organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-[4-(Piperidin-1-yl)piperidin-1-yl]benzo­nitrile

aState Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan 610041, People's Republic of China
*Correspondence e-mail: luo_youfu@scu.edu.cn

(Received 9 November 2009; accepted 22 December 2009; online 9 January 2010)

In the title compound, C17H23N3, both piperidine rings adopt chair conformations. In the crystal packing, intermolecular C—H⋯N hydrogen bonds and C—H⋯π interactions are present.

Related literature

For general background, see: Pevarello et al. (2006[Pevarello, P., Fancelli, D., Vulpetti, A., Amici, R., Villa, M., Pittalà, V., Vianello, P., Cameron, A., Ciomei, M., Mercurio, C., Bischoff, J. R., Roletto, F., Varasi, M. & Brasca, M. G. (2006). Bioorg. Med. Chem. Lett. 16, 1084-1090.]).

[Scheme 1]

Experimental

Crystal data
  • C17H23N3

  • Mr = 269.38

  • Monoclinic, P 21 /c

  • a = 10.090 (2) Å

  • b = 11.100 (2) Å

  • c = 13.446 (3) Å

  • β = 100.72 (3)°

  • V = 1479.7 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 113 K

  • 0.26 × 0.25 × 0.20 mm

Data collection
  • Rigaku Saturn CCD area-detector diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.]) Tmin = 0.981, Tmax = 0.986

  • 11970 measured reflections

  • 3500 independent reflections

  • 2749 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.111

  • S = 1.12

  • 3500 reflections

  • 182 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C11–C16 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯Cgi 1.00 2.99 3.9363 (14) 158
C16—H16⋯N3ii 0.95 2.54 3.3442 (16) 143
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ChemBioDraw Ultra CambridgeSoft (2008[CambridgeSoft (2008). ChemBioDraw Ultra. CambridgeSoft, England.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

4-(4-(Piperidin-1-yl)piperidin-1-yl)benzonitrile are key intermediates which can be used to synthesize 3-aminopyrazole derivatives, which can be used as precursors for anticancer and anti-malarial agents. In the structure of the title molecule (Fig. 1) both piperidine rings are in a chair conformation. A crystal packing is dominated by van der Waals interactions (Fig. 2).

Related literature top

For general background, see: Pevarello et al. (2006).

Experimental top

A DMSO solution of 1-(piperidin-4-yl)piperidine (4.37 g, 0.01 mol) with 4-fluorobenzonitrile (1.21 g, 0.01 mol) was heated to reflux for 3 h, then water (50 ml) was added into the solution. The mixture was extracted with CH2Cl2. After the solvent was removed a red crystalline powder was obtained; its recrystallisation from a methanol solution after 5 days yielded single crystals.

Structure description top

4-(4-(Piperidin-1-yl)piperidin-1-yl)benzonitrile are key intermediates which can be used to synthesize 3-aminopyrazole derivatives, which can be used as precursors for anticancer and anti-malarial agents. In the structure of the title molecule (Fig. 1) both piperidine rings are in a chair conformation. A crystal packing is dominated by van der Waals interactions (Fig. 2).

For general background, see: Pevarello et al. (2006).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ChemBioDraw Ultra (CambridgeSoft, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. The crystal packing of I dominated by van der Waals interactions.
4-[4-(Piperidin-1-yl)piperidin-1-yl]benzonitrile top
Crystal data top
C17H23N3F(000) = 584
Mr = 269.38Dx = 1.209 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4488 reflections
a = 10.090 (2) Åθ = 2.7–27.9°
b = 11.100 (2) ŵ = 0.07 mm1
c = 13.446 (3) ÅT = 113 K
β = 100.72 (3)°Block, red
V = 1479.7 (5) Å30.26 × 0.25 × 0.20 mm
Z = 4
Data collection top
Rigaku Saturn CCD area-detector
diffractometer
3500 independent reflections
Radiation source: rotating anode2749 reflections with I > 2σ(I)
Confocal monochromatorRint = 0.032
Detector resolution: 7.31 pixels mm-1θmax = 27.9°, θmin = 2.8°
ω and φ scansh = 1310
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
k = 1414
Tmin = 0.981, Tmax = 0.986l = 1717
11970 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.111 w = 1/[σ2(Fo2) + (0.0612P)2 + 0.0668P]
where P = (Fo2 + 2Fc2)/3
S = 1.12(Δ/σ)max < 0.001
3500 reflectionsΔρmax = 0.27 e Å3
182 parametersΔρmin = 0.19 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.033 (7)
Crystal data top
C17H23N3V = 1479.7 (5) Å3
Mr = 269.38Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.090 (2) ŵ = 0.07 mm1
b = 11.100 (2) ÅT = 113 K
c = 13.446 (3) Å0.26 × 0.25 × 0.20 mm
β = 100.72 (3)°
Data collection top
Rigaku Saturn CCD area-detector
diffractometer
3500 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
2749 reflections with I > 2σ(I)
Tmin = 0.981, Tmax = 0.986Rint = 0.032
11970 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.111H-atom parameters constrained
S = 1.12Δρmax = 0.27 e Å3
3500 reflectionsΔρmin = 0.19 e Å3
182 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.19321 (8)0.59022 (8)0.73578 (6)0.0193 (2)
N20.26675 (8)0.49828 (7)0.43659 (6)0.0187 (2)
N30.48688 (9)0.35177 (8)0.00345 (7)0.0256 (2)
C10.21163 (10)0.49931 (10)0.81631 (8)0.0225 (2)
H1A0.30690.47270.83040.027*
H1B0.15470.42830.79340.027*
C20.17411 (11)0.54896 (10)0.91273 (8)0.0270 (3)
H2A0.23630.61540.93910.032*
H2B0.18390.48480.96470.032*
C30.02945 (11)0.59541 (11)0.89283 (9)0.0310 (3)
H3A0.03390.52700.87680.037*
H3B0.01020.63600.95420.037*
C40.00956 (11)0.68349 (11)0.80492 (9)0.0307 (3)
H4A0.06380.75690.82490.037*
H4B0.08650.70740.78810.037*
C50.05156 (10)0.62790 (11)0.71205 (8)0.0274 (3)
H5A0.00620.55730.68940.033*
H5B0.03920.68750.65630.033*
C60.24849 (10)0.54949 (9)0.64737 (8)0.0182 (2)
H60.34480.52720.67330.022*
C70.18209 (10)0.43925 (9)0.59102 (8)0.0205 (2)
H7A0.18160.37210.63940.025*
H7B0.08730.45840.56080.025*
C80.25693 (10)0.40038 (9)0.50799 (8)0.0204 (2)
H8A0.34880.37340.53910.024*
H8B0.20930.33130.47080.024*
C90.32454 (11)0.60897 (9)0.48736 (8)0.0224 (2)
H9A0.32060.67420.43660.027*
H9B0.42060.59480.51720.027*
C100.25036 (11)0.64891 (9)0.56997 (8)0.0229 (2)
H10A0.15660.67110.53940.027*
H10B0.29510.72110.60420.027*
C110.31345 (9)0.46754 (9)0.34801 (7)0.0179 (2)
C120.32252 (10)0.55520 (9)0.27405 (8)0.0209 (2)
H120.29760.63600.28490.025*
C130.36689 (10)0.52613 (9)0.18606 (8)0.0212 (2)
H130.37270.58700.13740.025*
C140.40341 (10)0.40774 (9)0.16801 (8)0.0182 (2)
C150.39452 (10)0.31974 (9)0.24037 (8)0.0203 (2)
H150.41910.23900.22890.024*
C160.35023 (10)0.34886 (9)0.32857 (8)0.0205 (2)
H160.34450.28760.37700.025*
C170.45003 (10)0.37726 (9)0.07679 (8)0.0200 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0189 (4)0.0234 (5)0.0162 (4)0.0020 (3)0.0049 (3)0.0006 (3)
N20.0253 (4)0.0146 (4)0.0169 (4)0.0026 (3)0.0060 (3)0.0002 (3)
N30.0337 (5)0.0195 (5)0.0252 (5)0.0013 (4)0.0101 (4)0.0025 (4)
C10.0240 (5)0.0248 (5)0.0194 (5)0.0000 (4)0.0053 (4)0.0015 (4)
C20.0287 (6)0.0343 (6)0.0190 (6)0.0034 (5)0.0071 (4)0.0014 (5)
C30.0272 (6)0.0414 (7)0.0273 (6)0.0046 (5)0.0127 (5)0.0073 (5)
C40.0237 (5)0.0400 (7)0.0300 (6)0.0065 (5)0.0085 (5)0.0051 (5)
C50.0215 (5)0.0370 (6)0.0237 (6)0.0071 (5)0.0044 (4)0.0020 (5)
C60.0183 (5)0.0197 (5)0.0170 (5)0.0005 (4)0.0045 (4)0.0008 (4)
C70.0226 (5)0.0200 (5)0.0196 (5)0.0024 (4)0.0058 (4)0.0011 (4)
C80.0272 (5)0.0160 (5)0.0189 (5)0.0022 (4)0.0069 (4)0.0008 (4)
C90.0287 (5)0.0187 (5)0.0210 (5)0.0062 (4)0.0076 (4)0.0031 (4)
C100.0315 (6)0.0177 (5)0.0212 (6)0.0024 (4)0.0094 (4)0.0023 (4)
C110.0178 (5)0.0183 (5)0.0170 (5)0.0011 (4)0.0018 (4)0.0009 (4)
C120.0263 (5)0.0161 (5)0.0209 (5)0.0028 (4)0.0059 (4)0.0000 (4)
C130.0268 (5)0.0187 (5)0.0185 (5)0.0012 (4)0.0054 (4)0.0027 (4)
C140.0196 (5)0.0181 (5)0.0171 (5)0.0009 (4)0.0033 (4)0.0014 (4)
C150.0238 (5)0.0164 (5)0.0205 (6)0.0007 (4)0.0033 (4)0.0017 (4)
C160.0253 (5)0.0170 (5)0.0187 (5)0.0007 (4)0.0031 (4)0.0011 (4)
C170.0236 (5)0.0145 (5)0.0216 (6)0.0012 (4)0.0038 (4)0.0000 (4)
Geometric parameters (Å, º) top
N1—C51.4663 (13)C6—H61.0000
N1—C11.4664 (13)C7—C81.5219 (14)
N1—C61.4749 (13)C7—H7A0.9900
N2—C111.4020 (13)C7—H7B0.9900
N2—C81.4656 (13)C8—H8A0.9900
N2—C91.4723 (13)C8—H8B0.9900
N3—C171.1520 (13)C9—C101.5164 (14)
C1—C21.5200 (14)C9—H9A0.9900
C1—H1A0.9900C9—H9B0.9900
C1—H1B0.9900C10—H10A0.9900
C2—C31.5241 (16)C10—H10B0.9900
C2—H2A0.9900C11—C161.4063 (14)
C2—H2B0.9900C11—C121.4064 (14)
C3—C41.5183 (17)C12—C131.3788 (14)
C3—H3A0.9900C12—H120.9500
C3—H3B0.9900C13—C141.3981 (14)
C4—C51.5220 (15)C13—H130.9500
C4—H4A0.9900C14—C151.3933 (14)
C4—H4B0.9900C14—C171.4335 (14)
C5—H5A0.9900C15—C161.3811 (14)
C5—H5B0.9900C15—H150.9500
C6—C101.5195 (14)C16—H160.9500
C6—C71.5269 (14)
C5—N1—C1109.98 (8)C8—C7—H7A109.4
C5—N1—C6114.29 (8)C6—C7—H7A109.4
C1—N1—C6111.67 (8)C8—C7—H7B109.4
C11—N2—C8116.77 (8)C6—C7—H7B109.4
C11—N2—C9115.49 (8)H7A—C7—H7B108.0
C8—N2—C9112.59 (8)N2—C8—C7111.93 (8)
N1—C1—C2111.27 (9)N2—C8—H8A109.2
N1—C1—H1A109.4C7—C8—H8A109.2
C2—C1—H1A109.4N2—C8—H8B109.2
N1—C1—H1B109.4C7—C8—H8B109.2
C2—C1—H1B109.4H8A—C8—H8B107.9
H1A—C1—H1B108.0N2—C9—C10112.14 (8)
C1—C2—C3110.81 (9)N2—C9—H9A109.2
C1—C2—H2A109.5C10—C9—H9A109.2
C3—C2—H2A109.5N2—C9—H9B109.2
C1—C2—H2B109.5C10—C9—H9B109.2
C3—C2—H2B109.5H9A—C9—H9B107.9
H2A—C2—H2B108.1C9—C10—C6111.10 (8)
C4—C3—C2109.76 (9)C9—C10—H10A109.4
C4—C3—H3A109.7C6—C10—H10A109.4
C2—C3—H3A109.7C9—C10—H10B109.4
C4—C3—H3B109.7C6—C10—H10B109.4
C2—C3—H3B109.7H10A—C10—H10B108.0
H3A—C3—H3B108.2N2—C11—C16121.86 (9)
C3—C4—C5111.16 (10)N2—C11—C12120.57 (9)
C3—C4—H4A109.4C16—C11—C12117.55 (9)
C5—C4—H4A109.4C13—C12—C11121.27 (9)
C3—C4—H4B109.4C13—C12—H12119.4
C5—C4—H4B109.4C11—C12—H12119.4
H4A—C4—H4B108.0C12—C13—C14120.46 (9)
N1—C5—C4110.24 (9)C12—C13—H13119.8
N1—C5—H5A109.6C14—C13—H13119.8
C4—C5—H5A109.6C15—C14—C13118.98 (9)
N1—C5—H5B109.6C15—C14—C17120.39 (9)
C4—C5—H5B109.6C13—C14—C17120.63 (9)
H5A—C5—H5B108.1C16—C15—C14120.57 (9)
N1—C6—C10112.59 (8)C16—C15—H15119.7
N1—C6—C7116.67 (8)C14—C15—H15119.7
C10—C6—C7107.60 (8)C15—C16—C11121.17 (9)
N1—C6—H6106.4C15—C16—H16119.4
C10—C6—H6106.4C11—C16—H16119.4
C7—C6—H6106.4N3—C17—C14179.37 (11)
C8—C7—C6111.06 (8)
C5—N1—C1—C260.67 (11)N2—C9—C10—C656.38 (12)
C6—N1—C1—C2171.35 (8)N1—C6—C10—C9172.41 (8)
N1—C1—C2—C356.80 (12)C7—C6—C10—C957.65 (11)
C1—C2—C3—C452.73 (12)C8—N2—C11—C160.48 (13)
C2—C3—C4—C553.76 (12)C9—N2—C11—C16135.34 (10)
C1—N1—C5—C460.92 (12)C8—N2—C11—C12178.25 (9)
C6—N1—C5—C4172.56 (9)C9—N2—C11—C1245.93 (12)
C3—C4—C5—N158.25 (12)N2—C11—C12—C13179.30 (9)
C5—N1—C6—C1063.26 (11)C16—C11—C12—C130.52 (14)
C1—N1—C6—C10171.10 (8)C11—C12—C13—C140.37 (15)
C5—N1—C6—C761.87 (12)C12—C13—C14—C150.13 (15)
C1—N1—C6—C763.77 (11)C12—C13—C14—C17179.78 (9)
N1—C6—C7—C8174.76 (8)C13—C14—C15—C160.05 (15)
C10—C6—C7—C857.63 (11)C17—C14—C15—C16179.70 (9)
C11—N2—C8—C7169.71 (8)C14—C15—C16—C110.21 (15)
C9—N2—C8—C753.24 (11)N2—C11—C16—C15179.21 (9)
C6—C7—C8—N256.30 (11)C12—C11—C16—C150.44 (15)
C11—N2—C9—C10169.02 (8)C15—C14—C17—N338 (9)
C8—N2—C9—C1053.35 (11)C13—C14—C17—N3142 (9)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C11–C16 ring.
D—H···AD—HH···AD···AD—H···A
C6—H6···Cgi1.002.993.9363 (14)158
C16—H16···N3ii0.952.543.3442 (16)143
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC17H23N3
Mr269.38
Crystal system, space groupMonoclinic, P21/c
Temperature (K)113
a, b, c (Å)10.090 (2), 11.100 (2), 13.446 (3)
β (°) 100.72 (3)
V3)1479.7 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.26 × 0.25 × 0.20
Data collection
DiffractometerRigaku Saturn CCD area-detector
Absorption correctionMulti-scan
(CrystalClear; Rigaku/MSC, 2005)
Tmin, Tmax0.981, 0.986
No. of measured, independent and
observed [I > 2σ(I)] reflections
11970, 3500, 2749
Rint0.032
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.111, 1.12
No. of reflections3500
No. of parameters182
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.19

Computer programs: CrystalClear (Rigaku/MSC, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ChemBioDraw Ultra (CambridgeSoft, 2008).

Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C11–C16 ring.
D—H···AD—HH···AD···AD—H···A
C6—H6···Cgi1.002.993.9363 (14)158
C16—H16···N3ii0.952.543.3442 (16)143
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1/2, z+1/2.
 

Acknowledgements

The authors thank Mr Zhi-Hua Mao of Sichuan University for the X-ray data collection.

References

First citationCambridgeSoft (2008). ChemBioDraw Ultra. CambridgeSoft, England.  Google Scholar
First citationPevarello, P., Fancelli, D., Vulpetti, A., Amici, R., Villa, M., Pittalà, V., Vianello, P., Cameron, A., Ciomei, M., Mercurio, C., Bischoff, J. R., Roletto, F., Varasi, M. & Brasca, M. G. (2006). Bioorg. Med. Chem. Lett. 16, 1084–1090.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRigaku/MSC (2005). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds