organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(2-Cyano­ethyl)-2-(2-pyrid­yl)-1H,3H-benzimidazol-3-ium perchlorate

aKey Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering and State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, People's Republic of China, and bTeaching and Research Department, Urumqi Command College, The Chinese People's Armed Police Forces, Urumqi 830049, People's Republic of China
*Correspondence e-mail: liuws@lzu.edu.cn

(Received 25 November 2009; accepted 23 December 2009; online 20 January 2010)

The title compound, C15H13N4+·ClO4, comprises a nonplanar 1-(2-cyano­ethyl)-2-(2-pyrid­yl)-1H,3H-benzimidazol-3-ium cation [dihedral angle between the imidazole and pyridine rings = 22.5 (8)°] and a perchlorate anion. The cation is formed by protonation of the N atom of the benzimidazole ring. A charged N—H⋯O hydrogen bond connects the anion and cation, and inter­molecular C—H⋯O and C—H⋯N inter­actions contribute to the crystal packing.

Related literature

For the pharmacological activity of benzimidazole and its derivatives, see: Feng & Xu (2001[Feng, S. & Xu, R. (2001). Acc. Chem. Res. 34, 239-247.]); Ferey (2001[Ferey, G. (2001). Chem. Mater. 13, 3084-3098.]); Hossain et al. (2001[Hossain, M. D., Haga, M., Gholamkhass, B., Nozaki, K., Tsushima, M., Ikeda, N. & Ohno, T. (2001). Collect. Czech. Chem. Commun. 66, 307-337.]); Howarth & Hanlon (2001[Howarth, J. & Hanlon, K. (2001). Tetrahedron Lett. 42, 271-274.]); Kazak et al. (2006[Kazak, C., Yilmaz, V. T., Goker, H. & Kus, C. (2006). Cryst. Res. Technol. 5, 528-532.]); Li et al. (1998[Li, P., Scowen, I. J., Davies, J. E. & Halcrow, M. A. (1998). J. Chem. Soc. Dalton Trans. pp. 3791-3799.]).

[Scheme 1]

Experimental

Crystal data
  • C15H13N4+·ClO4

  • Mr = 348.74

  • Triclinic, [P \overline 1]

  • a = 8.788 (1) Å

  • b = 9.4608 (10) Å

  • c = 10.6013 (11) Å

  • α = 69.690 (2)°

  • β = 73.844 (2)°

  • γ = 86.193 (2)°

  • V = 793.52 (15) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 296 K

  • 0.22 × 0.21 × 0.19 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.940, Tmax = 0.955

  • 4167 measured reflections

  • 2924 independent reflections

  • 2316 reflections with I > 2σ(I)

  • Rint = 0.013

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.122

  • S = 1.01

  • 2924 reflections

  • 221 parameters

  • 102 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H5⋯O4 0.77 (3) 2.11 (3) 2.885 (4) 179 (4)
C11—H11⋯O3 0.93 2.54 3.343 (5) 145
C4—H4⋯O4 0.93 2.62 3.347 (4) 135
C13—H13A⋯N1 0.97 2.41 2.903 (4) 111
C10—H10⋯N4i 0.93 2.64 3.423 (4) 142
C13—H13B⋯O2ii 0.97 2.60 3.427 (4) 144
C14—H14B⋯O2iii 0.97 2.57 3.483 (4) 157
C2—H2⋯O1iv 0.93 2.62 3.552 (4) 180
Symmetry codes: (i) x, y+1, z-1; (ii) x, y, z+1; (iii) -x+1, -y+1, -z+1; (iv) -x, -y, -z+1.

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

For many years benzimidazole and its derivatives continue to attract attention in chemical synthesis, structural science and applied biological research due to their various pharmacological activities (Li et al., 1998; Howarth & Hanlon, 2001; Feng & Xu, 2001; Ferey, 2001; Kazak et al., 2006). Like the phenanthroline based ligands these compounds are known to chelate metal atoms although their coordination chemistry has not been as extensively explored. To further widen the scope of research on the chemical and physical properties of benzimidazole derivatives, there is a need to prepare a new series of benzimidazole derivatives. In this paper, we present the structure of the title compound as a perchlorate salt.

The compound is composed of C15H13N4+ cation and a perchlorate anion, in a 1:1 ratio (Fig. 1). In C15H13N4+ cation, the molecular skeleton of protonated 2-(2-pyridyl)benzimidazole is non-planar and the dihedral angle between benzimidazole ring and pyridine ring is 25.46°. Two of O atoms of the perchlorate anion, link benzimidazole via the charged N(2)–H(5)···O(4) and C(11)–H(11)···O(3) hydrogen bonds (Table 1). In addition, intermolecular C–H···O, N–H···O hydrogen bonds and π···π interactions between benzimidazole groups [Cg···Cgi plane···plane separation = 3.6933 (16) Å, i = 1 - x, 1 - y, 1 - z] link the molecules into a three-dimensional structure (Fig. 2).

Related literature top

For the pharmacological activity of benzimidazole and its derivatives, see: Feng & Xu (2001); Ferey (2001); Hossain et al. (2001); Howarth & Hanlon (2001); Kazak et al. (2006); Li et al. (1998).

Experimental top

The ligand, 1-(cyanoethyl)-2-(2-pyridyl)benzimidazole was prepared according to the method described by Hossain et al. (2001), using 2-(2-pyridyl)benzimidazole and acrylonitrile as starting materials (yield: 62%, m.p. 378–383 K).

Single crystals of the title compound suitable for X-ray analysis were obtained by slow evaporation of a methanol solution (6 ml) containing Fe(ClO4)3.10H2O (26.7 mg, 0.05 mmol) and 1-(cyanoethyl)-2-(2-pyridyl)benzimidazole (24.8 mg, 0.10 mmol) after two weeks at room temperature. Our attempt to obtain an iron(III) perchlorate complex of the ligand failed and, instead, the protonated ligand salt was crystallised.

Refinement top

The position of the amine H atom was refined freely, together with its individual isotropic displacement parameter. All other H atoms were positioned geometrically with C—H = 0.93 and 0.97 Å for aromatic, methylene H atoms, respectively, and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C).

Structure description top

For many years benzimidazole and its derivatives continue to attract attention in chemical synthesis, structural science and applied biological research due to their various pharmacological activities (Li et al., 1998; Howarth & Hanlon, 2001; Feng & Xu, 2001; Ferey, 2001; Kazak et al., 2006). Like the phenanthroline based ligands these compounds are known to chelate metal atoms although their coordination chemistry has not been as extensively explored. To further widen the scope of research on the chemical and physical properties of benzimidazole derivatives, there is a need to prepare a new series of benzimidazole derivatives. In this paper, we present the structure of the title compound as a perchlorate salt.

The compound is composed of C15H13N4+ cation and a perchlorate anion, in a 1:1 ratio (Fig. 1). In C15H13N4+ cation, the molecular skeleton of protonated 2-(2-pyridyl)benzimidazole is non-planar and the dihedral angle between benzimidazole ring and pyridine ring is 25.46°. Two of O atoms of the perchlorate anion, link benzimidazole via the charged N(2)–H(5)···O(4) and C(11)–H(11)···O(3) hydrogen bonds (Table 1). In addition, intermolecular C–H···O, N–H···O hydrogen bonds and π···π interactions between benzimidazole groups [Cg···Cgi plane···plane separation = 3.6933 (16) Å, i = 1 - x, 1 - y, 1 - z] link the molecules into a three-dimensional structure (Fig. 2).

For the pharmacological activity of benzimidazole and its derivatives, see: Feng & Xu (2001); Ferey (2001); Hossain et al. (2001); Howarth & Hanlon (2001); Kazak et al. (2006); Li et al. (1998).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The three-dimensional packing diagram of the compound. Hydrogen bonds are shown as turquiose dashed lines. H atoms not involved in hydrogen bonding have been omitted for clarity. The π···π interaction between benzimidazole groups are shown as light blue dashed lines.
1-(2-Cyanoethyl)-2-(2-pyridyl)-1H,3H-benzimidazol-3-ium perchlorate top
Crystal data top
C15H13N4+·ClO4Z = 2
Mr = 348.74F(000) = 360
Triclinic, P1Dx = 1.460 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.788 (1) ÅCell parameters from 1758 reflections
b = 9.4608 (10) Åθ = 2.4–26.4°
c = 10.6013 (11) ŵ = 0.27 mm1
α = 69.690 (2)°T = 296 K
β = 73.844 (2)°Block, yellow
γ = 86.193 (2)°0.22 × 0.21 × 0.19 mm
V = 793.52 (15) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
2924 independent reflections
Radiation source: fine-focus sealed tube2316 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.013
phi and ω scansθmax = 25.5°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
h = 1010
Tmin = 0.940, Tmax = 0.955k = 116
4167 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.122H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.043P)2 + 0.670P]
where P = (Fo2 + 2Fc2)/3
2924 reflections(Δ/σ)max < 0.001
221 parametersΔρmax = 0.35 e Å3
102 restraintsΔρmin = 0.24 e Å3
Crystal data top
C15H13N4+·ClO4γ = 86.193 (2)°
Mr = 348.74V = 793.52 (15) Å3
Triclinic, P1Z = 2
a = 8.788 (1) ÅMo Kα radiation
b = 9.4608 (10) ŵ = 0.27 mm1
c = 10.6013 (11) ÅT = 296 K
α = 69.690 (2)°0.22 × 0.21 × 0.19 mm
β = 73.844 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2924 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
2316 reflections with I > 2σ(I)
Tmin = 0.940, Tmax = 0.955Rint = 0.013
4167 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.047102 restraints
wR(F2) = 0.122H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.35 e Å3
2924 reflectionsΔρmin = 0.24 e Å3
221 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1586 (4)0.0845 (4)0.8393 (4)0.0755 (9)
H10.19410.16000.90720.091*
C20.0604 (4)0.1248 (4)0.7774 (4)0.0781 (10)
H20.03140.22560.80160.094*
C30.0053 (4)0.0148 (4)0.6792 (4)0.0797 (10)
H30.06350.03960.63690.096*
C40.0524 (4)0.1333 (4)0.6431 (3)0.0657 (8)
H40.01680.21020.57620.079*
C50.1544 (3)0.1638 (3)0.7097 (3)0.0469 (6)
C60.2150 (3)0.3172 (3)0.6751 (2)0.0409 (6)
C70.3245 (3)0.5180 (3)0.6825 (2)0.0402 (5)
C80.3956 (3)0.6193 (3)0.7178 (3)0.0493 (6)
H80.41220.59490.80570.059*
C90.4403 (4)0.7580 (3)0.6163 (3)0.0578 (7)
H90.49030.82880.63540.069*
C100.4127 (4)0.7952 (3)0.4854 (3)0.0582 (7)
H100.44370.89080.41990.070*
C110.3412 (3)0.6949 (3)0.4506 (3)0.0516 (7)
H110.32230.72030.36340.062*
C120.2988 (3)0.5544 (3)0.5516 (2)0.0410 (6)
C130.2574 (3)0.2959 (3)0.9067 (2)0.0437 (6)
H13A0.17560.21650.94810.052*
H13B0.22860.36880.95420.052*
C140.4152 (3)0.2296 (3)0.9245 (3)0.0522 (7)
H14A0.44700.16210.87150.063*
H14B0.49530.31020.88800.063*
C150.4052 (4)0.1470 (3)1.0716 (3)0.0591 (7)
Cl10.17292 (8)0.51237 (8)0.19213 (6)0.0485 (2)
H50.207 (3)0.416 (3)0.491 (3)0.044 (8)*
N10.2065 (3)0.0574 (3)0.8078 (3)0.0601 (6)
N20.2311 (3)0.4263 (2)0.5520 (2)0.0449 (5)
N30.2685 (2)0.3697 (2)0.75719 (19)0.0399 (5)
N40.3982 (4)0.0807 (4)1.1839 (3)0.0887 (10)
O10.0518 (3)0.5091 (3)0.1302 (3)0.0896 (8)
O20.3196 (3)0.4965 (3)0.1030 (3)0.0923 (8)
O30.1764 (4)0.6462 (4)0.2192 (4)0.1268 (12)
O40.1453 (4)0.3906 (4)0.3209 (3)0.1253 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.087 (2)0.0490 (17)0.080 (2)0.0088 (16)0.0136 (18)0.0141 (16)
C20.085 (2)0.0587 (19)0.081 (2)0.0247 (17)0.0083 (18)0.0317 (17)
C30.084 (2)0.088 (2)0.075 (2)0.0308 (19)0.0067 (18)0.0423 (19)
C40.0707 (19)0.073 (2)0.0575 (18)0.0127 (16)0.0179 (15)0.0236 (15)
C50.0466 (14)0.0479 (14)0.0454 (14)0.0034 (11)0.0045 (11)0.0204 (12)
C60.0433 (14)0.0456 (14)0.0349 (13)0.0033 (11)0.0098 (10)0.0159 (11)
C70.0443 (13)0.0380 (13)0.0352 (13)0.0049 (10)0.0098 (10)0.0102 (10)
C80.0652 (17)0.0459 (15)0.0422 (14)0.0035 (12)0.0224 (13)0.0159 (12)
C90.0699 (19)0.0453 (16)0.0621 (18)0.0032 (13)0.0218 (15)0.0192 (14)
C100.0704 (19)0.0397 (15)0.0507 (16)0.0021 (13)0.0122 (14)0.0012 (12)
C110.0604 (17)0.0511 (16)0.0360 (13)0.0034 (13)0.0134 (12)0.0061 (12)
C120.0418 (13)0.0454 (14)0.0354 (13)0.0038 (11)0.0104 (10)0.0139 (11)
C130.0563 (15)0.0430 (14)0.0286 (12)0.0020 (11)0.0118 (11)0.0084 (10)
C140.0564 (16)0.0528 (16)0.0418 (14)0.0002 (13)0.0165 (12)0.0065 (12)
C150.0691 (19)0.0531 (17)0.0565 (18)0.0111 (14)0.0295 (15)0.0124 (14)
Cl10.0493 (4)0.0606 (4)0.0450 (4)0.0011 (3)0.0169 (3)0.0257 (3)
N10.0657 (15)0.0470 (13)0.0656 (15)0.0028 (11)0.0196 (12)0.0149 (12)
N20.0534 (13)0.0508 (13)0.0340 (11)0.0001 (10)0.0164 (10)0.0152 (10)
N30.0491 (12)0.0382 (11)0.0309 (10)0.0014 (9)0.0115 (9)0.0096 (9)
N40.108 (2)0.093 (2)0.0539 (17)0.0245 (18)0.0388 (16)0.0032 (16)
O10.0684 (15)0.122 (2)0.1015 (18)0.0124 (14)0.0503 (14)0.0474 (16)
O20.0586 (14)0.138 (2)0.0961 (18)0.0062 (14)0.0112 (13)0.0667 (17)
O30.139 (3)0.116 (2)0.172 (3)0.0001 (19)0.041 (2)0.108 (2)
O40.173 (3)0.129 (2)0.0615 (16)0.058 (2)0.0465 (18)0.0051 (16)
Geometric parameters (Å, º) top
C1—N11.333 (4)C9—H90.9300
C1—C21.361 (5)C10—C111.373 (4)
C1—H10.9300C10—H100.9300
C2—C31.365 (5)C11—C121.382 (3)
C2—H20.9300C11—H110.9300
C3—C41.377 (4)C12—N21.382 (3)
C3—H30.9300C13—N31.471 (3)
C4—C51.384 (4)C13—C141.517 (4)
C4—H40.9300C13—H13A0.9700
C5—N11.335 (3)C13—H13B0.9700
C5—C61.465 (3)C14—C151.462 (4)
C6—N21.330 (3)C14—H14A0.9700
C6—N31.336 (3)C14—H14B0.9700
C7—C81.381 (3)C15—N41.123 (4)
C7—C121.389 (3)Cl1—O31.396 (3)
C7—N31.393 (3)Cl1—O11.404 (2)
C8—C91.374 (4)Cl1—O21.404 (2)
C8—H80.9300Cl1—O41.418 (3)
C9—C101.395 (4)N2—H50.78 (3)
N1—C1—C2123.6 (3)C10—C11—H11121.7
N1—C1—H1118.2C12—C11—H11121.7
C2—C1—H1118.2C11—C12—N2132.5 (2)
C1—C2—C3118.8 (3)C11—C12—C7121.5 (2)
C1—C2—H2120.6N2—C12—C7106.0 (2)
C3—C2—H2120.6N3—C13—C14109.9 (2)
C2—C3—C4119.5 (3)N3—C13—H13A109.7
C2—C3—H3120.2C14—C13—H13A109.7
C4—C3—H3120.2N3—C13—H13B109.7
C3—C4—C5117.8 (3)C14—C13—H13B109.7
C3—C4—H4121.1H13A—C13—H13B108.2
C5—C4—H4121.1C15—C14—C13111.2 (2)
N1—C5—C4123.1 (3)C15—C14—H14A109.4
N1—C5—C6115.2 (2)C13—C14—H14A109.4
C4—C5—C6121.7 (3)C15—C14—H14B109.4
N2—C6—N3108.6 (2)C13—C14—H14B109.4
N2—C6—C5124.6 (2)H14A—C14—H14B108.0
N3—C6—C5126.7 (2)N4—C15—C14178.5 (3)
C8—C7—C12121.9 (2)O3—Cl1—O1111.91 (19)
C8—C7—N3131.6 (2)O3—Cl1—O2109.33 (18)
C12—C7—N3106.5 (2)O1—Cl1—O2109.27 (15)
C9—C8—C7116.5 (2)O3—Cl1—O4108.3 (2)
C9—C8—H8121.8O1—Cl1—O4108.51 (17)
C7—C8—H8121.8O2—Cl1—O4109.5 (2)
C8—C9—C10121.7 (3)C1—N1—C5117.2 (3)
C8—C9—H9119.2C6—N2—C12110.0 (2)
C10—C9—H9119.2C6—N2—H5123 (2)
C11—C10—C9121.9 (2)C12—N2—H5127 (2)
C11—C10—H10119.1C6—N3—C7108.90 (19)
C9—C10—H10119.1C6—N3—C13127.9 (2)
C10—C11—C12116.6 (2)C7—N3—C13122.87 (19)
N1—C1—C2—C31.0 (5)N3—C13—C14—C15176.3 (2)
C1—C2—C3—C41.3 (5)C13—C14—C15—N4118 (13)
C2—C3—C4—C50.3 (5)C2—C1—N1—C50.2 (5)
C3—C4—C5—N11.1 (4)C4—C5—N1—C11.3 (4)
C3—C4—C5—C6178.0 (3)C6—C5—N1—C1177.8 (3)
N1—C5—C6—N2152.9 (2)N3—C6—N2—C120.7 (3)
C4—C5—C6—N226.3 (4)C5—C6—N2—C12176.9 (2)
N1—C5—C6—N324.3 (4)C11—C12—N2—C6179.1 (3)
C4—C5—C6—N3156.6 (3)C7—C12—N2—C60.2 (3)
C12—C7—C8—C90.3 (4)N2—C6—N3—C71.3 (3)
N3—C7—C8—C9178.5 (3)C5—C6—N3—C7176.3 (2)
C7—C8—C9—C101.1 (4)N2—C6—N3—C13172.2 (2)
C8—C9—C10—C110.8 (5)C5—C6—N3—C1310.3 (4)
C9—C10—C11—C120.4 (4)C8—C7—N3—C6177.6 (3)
C10—C11—C12—N2177.5 (3)C12—C7—N3—C61.4 (3)
C10—C11—C12—C71.3 (4)C8—C7—N3—C138.6 (4)
C8—C7—C12—C110.9 (4)C12—C7—N3—C13172.5 (2)
N3—C7—C12—C11180.0 (2)C14—C13—N3—C6102.0 (3)
C8—C7—C12—N2178.1 (2)C14—C13—N3—C785.3 (3)
N3—C7—C12—N21.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H5···O40.77 (3)2.11 (3)2.885 (4)179 (4)
C11—H11···O30.932.543.343 (5)145
C4—H4···O40.932.623.347 (4)135
C13—H13A···N10.972.412.903 (4)111
C10—H10···N4i0.932.643.423 (4)142
C13—H13B···O2ii0.972.603.427 (4)144
C14—H14B···O2iii0.972.573.483 (4)157
C2—H2···O1iv0.932.623.552 (4)180
Symmetry codes: (i) x, y+1, z1; (ii) x, y, z+1; (iii) x+1, y+1, z+1; (iv) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC15H13N4+·ClO4
Mr348.74
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)8.788 (1), 9.4608 (10), 10.6013 (11)
α, β, γ (°)69.690 (2), 73.844 (2), 86.193 (2)
V3)793.52 (15)
Z2
Radiation typeMo Kα
µ (mm1)0.27
Crystal size (mm)0.22 × 0.21 × 0.19
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 1997)
Tmin, Tmax0.940, 0.955
No. of measured, independent and
observed [I > 2σ(I)] reflections
4167, 2924, 2316
Rint0.013
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.122, 1.01
No. of reflections2924
No. of parameters221
No. of restraints102
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.35, 0.24

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H5···O40.77 (3)2.11 (3)2.885 (4)179 (4)
C11—H11···O30.9302.5403.343 (5)145.00
C4—H4···O40.9302.6193.347 (4)135.44
C13—H13A···N10.9702.4102.903 (4)111.00
C10—H10···N4i0.9302.6443.423 (4)141.72
C13—H13B···O2ii0.9702.6003.427 (4)144.00
C14—H14B···O2iii0.9702.5703.483 (4)157.00
C2—H2···O1iv0.9302.6213.552 (4)179.70
Symmetry codes: (i) x, y+1, z1; (ii) x, y, z+1; (iii) x+1, y+1, z+1; (iv) x, y, z+1.
 

Acknowledgements

The authors thank the National Natural Science Foundation of China (20771048, 20931003, 20621091, J0730425) for financial support.

References

First citationBruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFeng, S. & Xu, R. (2001). Acc. Chem. Res. 34, 239–247.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFerey, G. (2001). Chem. Mater. 13, 3084–3098.  Web of Science CrossRef CAS Google Scholar
First citationHossain, M. D., Haga, M., Gholamkhass, B., Nozaki, K., Tsushima, M., Ikeda, N. & Ohno, T. (2001). Collect. Czech. Chem. Commun. 66, 307–337.  Web of Science CrossRef CAS Google Scholar
First citationHowarth, J. & Hanlon, K. (2001). Tetrahedron Lett. 42, 271–274.  Google Scholar
First citationKazak, C., Yilmaz, V. T., Goker, H. & Kus, C. (2006). Cryst. Res. Technol. 5, 528–532.  Web of Science CSD CrossRef Google Scholar
First citationLi, P., Scowen, I. J., Davies, J. E. & Halcrow, M. A. (1998). J. Chem. Soc. Dalton Trans. pp. 3791–3799.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds