z.
 

Acknowledgements

The authors thank the Ministry of Education and Science of Ukraine for financial support (grant No. F28/241–2009).

References

First citationBruker (2004). COLLECT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationComba, P., Kerscher, M., Merz, M., Muller, V., Pritzkow, H., Remenyi, R., Schiek, W. & Xiong, Y. (2002). Chem. Eur. J. 8, 5750–5760.  CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKasuga, N. C., Sekino, K., Ishikawa, M., Honda, A., Yokoyama, M., Nakano, S., Shimada, N., Koumo, S. & Nomiya, K. (2003). J. Inorg. Biochem. 96, 298–310.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMokhir, A. A., Gumienna-Kontecka, E. S., Wiatek-Kozłowska, J., Petkova, E. G., Fritsky, I. O., Jerzykiewicz, L., Kapshuk, A. A. & Sliva, T. Yu. (2002). Inorg. Chim. Acta, 329, 113–121.  Web of Science CSD CrossRef CAS Google Scholar
First citationMoroz, Yu. S., Kulon, K., Haukka, M., Gumienna-Kontecka, E., Kozłowski, H., Meyer, F. & Fritsky, I. O. (2008a). Inorg. Chem. 47, 5656–5665.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMoroz, Y. S., Sliva, T. Yu., Kulon, K., Kozłowski, H. & Fritsky, I. O. (2008b). Acta Cryst. E64, m353–m354.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMoroz, Y. S., Kalibabchuk, V. A., Gumienna-Kontecka, E., Skopenko, V. V. & Pavlova, S. V. (2009a). Acta Cryst. E65, o2413.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMoroz, Y. S., Konovalova, I. S., Iskenderov, T. S., Pavlova, S. V. & Shishkin, O. V. (2009b). Acta Cryst. E65, o2242.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOnindo, C. O., Sliva, T. Yu., Kowalik-Jankowska, T., Fritsky, I. O., Buglyo, P., Pettit, L. D., Kozłowski, H. & Kiss, T. (1995). J. Chem. Soc. Dalton Trans. pp. 3911–3915.  CrossRef Web of Science Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPetrusenko, S. R., Kokozay, V. N. & Fritsky, I. O. (1997). Polyhedron, 16, 267–274.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSliva, T. Yu., Duda, A. M., Głowiak, T., Fritsky, I. O., Amirkhanov, V. M., Mokhir, A. A. & Kozłowski, H. (1997a). J. Chem. Soc. Dalton Trans. pp. 273–276.  CSD CrossRef Web of Science Google Scholar
First citationSliva, T. Yu., Kowalik-Jankowska, T., Amirkhanov, V. M., Głowiak, T., Onindo, C. O., Fritsky, I. O. & Kozłowski, H. (1997b). J. Inorg. Biochem. 65, 287–294.  CSD CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds