metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Bis{2-[3-(2,4,6-tri­methyl­benz­yl)imid­azolin-2-yliden-1-yl-κC2]-4-methyl­phenyl}amido-κN)chloridopalladium(II)

aKey Laboratory of Green Chemistry and Technology of the Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, People's Republic of China, and bSchool of Bioindustry, Chengdu University, Chengdu 610106, People's Republic of China
*Correspondence e-mail: luomm@scu.edu.cn

(Received 3 December 2009; accepted 19 January 2010; online 23 January 2010)

The coordination geometry about the Pd centre in the title compound, [Pd(C40H42N5)Cl], is approximately square-planar. The CNC pincer-type N-heterocyclic carbene ligand binds to the Pd atom in a tridentate fashion by the amido N atom and the two carbene atoms and generates two six-membered chelate rings, completing the coordination.

Related literature

For details of various PNP pincer-type ligands, see: Liang et al. (2003[Liang, L. C., Lin, J. M. & Hung, C. H. (2003). Organometallics, 22, 3007-3009.]); Fan et al. (2004[Fan, L., Foxman, B. M. & Ozerov, O. V. (2004). Organometallics, 23, 326-328.]). For PCP pincer-type ligands, see: Moulton & Shaw (1976[Moulton, C. J. & Shaw, B. L. (1976). J. Chem. Soc. Dalton Trans. pp. 1020-1024.]). For general background to pincer-type N-heterocyclic carbene ligands and their complexes, see: Moser et al. (2007[Moser, M., Wucher, B., Kunz, D. & Rominger, F. (2007). Organometallics, 26, 1024-1030.]); Peris et al. (2001[Peris, E., Loch, J. A., Mata, J. & Crabtree, R. H. (2001). Chem. Commun. pp. 201-202.]). For the catalytic activity of palladium(II) complexes of CNC pincer-type NHC Ligands, see: Loch et al. (2002[Loch, J. A., Albrecht, M., Peris, E., Mata, J., Faller, J. W. & Crabtree, R. H. (2002). Organometallics, 21, 700-706.]); Hahn et al. (2005[Hahn, F. E., Jahnke, M. C., Valente, G. B., David, M. M. & Pape, T. (2005). Organometallics, 24, 6458-6463.]). For the synthesis of the ligand, see: Wei et al. (2008[Wei, W., Qin, Y. C., Luo, M. M., Xia, P. F. & Wong, M. S. (2008). Organometallics, 27, 2268-2272.]).

[Scheme 1]

Experimental

Crystal data
  • [Pd(C40H42N5)Cl]

  • Mr = 734.64

  • Monoclinic, P 21 /c

  • a = 14.077 (4) Å

  • b = 28.784 (10) Å

  • c = 10.269 (3) Å

  • β = 101.87 (3)°

  • V = 4072 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.55 mm−1

  • T = 295 K

  • 0.45 × 0.40 × 0.12 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: for a sphere (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) Tmin = 0.942, Tmax = 0.984

  • 8356 measured reflections

  • 7268 independent reflections

  • 3639 reflections with I > 2σ(I)

  • Rint = 0.004

  • 3 standard reflections every 300 reflections intensity decay: 0.4%

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.148

  • S = 0.97

  • 7268 reflections

  • 436 parameters

  • H-atom parameters constrained

  • Δρmax = 0.91 e Å−3

  • Δρmin = −0.68 e Å−3

Data collection: DIFRAC (Gabe et al., 1993[Gabe, E. J., White, P. S. & Enright, G. D. (1993). American Crystallographic Association Pittsburgh Meeting, Abstract PA104.]); cell refinement: NRCVAX (Gabe et al., 1989[Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384-387.]); data reduction: NRCVAX; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

Supporting information


Comment top

Since the initial report on PCP pincer-type ligands by Moulton and Shaw (1976), a wealth of pincer-type ligands have been reported in recent years (e.g. Peris et al., 2001; Hahn et al., 2005; Moser et al., 2007), owing to their potential for supporting peculiar chemical properties on transition metal centers. Among the phosphine containing pincer-type ligands, the recently emerging PNP ligands with a diarylamido backbone have become attractive due to their unusual reactivity in activation of inert chemical bonds (Liang et al., 2003; Fan et al., 2004; Loch et al., 2002). Therefore, it is surprising to us that no pincer-type bis-NHC ligands based on a diarylamido backbone have been described. Guided by the explorations of the PNP ligand by Liang (Liang et al., 2003), we envisaged that replacement of phosphine arms in the ligand with NHCs would produce new CNC pincer-type ligands that may display useful properties for many challenging catalytic applications, especially for those requiring harsh reaction conditions. We reported the synthesis and catalytic activity of several new pincer-type NHC-Pd complexes (Wei et al., 2008). Though the title compound was synthesized previously by us, the crystal was obtained just recently by growing from dichloromethane and diethyl ether. The crystal structure of the title compound is present here for comparing it with the crystal structure of [bis(2-(3-benzylimidazolin-2-yliden-1-yl)-4-methylphenyl)amido]χhloropalladium(II) that has been reported earlier (Wei et al., 2008). It is obvious that there are some differences in the coordination geometries at Pd and in the dihedral angles between the two benzene rings of the diarylamido backone and those between the two NHC rings.

The molecular structure of the title compound is depicted in Figure 1. As expected, the monoanionic ligand is coordinated to palladium in a tridentate fashion by the amido nitrogen and the two carbene atoms, forming two six-membered chelate rings. The geometry about Pd is approximately square planar, with the C28—Pd—C11 angle of 170.1 (2)° and the N3–Pd–Cl1 angle of 177.98 (14)°. The two benzene rings of the diarylamido backone form a dihedral angle of 67.50 (16)°. The dihedral angle of the two NHC rings is 80.72 (19)°. There is no H-bond observed in the crystal structure.

Related literature top

For details of various PNP pincer-type ligands, see: Liang et al. (2003); Fan et al. (2004). For PCP pincer-type ligands, see: Moulton & Shaw (1976). For general background to pincer-type N-heterocyclic carbene ligands and their complexes, see: Moser et al. (2007); Peris et al. (2001). For the catalytic activity of palladium(II) complexes of CNC pincer-type NHC Ligands, see: Loch et al. (2002); Hahn et al. (2005). For the synthesis of the ligand, see: Wei et al. (2008).

Experimental top

A mixture of bis[2-(3-(2,4,6-trimethyl)benzylimidazolium)-4-methylphenyl]amine dibromide (0.100 mmol) and silver(I) oxide (27.6 mg, 0.120 mmol) in 5 ml of solvent (CH2Cl2/MeCN, V/V=1:1) was stirred at room temperature for 24 h. The reaction mixture was filtered and washed with CH2Cl2 (10 ml). The combined filtrate was reduced to 5 ml under vacuum. [PdCl2(MeCN)2] (25.8 mg, 0.100 mmol) in CH2Cl2 (3 ml) was added to the resulting solution and stirred at room temperature for 2 h. The reaction mixture was filtered and washed with CH2Cl2 (10 ml). The combined solution was evaporated under reduced pressure to leave a raw product, which was purified by flash chromatography on silica gel (dichloromethane) to give a yellow solid. Yellow single crystals suitable for an X-ray diffraction study were obtained at ambient temperature by slow evaporation of dichloromethane and diethyl ether solution over a period of several days.

Refinement top

All H atom were positioned geometrically with C—H = 0.93, 0.96 and 0.97 Å for aromatic/imidazole, methyl and methylene H and refined using a riding model with displacement parameters of 1.5 Ueq(C) for methyl and Uiso(H) = 1.2 Ueq(C, O) for others. Initial refinements showed the presence of a severely disordered diethylether solvent molecule. Since no satisfactory model could be obtained, the contribution of this disordered density to the final model was taken into account using the SQUEEZE procedure as incorporated in PLATON (Spek, 2009). Using this method we found a total number of 39.0, 36.9, 36.8 and 39.1 electrons in each of four symmetry-related cavities with a volume of 209.0, 208.9, 209.0 and 209.0 Å3, respectively.

Structure description top

Since the initial report on PCP pincer-type ligands by Moulton and Shaw (1976), a wealth of pincer-type ligands have been reported in recent years (e.g. Peris et al., 2001; Hahn et al., 2005; Moser et al., 2007), owing to their potential for supporting peculiar chemical properties on transition metal centers. Among the phosphine containing pincer-type ligands, the recently emerging PNP ligands with a diarylamido backbone have become attractive due to their unusual reactivity in activation of inert chemical bonds (Liang et al., 2003; Fan et al., 2004; Loch et al., 2002). Therefore, it is surprising to us that no pincer-type bis-NHC ligands based on a diarylamido backbone have been described. Guided by the explorations of the PNP ligand by Liang (Liang et al., 2003), we envisaged that replacement of phosphine arms in the ligand with NHCs would produce new CNC pincer-type ligands that may display useful properties for many challenging catalytic applications, especially for those requiring harsh reaction conditions. We reported the synthesis and catalytic activity of several new pincer-type NHC-Pd complexes (Wei et al., 2008). Though the title compound was synthesized previously by us, the crystal was obtained just recently by growing from dichloromethane and diethyl ether. The crystal structure of the title compound is present here for comparing it with the crystal structure of [bis(2-(3-benzylimidazolin-2-yliden-1-yl)-4-methylphenyl)amido]χhloropalladium(II) that has been reported earlier (Wei et al., 2008). It is obvious that there are some differences in the coordination geometries at Pd and in the dihedral angles between the two benzene rings of the diarylamido backone and those between the two NHC rings.

The molecular structure of the title compound is depicted in Figure 1. As expected, the monoanionic ligand is coordinated to palladium in a tridentate fashion by the amido nitrogen and the two carbene atoms, forming two six-membered chelate rings. The geometry about Pd is approximately square planar, with the C28—Pd—C11 angle of 170.1 (2)° and the N3–Pd–Cl1 angle of 177.98 (14)°. The two benzene rings of the diarylamido backone form a dihedral angle of 67.50 (16)°. The dihedral angle of the two NHC rings is 80.72 (19)°. There is no H-bond observed in the crystal structure.

For details of various PNP pincer-type ligands, see: Liang et al. (2003); Fan et al. (2004). For PCP pincer-type ligands, see: Moulton & Shaw (1976). For general background to pincer-type N-heterocyclic carbene ligands and their complexes, see: Moser et al. (2007); Peris et al. (2001). For the catalytic activity of palladium(II) complexes of CNC pincer-type NHC Ligands, see: Loch et al. (2002); Hahn et al. (2005). For the synthesis of the ligand, see: Wei et al. (2008).

Computing details top

Data collection: DIFRAC (Gabe et al., 1993); cell refinement: NRCVAX (Gabe et al., 1989); data reduction: NRCVAX (Gabe et al., 1989); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level.
(Bis{2-[3-(2,4,6-trimethylbenzyl)imidazolin-2-yliden-1-yl-κC2]- 4-methylphenyl}amido-κN)chloridopalladium(II) top
Crystal data top
[Pd(C40H42N5)Cl]F(000) = 1688
Mr = 734.64Dx = 1.198 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 14.077 (4) ÅCell parameters from 23 reflections
b = 28.784 (10) Åθ = 4.5–5.9°
c = 10.269 (3) ŵ = 0.55 mm1
β = 101.87 (3)°T = 295 K
V = 4072 (2) Å3Block, orange
Z = 40.45 × 0.40 × 0.12 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
3639 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.004
Graphite monochromatorθmax = 25.3°, θmin = 1.4°
ω/2–θ scansh = 164
Absorption correction: for a sphere
(Farrugia, 1999)
k = 340
Tmin = 0.942, Tmax = 0.984l = 1212
8356 measured reflections3 standard reflections every 300 reflections
7268 independent reflections intensity decay: 0.4%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.148H-atom parameters constrained
S = 0.97 w = 1/[σ2(Fo2) + (0.0702P)2]
where P = (Fo2 + 2Fc2)/3
7268 reflections(Δ/σ)max = 0.001
436 parametersΔρmax = 0.91 e Å3
0 restraintsΔρmin = 0.68 e Å3
Crystal data top
[Pd(C40H42N5)Cl]V = 4072 (2) Å3
Mr = 734.64Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.077 (4) ŵ = 0.55 mm1
b = 28.784 (10) ÅT = 295 K
c = 10.269 (3) Å0.45 × 0.40 × 0.12 mm
β = 101.87 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
3639 reflections with I > 2σ(I)
Absorption correction: for a sphere
(Farrugia, 1999)
Rint = 0.004
Tmin = 0.942, Tmax = 0.9843 standard reflections every 300 reflections
8356 measured reflections intensity decay: 0.4%
7268 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0560 restraints
wR(F2) = 0.148H-atom parameters constrained
S = 0.97Δρmax = 0.91 e Å3
7268 reflectionsΔρmin = 0.68 e Å3
436 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pd10.97388 (4)0.876856 (14)0.49293 (4)0.03970 (15)
Cl10.96935 (11)0.88082 (5)0.26123 (13)0.0465 (4)
N10.8431 (3)0.96410 (15)0.4282 (4)0.0379 (11)
N20.9465 (3)0.96814 (16)0.6151 (5)0.0405 (12)
N30.9755 (4)0.87133 (16)0.6870 (4)0.0482 (13)
N40.9972 (4)0.77978 (16)0.5871 (5)0.0476 (13)
N51.0988 (4)0.79004 (17)0.4595 (5)0.0523 (14)
C10.6102 (5)0.9848 (2)0.2470 (6)0.0542 (17)
C20.5148 (6)0.9890 (3)0.2617 (8)0.078 (2)
H20.47501.01090.21060.094*
C30.4774 (6)0.9622 (3)0.3481 (9)0.079 (2)
C40.5357 (6)0.9316 (3)0.4254 (8)0.082 (2)
H40.51080.91390.48630.098*
C50.6326 (5)0.9259 (2)0.4164 (7)0.0624 (19)
C60.6697 (5)0.9525 (2)0.3235 (6)0.0495 (16)
C70.6444 (6)1.0151 (3)0.1469 (7)0.080 (2)
H7A0.64930.99700.07020.120*
H7B0.70691.02790.18570.120*
H7C0.59891.04000.12090.120*
C80.3729 (6)0.9674 (4)0.3621 (10)0.124 (4)
H8A0.33910.93860.33940.186*
H8B0.34220.99150.30340.186*
H8C0.37120.97550.45230.186*
C90.6969 (7)0.8911 (3)0.5102 (9)0.096 (3)
H9A0.73010.90710.58850.145*
H9B0.74370.87770.46520.145*
H9C0.65700.86710.53510.145*
C100.7742 (4)0.9455 (2)0.3112 (5)0.0429 (14)
H10A0.78640.91260.30230.052*
H10B0.78480.96100.23150.052*
C110.9146 (4)0.94019 (18)0.5071 (5)0.0352 (13)
C120.8313 (5)1.00615 (19)0.4843 (6)0.0426 (15)
H120.78661.02880.44780.051*
C130.8939 (4)1.0093 (2)0.5991 (6)0.0440 (15)
H130.90121.03420.65790.053*
C141.0110 (4)0.9543 (2)0.7358 (5)0.0412 (14)
C151.0561 (4)0.98854 (19)0.8193 (5)0.0400 (14)
H151.05221.01910.78910.048*
C161.1071 (4)0.9792 (2)0.9466 (6)0.0447 (15)
C171.1103 (5)0.9332 (2)0.9870 (6)0.0534 (17)
H171.14140.92581.07340.064*
C181.0692 (5)0.8985 (2)0.9038 (6)0.0617 (19)
H181.07650.86790.93330.074*
C191.0152 (5)0.90776 (18)0.7723 (6)0.0441 (15)
C201.1546 (5)1.0174 (2)1.0386 (6)0.0592 (18)
H20A1.15331.00931.12890.089*
H20B1.12001.04601.01580.089*
H20C1.22071.02111.02950.089*
C210.9322 (5)0.83385 (19)0.7331 (6)0.0470 (16)
C220.9355 (5)0.7888 (2)0.6780 (6)0.0480 (16)
C230.8818 (5)0.7527 (2)0.7169 (7)0.0576 (18)
H230.88330.72380.67690.069*
C240.8265 (5)0.7579 (2)0.8117 (7)0.0601 (19)
C250.8241 (5)0.8026 (2)0.8685 (7)0.0613 (19)
H250.78780.80770.93330.074*
C260.8754 (5)0.8384 (2)0.8281 (6)0.0570 (18)
H260.87190.86750.86650.068*
C270.7706 (5)0.7178 (3)0.8530 (8)0.084 (3)
H27A0.72650.70570.77650.127*
H27B0.73460.72820.91740.127*
H27C0.81500.69380.89140.127*
C281.0308 (5)0.81238 (19)0.5116 (6)0.0462 (14)
C291.1045 (5)0.7433 (2)0.4970 (7)0.063 (2)
H291.14470.72090.47180.076*
C301.0412 (5)0.7370 (2)0.5758 (7)0.063 (2)
H301.02870.70930.61570.075*
C311.1649 (5)0.8126 (3)0.3852 (6)0.064 (2)
H31A1.14840.84530.37450.076*
H31B1.15580.79890.29730.076*
C321.2715 (5)0.8080 (3)0.4546 (7)0.0626 (19)
C331.3107 (6)0.8376 (2)0.5567 (8)0.0652 (19)
C341.4079 (6)0.8326 (3)0.6198 (9)0.081 (3)
H341.43480.85270.68850.097*
C351.4637 (7)0.7986 (4)0.5818 (11)0.097 (3)
C361.4247 (7)0.7711 (4)0.4771 (10)0.097 (3)
H361.46450.74940.44760.117*
C371.3280 (7)0.7739 (3)0.4119 (8)0.089 (3)
C381.2505 (7)0.8746 (3)0.6079 (9)0.102 (3)
H38A1.20980.88990.53390.153*
H38B1.29280.89690.65990.153*
H38C1.21080.86020.66210.153*
C391.5697 (6)0.7926 (4)0.6577 (12)0.158 (5)
H39A1.60270.77140.61000.237*
H39B1.57020.78050.74490.237*
H39C1.60200.82210.66520.237*
C401.2915 (8)0.7407 (4)0.2986 (9)0.141 (5)
H40A1.34030.71770.29520.212*
H40B1.27780.75760.21630.212*
H40C1.23350.72580.31250.212*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd10.0439 (3)0.0312 (2)0.0440 (3)0.0077 (2)0.00920 (18)0.0007 (2)
Cl10.0564 (10)0.0415 (8)0.0430 (8)0.0120 (8)0.0135 (7)0.0009 (7)
N10.031 (3)0.037 (3)0.046 (3)0.000 (2)0.011 (2)0.001 (2)
N20.040 (3)0.037 (3)0.049 (3)0.002 (2)0.020 (2)0.001 (2)
N30.063 (4)0.037 (3)0.045 (3)0.002 (3)0.014 (2)0.001 (2)
N40.054 (4)0.032 (3)0.050 (3)0.007 (2)0.006 (3)0.003 (2)
N50.051 (4)0.040 (3)0.059 (3)0.016 (3)0.002 (3)0.012 (3)
C10.036 (4)0.073 (5)0.054 (4)0.018 (4)0.009 (3)0.001 (3)
C20.046 (5)0.102 (7)0.081 (6)0.022 (5)0.001 (4)0.015 (5)
C30.046 (5)0.098 (6)0.096 (6)0.004 (5)0.021 (5)0.029 (5)
C40.068 (6)0.096 (6)0.091 (6)0.019 (5)0.041 (5)0.000 (5)
C50.045 (4)0.064 (5)0.083 (5)0.008 (4)0.024 (4)0.003 (4)
C60.044 (4)0.053 (4)0.054 (4)0.002 (3)0.015 (3)0.010 (3)
C70.069 (6)0.092 (6)0.075 (5)0.031 (5)0.007 (4)0.021 (4)
C80.040 (5)0.171 (10)0.167 (10)0.000 (6)0.033 (6)0.043 (8)
C90.099 (7)0.068 (5)0.135 (8)0.007 (5)0.052 (6)0.041 (5)
C100.035 (4)0.053 (4)0.042 (3)0.006 (3)0.010 (3)0.005 (3)
C110.027 (3)0.035 (3)0.046 (3)0.001 (3)0.012 (3)0.003 (3)
C120.043 (4)0.035 (3)0.051 (4)0.011 (3)0.015 (3)0.003 (3)
C130.038 (4)0.042 (4)0.056 (4)0.009 (3)0.022 (3)0.000 (3)
C140.048 (4)0.046 (3)0.033 (3)0.003 (3)0.016 (3)0.003 (3)
C150.038 (4)0.040 (3)0.046 (4)0.011 (3)0.018 (3)0.004 (3)
C160.045 (4)0.053 (4)0.039 (3)0.005 (3)0.015 (3)0.011 (3)
C170.061 (5)0.054 (4)0.044 (4)0.002 (3)0.008 (3)0.002 (3)
C180.072 (5)0.052 (4)0.055 (4)0.004 (4)0.002 (4)0.000 (3)
C190.064 (5)0.027 (3)0.043 (3)0.015 (3)0.016 (3)0.004 (3)
C200.051 (5)0.067 (4)0.062 (4)0.015 (4)0.017 (3)0.018 (3)
C210.058 (4)0.034 (3)0.046 (4)0.009 (3)0.004 (3)0.010 (3)
C220.052 (4)0.034 (3)0.051 (4)0.003 (3)0.005 (3)0.005 (3)
C230.058 (5)0.032 (3)0.073 (5)0.003 (3)0.008 (4)0.007 (3)
C240.041 (4)0.055 (4)0.076 (5)0.009 (3)0.007 (4)0.022 (4)
C250.050 (5)0.061 (5)0.073 (5)0.009 (4)0.014 (4)0.019 (4)
C260.060 (5)0.048 (4)0.061 (4)0.000 (3)0.006 (4)0.012 (3)
C270.050 (5)0.091 (6)0.106 (6)0.019 (4)0.002 (4)0.029 (5)
C280.042 (4)0.039 (3)0.055 (4)0.010 (3)0.002 (3)0.008 (3)
C290.060 (5)0.040 (4)0.080 (5)0.014 (4)0.011 (4)0.016 (4)
C300.062 (5)0.030 (3)0.086 (5)0.004 (3)0.010 (4)0.010 (3)
C310.066 (5)0.075 (5)0.047 (4)0.019 (4)0.007 (4)0.010 (3)
C320.048 (5)0.083 (5)0.058 (4)0.021 (4)0.014 (3)0.014 (4)
C330.056 (5)0.058 (5)0.081 (5)0.000 (4)0.013 (4)0.015 (4)
C340.058 (6)0.059 (5)0.121 (7)0.017 (4)0.005 (5)0.036 (5)
C350.064 (7)0.113 (8)0.114 (8)0.000 (6)0.016 (6)0.063 (7)
C360.066 (6)0.138 (9)0.097 (7)0.049 (6)0.038 (5)0.034 (6)
C370.084 (7)0.122 (7)0.065 (5)0.046 (6)0.025 (5)0.006 (5)
C380.114 (8)0.056 (5)0.121 (7)0.002 (5)0.010 (6)0.016 (5)
C390.038 (5)0.205 (12)0.218 (12)0.010 (7)0.005 (7)0.100 (10)
C400.160 (11)0.159 (10)0.098 (7)0.090 (8)0.011 (7)0.035 (7)
Geometric parameters (Å, º) top
Pd1—N31.995 (5)C16—C171.386 (8)
Pd1—C282.015 (6)C16—C201.512 (8)
Pd1—C112.022 (5)C17—C181.364 (8)
Pd1—Cl12.3697 (16)C17—H170.9300
N1—C111.345 (7)C18—C191.431 (8)
N1—C121.365 (6)C18—H180.9300
N1—C101.480 (7)C20—H20A0.9600
N2—C111.369 (7)C20—H20B0.9600
N2—C131.388 (7)C20—H20C0.9600
N2—C141.434 (7)C21—C261.388 (9)
N3—C211.370 (7)C21—C221.419 (8)
N3—C191.407 (7)C22—C231.391 (8)
N4—C281.362 (8)C23—C241.375 (9)
N4—C301.394 (7)C23—H230.9300
N4—C221.423 (8)C24—C251.416 (9)
N5—C281.352 (8)C24—C271.507 (9)
N5—C291.397 (8)C25—C261.371 (9)
N5—C311.470 (9)C25—H250.9300
C1—C61.383 (8)C26—H260.9300
C1—C21.386 (9)C27—H27A0.9600
C1—C71.501 (9)C27—H27B0.9600
C2—C31.362 (11)C27—H27C0.9600
C2—H20.9300C29—C301.333 (10)
C3—C41.346 (11)C29—H290.9300
C3—C81.514 (10)C30—H300.9300
C4—C51.397 (10)C31—C321.530 (9)
C4—H40.9300C31—H31A0.9700
C5—C61.405 (9)C31—H31B0.9700
C5—C91.546 (10)C32—C331.376 (9)
C6—C101.516 (8)C32—C371.388 (10)
C7—H7A0.9600C33—C341.396 (10)
C7—H7B0.9600C33—C381.520 (11)
C7—H7C0.9600C34—C351.362 (12)
C8—H8A0.9600C34—H340.9300
C8—H8B0.9600C35—C361.357 (13)
C8—H8C0.9600C35—C391.544 (12)
C9—H9A0.9600C36—C371.391 (12)
C9—H9B0.9600C36—H360.9300
C9—H9C0.9600C37—C401.511 (12)
C10—H10A0.9700C38—H38A0.9600
C10—H10B0.9700C38—H38B0.9600
C12—C131.322 (8)C38—H38C0.9600
C12—H120.9300C39—H39A0.9600
C13—H130.9300C39—H39B0.9600
C14—C151.374 (7)C39—H39C0.9600
C14—C191.389 (7)C40—H40A0.9600
C15—C161.382 (8)C40—H40B0.9600
C15—H150.9300C40—H40C0.9600
N3—Pd1—C2884.8 (2)C19—C18—H18119.1
N3—Pd1—C1185.4 (2)C14—C19—N3124.1 (5)
C28—Pd1—C11170.1 (2)C14—C19—C18114.8 (5)
N3—Pd1—Cl1177.98 (14)N3—C19—C18120.9 (5)
C28—Pd1—Cl193.89 (19)C16—C20—H20A109.5
C11—Pd1—Cl195.88 (15)C16—C20—H20B109.5
C11—N1—C12109.9 (5)H20A—C20—H20B109.5
C11—N1—C10126.1 (5)C16—C20—H20C109.5
C12—N1—C10123.1 (5)H20A—C20—H20C109.5
C11—N2—C13109.1 (5)H20B—C20—H20C109.5
C11—N2—C14125.5 (5)N3—C21—C26121.9 (5)
C13—N2—C14124.5 (5)N3—C21—C22121.8 (6)
C21—N3—C19121.3 (5)C26—C21—C22116.0 (6)
C21—N3—Pd1119.6 (4)C23—C22—C21120.2 (6)
C19—N3—Pd1119.0 (4)C23—C22—N4119.5 (6)
C28—N4—C30110.4 (6)C21—C22—N4120.2 (6)
C28—N4—C22125.3 (5)C24—C23—C22122.9 (6)
C30—N4—C22123.8 (6)C24—C23—H23118.5
C28—N5—C29110.7 (6)C22—C23—H23118.5
C28—N5—C31124.7 (5)C23—C24—C25117.0 (6)
C29—N5—C31124.3 (6)C23—C24—C27121.4 (7)
C6—C1—C2118.9 (7)C25—C24—C27121.6 (7)
C6—C1—C7122.5 (6)C26—C25—C24120.0 (7)
C2—C1—C7118.6 (7)C26—C25—H25120.0
C3—C2—C1122.3 (7)C24—C25—H25120.0
C3—C2—H2118.8C25—C26—C21123.8 (6)
C1—C2—H2118.8C25—C26—H26118.1
C4—C3—C2119.0 (7)C21—C26—H26118.1
C4—C3—C8119.7 (9)C24—C27—H27A109.5
C2—C3—C8121.3 (9)C24—C27—H27B109.5
C3—C4—C5121.6 (7)H27A—C27—H27B109.5
C3—C4—H4119.2C24—C27—H27C109.5
C5—C4—H4119.2H27A—C27—H27C109.5
C4—C5—C6119.0 (7)H27B—C27—H27C109.5
C4—C5—C9119.3 (7)N5—C28—N4104.7 (5)
C6—C5—C9121.6 (6)N5—C28—Pd1134.5 (5)
C1—C6—C5119.1 (6)N4—C28—Pd1120.7 (5)
C1—C6—C10121.8 (6)C30—C29—N5107.0 (6)
C5—C6—C10119.1 (6)C30—C29—H29126.5
C1—C7—H7A109.5N5—C29—H29126.5
C1—C7—H7B109.5C29—C30—N4107.0 (6)
H7A—C7—H7B109.5C29—C30—H30126.5
C1—C7—H7C109.5N4—C30—H30126.5
H7A—C7—H7C109.5N5—C31—C32112.6 (5)
H7B—C7—H7C109.5N5—C31—H31A109.1
C3—C8—H8A109.5C32—C31—H31A109.1
C3—C8—H8B109.5N5—C31—H31B109.1
H8A—C8—H8B109.5C32—C31—H31B109.1
C3—C8—H8C109.5H31A—C31—H31B107.8
H8A—C8—H8C109.5C33—C32—C37120.8 (7)
H8B—C8—H8C109.5C33—C32—C31120.1 (6)
C5—C9—H9A109.5C37—C32—C31119.1 (7)
C5—C9—H9B109.5C32—C33—C34119.4 (8)
H9A—C9—H9B109.5C32—C33—C38122.2 (7)
C5—C9—H9C109.5C34—C33—C38118.3 (8)
H9A—C9—H9C109.5C35—C34—C33120.6 (9)
H9B—C9—H9C109.5C35—C34—H34119.7
N1—C10—C6111.7 (5)C33—C34—H34119.7
N1—C10—H10A109.3C36—C35—C34118.9 (9)
C6—C10—H10A109.3C36—C35—C39121.7 (11)
N1—C10—H10B109.3C34—C35—C39119.4 (11)
C6—C10—H10B109.3C35—C36—C37123.0 (9)
H10A—C10—H10B107.9C35—C36—H36118.5
N1—C11—N2105.5 (5)C37—C36—H36118.5
N1—C11—Pd1133.4 (4)C32—C37—C36117.2 (9)
N2—C11—Pd1121.1 (4)C32—C37—C40124.3 (8)
C13—C12—N1108.6 (5)C36—C37—C40118.5 (8)
C13—C12—H12125.7C33—C38—H38A109.5
N1—C12—H12125.7C33—C38—H38B109.5
C12—C13—N2106.8 (5)H38A—C38—H38B109.5
C12—C13—H13126.6C33—C38—H38C109.5
N2—C13—H13126.6H38A—C38—H38C109.5
C15—C14—C19122.3 (5)H38B—C38—H38C109.5
C15—C14—N2118.0 (5)C35—C39—H39A109.5
C19—C14—N2119.1 (5)C35—C39—H39B109.5
C14—C15—C16122.3 (5)H39A—C39—H39B109.5
C14—C15—H15118.8C35—C39—H39C109.5
C16—C15—H15118.8H39A—C39—H39C109.5
C15—C16—C17116.5 (5)H39B—C39—H39C109.5
C15—C16—C20121.8 (6)C37—C40—H40A109.5
C17—C16—C20121.6 (6)C37—C40—H40B109.5
C18—C17—C16122.0 (6)H40A—C40—H40B109.5
C18—C17—H17119.0C37—C40—H40C109.5
C16—C17—H17119.0H40A—C40—H40C109.5
C17—C18—C19121.9 (6)H40B—C40—H40C109.5
C17—C18—H18119.1

Experimental details

Crystal data
Chemical formula[Pd(C40H42N5)Cl]
Mr734.64
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)14.077 (4), 28.784 (10), 10.269 (3)
β (°) 101.87 (3)
V3)4072 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.55
Crystal size (mm)0.45 × 0.40 × 0.12
Data collection
DiffractometerEnraf–Nonius CAD-4
Absorption correctionFor a sphere
(Farrugia, 1999)
Tmin, Tmax0.942, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
8356, 7268, 3639
Rint0.004
(sin θ/λ)max1)0.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.148, 0.97
No. of reflections7268
No. of parameters436
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.91, 0.68

Computer programs: DIFRAC (Gabe et al., 1993), NRCVAX (Gabe et al., 1989), SHELXS97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

 

Acknowledgements

Financial support for this work by the Natural Science Foundation of Sichuan Province of China is gratefully acknowledged.

References

First citationFan, L., Foxman, B. M. & Ozerov, O. V. (2004). Organometallics, 23, 326–328.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384–387.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGabe, E. J., White, P. S. & Enright, G. D. (1993). American Crystallographic Association Pittsburgh Meeting, Abstract PA104.  Google Scholar
First citationHahn, F. E., Jahnke, M. C., Valente, G. B., David, M. M. & Pape, T. (2005). Organometallics, 24, 6458–6463.  Web of Science CSD CrossRef CAS Google Scholar
First citationLiang, L. C., Lin, J. M. & Hung, C. H. (2003). Organometallics, 22, 3007–3009.  Web of Science CSD CrossRef CAS Google Scholar
First citationLoch, J. A., Albrecht, M., Peris, E., Mata, J., Faller, J. W. & Crabtree, R. H. (2002). Organometallics, 21, 700–706.  Web of Science CSD CrossRef CAS Google Scholar
First citationMoser, M., Wucher, B., Kunz, D. & Rominger, F. (2007). Organometallics, 26, 1024–1030.  Web of Science CSD CrossRef CAS Google Scholar
First citationMoulton, C. J. & Shaw, B. L. (1976). J. Chem. Soc. Dalton Trans. pp. 1020–1024.  CrossRef Web of Science Google Scholar
First citationPeris, E., Loch, J. A., Mata, J. & Crabtree, R. H. (2001). Chem. Commun. pp. 201–202.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWei, W., Qin, Y. C., Luo, M. M., Xia, P. F. & Wong, M. S. (2008). Organometallics, 27, 2268–2272.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds