metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(1,5-di­phenyl­carbazonato)di­methano­lcobalt(II)

aQinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008, People's Republic of China, and bKey Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry and Chemical Engineering, Suzhou University, Suzhou 215123, People's Republic of China
*Correspondence e-mail: liyahong@suda.edu.cn

(Received 12 December 2009; accepted 23 December 2009; online 9 January 2010)

The structure of the title compound, [Co(C13H11N4O)2(CH3OH)2], is a mononuclear six-coordinated octa­hedral cobalt(II) complex of Ci mol­ecular symmetry. The CoII ion is coordinated by two N atoms and two O atoms from two 1,5-biphenyl­carbazide ligands, and two O atoms from two methanol molecules. Two diphenyl­carbazidate ligands and the central CoII ion form the basal plane, with the two methanol mol­ecules located in axial positions. The crystal packing is defined by bifurcated O—H⋯N hydrogen bonding and intra­molecular N—H⋯O inter­actions.

Related literature

For the use of biphenyl­carbazide for the analytical determination of chromium in biological materials, see: Yarbro & Flaschka (1976[Yarbro, S. & Flaschka, H. A. (1976). Microchem. J. 21, 415-423.]). For its coordination modes, see: Feigl (1924[Feigl, F. (1924). Ber. Wien. Akad. IIb, 133, 115-132.]); Shafranskii & Mal'kova (1975a[Shafranskii, V. N. & Mal'kova, T. A. (1975a). Zh. Obshch. Khim. 45, 1065-1069],b[Shafranskii, V. N. & Mal'kova, T. A. (1975b). J. Gen. Chem. (USSR), 45, 1051-1054.]); Martynova et al. (1985[Martynova, T. K., Neverov, V. A., Byushkin, V. N., Shafranskii, V. N. & Malkova, T. A. (1985). Koord. Khim., 11, 132-135.]); Turkington & Tracy (1958[Turkington, R. W. & Tracy, F. M. (1958). Anal. Chem. 30, 1699-1701.]); Deshpande & Jain (1988[Deshpande, S. G. & Jain, S. C. (1988). Indian J. Chem. Sect. A, 27, 552-554.]). For related literature, see: Pankaj & Chauhan (2004[Pankaj, & Chauhan, M. (2004). Indian J. Chem. Sect. A Inorg. Bio-inorg. Phys. Theor. Anal. Chem. 43, 1206-1209.]); Sollott & Peterson (1969[Sollott, G. P. & Peterson, W. R. (1969). J. Org. Chem. 34, 1506-1508.]); Cazeneuve (1900a[Cazeneuve, P. (1900a). Bull. Soc. Chim. Fr. 23, 592-600.],b[Cazeneuve, P. (1900b). C. R. Hebd Seances Acad. Sci. 130, 1561-1563.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C13H11N4O)2(CH4O)2]

  • Mr = 601.53

  • Monoclinic, P 21 /c

  • a = 6.492 (2) Å

  • b = 8.926 (3) Å

  • c = 25.159 (9) Å

  • β = 92.372 (6)°

  • V = 1456.7 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.64 mm−1

  • T = 296 K

  • 0.35 × 0.28 × 0.27 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.808, Tmax = 0.847

  • 6990 measured reflections

  • 2564 independent reflections

  • 2037 reflections with I > 2σ(I)

  • Rint = 0.046

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.117

  • S = 1.08

  • 2564 reflections

  • 196 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.43 e Å−3

Table 1
Selected bond lengths (Å)

Co1—O1 2.0263 (18)
Co1—O2 2.114 (2)
Co1—N1 2.193 (2)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4′⋯O1 0.78 (3) 2.20 (3) 2.587 (3) 111 (2)
O2—H2′⋯N2i 0.81 (4) 2.11 (4) 2.899 (3) 166 (3)
O2—H2′⋯N3i 0.81 (4) 2.52 (4) 3.161 (3) 138 (3)
Symmetry code: (i) -x+1, -y+2, -z+2.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The diphenylcarbazide is often used for analytical determination of chromium in biological materials (Yarbro et al. 1976). As a multidentate ligand, diphenylcarbazide chelates the metal centres by two N atoms (Feigl 1924) or coordinates with the metal ions by O atom in monodentate fashion (Shafranskii et al., 1975a,b; Martynova et al., 1985), whereas the examples of diphenylcarbazide complexes, in which the ligands chelated metal ions bidentately by one O atom and one N atom, were very rare (Turkington et al., 1958; Deshpande et al., 1988). Herein we report the synthesis and crystal structure of such diphenylcarbazide coordinated cobalt complex with Co occuping an inversion centre (Fig. 1 and Table 1). The Packing diagram of I viewed down the a axis (Fig. 2) reveals hydrogen bond interactions (Table 2).

Related literature top

For the use of iphenylcarbazide for the analytical determination of chromium in biological materials, see: Yarbro et al. (1976). For its coordination modes, see: Feigl (1924); Shafranskii et al. (1975a,b); Martynova et al. (1985); Turkington et al. (1958); Deshpande et al. (1988). For related literature, see: Pankaj et al. (2004); Sollott et al. (1969); Cazeneuve (1900a,b).

Experimental top

The compound 1 was synthesized by solvothermal reaction. A mixture of diphenylcarbazide (0.0499 g, 0.2 mmol), Co(CH3COO)2.4H2O (0.0245 g, 0.1 mmol) and CH3OH / CH3CN (v / v = 2: 1, 2 ml) was sealed in a 5 ml glass tube and heated to 353 K for 48 h. After cooling to room temperature, purple crystals were obtained.

Refinement top

Methyl H atoms were placed in calculated positions with C—H = 0.96 Å, and torsion angles were refined, Uiso(H) = 1.5 Ueq(C, O). Other H atoms were placed in calculated positions with C—H = 0.93 (aromatic) or 0.803 Å (Imino) and refined in riding mode, with Uiso(H) = 1.2 Ueq(C).

Structure description top

The diphenylcarbazide is often used for analytical determination of chromium in biological materials (Yarbro et al. 1976). As a multidentate ligand, diphenylcarbazide chelates the metal centres by two N atoms (Feigl 1924) or coordinates with the metal ions by O atom in monodentate fashion (Shafranskii et al., 1975a,b; Martynova et al., 1985), whereas the examples of diphenylcarbazide complexes, in which the ligands chelated metal ions bidentately by one O atom and one N atom, were very rare (Turkington et al., 1958; Deshpande et al., 1988). Herein we report the synthesis and crystal structure of such diphenylcarbazide coordinated cobalt complex with Co occuping an inversion centre (Fig. 1 and Table 1). The Packing diagram of I viewed down the a axis (Fig. 2) reveals hydrogen bond interactions (Table 2).

For the use of iphenylcarbazide for the analytical determination of chromium in biological materials, see: Yarbro et al. (1976). For its coordination modes, see: Feigl (1924); Shafranskii et al. (1975a,b); Martynova et al. (1985); Turkington et al. (1958); Deshpande et al. (1988). For related literature, see: Pankaj et al. (2004); Sollott et al. (1969); Cazeneuve (1900a,b).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure showing 50% probability displacement ellipsoids. H atoms are omitted for clarity.
[Figure 2] Fig. 2. Packing diagram viewed down the a axis. Symmetry code corresponds to A:-x+2,-y+2,-z+2.
Bis(1,5-diphenylcarbazonato)dimethanolcobalt(II) top
Crystal data top
[Co(C13H11N4O)2(CH4O)2]F(000) = 626
Mr = 601.53Dx = 1.371 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2392 reflections
a = 6.492 (2) Åθ = 2.4–24.6°
b = 8.926 (3) ŵ = 0.64 mm1
c = 25.159 (9) ÅT = 296 K
β = 92.372 (6)°Block, clear violet
V = 1456.7 (9) Å30.35 × 0.28 × 0.27 mm
Z = 2
Data collection top
Bruker SMART CCD area-detector
diffractometer
2564 independent reflections
Radiation source: fine-focus sealed tube2037 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
phi and ω scansθmax = 25.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 77
Tmin = 0.808, Tmax = 0.847k = 1010
6990 measured reflectionsl = 2029
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.117H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0652P)2 + 0.0401P]
where P = (Fo2 + 2Fc2)/3
2564 reflections(Δ/σ)max < 0.001
196 parametersΔρmax = 0.40 e Å3
0 restraintsΔρmin = 0.43 e Å3
Crystal data top
[Co(C13H11N4O)2(CH4O)2]V = 1456.7 (9) Å3
Mr = 601.53Z = 2
Monoclinic, P21/cMo Kα radiation
a = 6.492 (2) ŵ = 0.64 mm1
b = 8.926 (3) ÅT = 296 K
c = 25.159 (9) Å0.35 × 0.28 × 0.27 mm
β = 92.372 (6)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2564 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2037 reflections with I > 2σ(I)
Tmin = 0.808, Tmax = 0.847Rint = 0.046
6990 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.117H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.40 e Å3
2564 reflectionsΔρmin = 0.43 e Å3
196 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co11.00001.00001.00000.03524 (19)
C10.8530 (5)0.7374 (3)1.09426 (11)0.0528 (7)
H10.97580.78991.09140.063*
C20.8241 (6)0.6473 (4)1.13836 (11)0.0640 (9)
H20.92700.64041.16510.077*
C30.6446 (6)0.5688 (4)1.14251 (13)0.0642 (9)
H30.62560.50871.17210.077*
C40.4933 (5)0.5785 (4)1.10342 (14)0.0720 (10)
H40.37210.52411.10640.086*
C50.5185 (5)0.6687 (4)1.05925 (13)0.0634 (9)
H50.41450.67531.03280.076*
C60.7007 (4)0.7492 (3)1.05484 (10)0.0382 (6)
C70.6545 (4)0.9405 (3)0.93219 (10)0.0367 (6)
C80.4192 (4)1.0503 (3)0.80937 (10)0.0437 (6)
C90.2276 (5)0.9825 (3)0.80672 (13)0.0584 (8)
H90.19070.91570.83300.070*
C100.0906 (6)1.0150 (4)0.76451 (14)0.0710 (10)
H100.03850.96970.76270.085*
C110.1441 (6)1.1139 (4)0.72520 (13)0.0719 (10)
H110.05091.13610.69720.086*
C120.3356 (6)1.1794 (4)0.72765 (11)0.0648 (9)
H120.37201.24500.70090.078*
C130.4753 (5)1.1491 (3)0.76934 (10)0.0538 (7)
H130.60471.19400.77070.065*
C140.9161 (6)1.3027 (4)1.06416 (16)0.0849 (12)
H14A1.03191.27261.08660.127*
H14B0.80901.34051.08570.127*
H14C0.95801.37971.04030.127*
N10.7412 (3)0.8471 (2)1.01157 (8)0.0359 (5)
N20.6030 (3)0.8460 (2)0.97330 (8)0.0391 (5)
N30.5120 (3)0.9360 (3)0.89297 (8)0.0411 (5)
N40.5597 (4)1.0247 (3)0.85196 (9)0.0463 (6)
O10.8187 (3)1.0213 (2)0.93292 (7)0.0438 (5)
O20.8423 (3)1.1797 (2)1.03493 (9)0.0570 (6)
H4'0.660 (5)1.073 (3)0.8563 (11)0.048 (9)*
H2'0.720 (6)1.167 (4)1.0382 (13)0.084 (12)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0269 (3)0.0445 (3)0.0341 (3)0.0019 (2)0.00083 (18)0.0004 (2)
C10.0589 (19)0.0546 (17)0.0445 (16)0.0123 (14)0.0024 (14)0.0054 (13)
C20.088 (3)0.0600 (19)0.0428 (16)0.0077 (18)0.0077 (16)0.0091 (14)
C30.086 (3)0.0534 (18)0.0543 (19)0.0007 (18)0.0204 (18)0.0125 (15)
C40.057 (2)0.074 (2)0.086 (3)0.0096 (18)0.0160 (19)0.029 (2)
C50.0419 (17)0.076 (2)0.073 (2)0.0062 (16)0.0013 (15)0.0258 (17)
C60.0402 (14)0.0368 (13)0.0382 (14)0.0022 (11)0.0080 (11)0.0002 (11)
C70.0284 (13)0.0454 (13)0.0362 (13)0.0017 (11)0.0003 (10)0.0023 (11)
C80.0474 (17)0.0479 (15)0.0352 (14)0.0059 (12)0.0044 (12)0.0064 (11)
C90.064 (2)0.0593 (19)0.0508 (18)0.0049 (15)0.0145 (15)0.0038 (14)
C100.066 (2)0.078 (2)0.066 (2)0.0084 (18)0.0298 (17)0.0024 (18)
C110.087 (3)0.071 (2)0.0549 (19)0.013 (2)0.0312 (18)0.0007 (18)
C120.093 (3)0.0605 (19)0.0408 (17)0.0102 (18)0.0044 (16)0.0036 (14)
C130.0610 (19)0.0583 (18)0.0420 (15)0.0018 (15)0.0001 (13)0.0031 (13)
C140.058 (2)0.084 (3)0.113 (3)0.0036 (19)0.015 (2)0.047 (2)
N10.0296 (11)0.0426 (12)0.0355 (11)0.0026 (9)0.0028 (9)0.0024 (9)
N20.0313 (11)0.0472 (13)0.0386 (12)0.0003 (9)0.0013 (9)0.0009 (10)
N30.0342 (12)0.0524 (13)0.0365 (12)0.0015 (10)0.0017 (9)0.0010 (10)
N40.0397 (14)0.0592 (16)0.0394 (13)0.0065 (12)0.0059 (10)0.0034 (11)
O10.0355 (10)0.0560 (12)0.0395 (10)0.0074 (9)0.0035 (8)0.0049 (8)
O20.0295 (11)0.0635 (13)0.0786 (15)0.0035 (10)0.0100 (10)0.0232 (11)
Geometric parameters (Å, º) top
Co1—O1i2.0263 (18)C8—C91.383 (4)
Co1—O12.0263 (18)C8—N41.397 (3)
Co1—O22.114 (2)C8—C131.398 (4)
Co1—O2i2.114 (2)C9—C101.387 (4)
Co1—N1i2.193 (2)C9—H90.9300
Co1—N12.193 (2)C10—C111.381 (5)
C1—C61.375 (4)C10—H100.9300
C1—C21.389 (4)C11—C121.373 (5)
C1—H10.9300C11—H110.9300
C2—C31.368 (5)C12—C131.384 (4)
C2—H20.9300C12—H120.9300
C3—C41.363 (5)C13—H130.9300
C3—H30.9300C14—O21.395 (4)
C4—C51.387 (4)C14—H14A0.9600
C4—H40.9300C14—H14B0.9600
C5—C61.392 (4)C14—H14C0.9600
C5—H50.9300N1—N21.289 (3)
C6—N11.429 (3)N3—N41.347 (3)
C7—O11.286 (3)N4—H4'0.78 (3)
C7—N31.325 (3)O2—H2'0.81 (4)
C7—N21.386 (3)
O1i—Co1—O1179.999 (1)C9—C8—N4121.6 (3)
O1i—Co1—O289.97 (8)C9—C8—C13120.1 (3)
O1—Co1—O290.03 (8)N4—C8—C13118.3 (3)
O1i—Co1—O2i90.03 (8)C8—C9—C10119.5 (3)
O1—Co1—O2i89.97 (8)C8—C9—H9120.2
O2—Co1—O2i179.997 (1)C10—C9—H9120.2
O1i—Co1—N1i75.34 (7)C11—C10—C9120.7 (3)
O1—Co1—N1i104.66 (7)C11—C10—H10119.7
O2—Co1—N1i88.27 (8)C9—C10—H10119.7
O2i—Co1—N1i91.73 (8)C12—C11—C10119.6 (3)
O1i—Co1—N1104.66 (7)C12—C11—H11120.2
O1—Co1—N175.34 (7)C10—C11—H11120.2
O2—Co1—N191.73 (8)C11—C12—C13121.0 (3)
O2i—Co1—N188.27 (8)C11—C12—H12119.5
N1i—Co1—N1180.0C13—C12—H12119.5
C6—C1—C2120.2 (3)C12—C13—C8119.1 (3)
C6—C1—H1119.9C12—C13—H13120.4
C2—C1—H1119.9C8—C13—H13120.4
C3—C2—C1120.1 (3)O2—C14—H14A109.5
C3—C2—H2120.0O2—C14—H14B109.5
C1—C2—H2120.0H14A—C14—H14B109.5
C4—C3—C2120.2 (3)O2—C14—H14C109.5
C4—C3—H3119.9H14A—C14—H14C109.5
C2—C3—H3119.9H14B—C14—H14C109.5
C3—C4—C5120.6 (3)N2—N1—C6114.8 (2)
C3—C4—H4119.7N2—N1—Co1114.78 (15)
C5—C4—H4119.7C6—N1—Co1130.38 (16)
C4—C5—C6119.5 (3)N1—N2—C7111.8 (2)
C4—C5—H5120.3C7—N3—N4112.2 (2)
C6—C5—H5120.3N3—N4—C8121.3 (3)
C1—C6—C5119.4 (3)N3—N4—H4'116 (2)
C1—C6—N1116.5 (2)C8—N4—H4'122 (2)
C5—C6—N1124.1 (3)C7—O1—Co1114.33 (15)
O1—C7—N3125.5 (2)C14—O2—Co1130.91 (19)
O1—C7—N2123.8 (2)C14—O2—H2'112 (3)
N3—C7—N2110.8 (2)Co1—O2—H2'116 (3)
C6—C1—C2—C30.6 (5)O1—Co1—N1—C6178.9 (2)
C1—C2—C3—C40.1 (5)O2—Co1—N1—C691.5 (2)
C2—C3—C4—C50.5 (6)O2i—Co1—N1—C688.5 (2)
C3—C4—C5—C60.4 (5)N1i—Co1—N1—C689 (10)
C2—C1—C6—C50.8 (4)C6—N1—N2—C7178.5 (2)
C2—C1—C6—N1178.5 (3)Co1—N1—N2—C71.8 (2)
C4—C5—C6—C10.3 (5)O1—C7—N2—N11.2 (3)
C4—C5—C6—N1178.9 (3)N3—C7—N2—N1179.1 (2)
N4—C8—C9—C10177.9 (3)O1—C7—N3—N41.5 (4)
C13—C8—C9—C100.9 (5)N2—C7—N3—N4178.9 (2)
C8—C9—C10—C110.1 (5)C7—N3—N4—C8172.2 (2)
C9—C10—C11—C120.7 (5)C9—C8—N4—N31.8 (4)
C10—C11—C12—C130.8 (5)C13—C8—N4—N3177.1 (3)
C11—C12—C13—C80.0 (5)N3—C7—O1—Co1179.6 (2)
C9—C8—C13—C120.9 (4)N2—C7—O1—Co10.1 (3)
N4—C8—C13—C12178.0 (3)O1i—Co1—O1—C7129 (3)
C1—C6—N1—N2174.5 (2)O2—Co1—O1—C790.99 (18)
C5—C6—N1—N26.3 (4)O2i—Co1—O1—C789.01 (18)
C1—C6—N1—Co15.9 (3)N1i—Co1—O1—C7179.21 (17)
C5—C6—N1—Co1173.3 (2)N1—Co1—O1—C70.79 (17)
O1i—Co1—N1—N2178.49 (15)O1i—Co1—O2—C1444.4 (3)
O1—Co1—N1—N21.51 (15)O1—Co1—O2—C14135.6 (3)
O2—Co1—N1—N288.07 (17)O2i—Co1—O2—C1489 (4)
O2i—Co1—N1—N291.93 (17)N1i—Co1—O2—C1430.9 (3)
N1i—Co1—N1—N291 (10)N1—Co1—O2—C14149.1 (3)
O1i—Co1—N1—C61.1 (2)
Symmetry code: (i) x+2, y+2, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4···O10.78 (3)2.20 (3)2.587 (3)111 (2)
O2—H2···N2ii0.81 (4)2.11 (4)2.899 (3)166 (3)
O2—H2···N3ii0.81 (4)2.52 (4)3.161 (3)138 (3)
Symmetry code: (ii) x+1, y+2, z+2.

Experimental details

Crystal data
Chemical formula[Co(C13H11N4O)2(CH4O)2]
Mr601.53
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)6.492 (2), 8.926 (3), 25.159 (9)
β (°) 92.372 (6)
V3)1456.7 (9)
Z2
Radiation typeMo Kα
µ (mm1)0.64
Crystal size (mm)0.35 × 0.28 × 0.27
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.808, 0.847
No. of measured, independent and
observed [I > 2σ(I)] reflections
6990, 2564, 2037
Rint0.046
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.117, 1.08
No. of reflections2564
No. of parameters196
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.40, 0.43

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Co1—O12.0263 (18)Co1—N12.193 (2)
Co1—O22.114 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4'···O10.78 (3)2.20 (3)2.587 (3)111 (2)
O2—H2'···N2i0.81 (4)2.11 (4)2.899 (3)166 (3)
O2—H2'···N3i0.81 (4)2.52 (4)3.161 (3)138 (3)
Symmetry code: (i) x+1, y+2, z+2.
 

Acknowledgements

The authors appreciate the financial support of the Hundred Talents Program (2005012) of CAS, the Natural Science Foundation of China (20872105), the `Qinglan Project' of Jiangsu Province (Bu109805) and the Natural Science Foundation of Qinghai Province (2006-G-105).

References

First citationBruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCazeneuve, P. (1900a). Bull. Soc. Chim. Fr. 23, 592–600.  Google Scholar
First citationCazeneuve, P. (1900b). C. R. Hebd Seances Acad. Sci. 130, 1561–1563.  CAS Google Scholar
First citationDeshpande, S. G. & Jain, S. C. (1988). Indian J. Chem. Sect. A, 27, 552–554.  Google Scholar
First citationFeigl, F. (1924). Ber. Wien. Akad. IIb, 133, 115–132.  Google Scholar
First citationMartynova, T. K., Neverov, V. A., Byushkin, V. N., Shafranskii, V. N. & Malkova, T. A. (1985). Koord. Khim., 11, 132–135.  CAS Google Scholar
First citationPankaj, & Chauhan, M. (2004). Indian J. Chem. Sect. A Inorg. Bio-inorg. Phys. Theor. Anal. Chem. 43, 1206–1209.  Google Scholar
First citationShafranskii, V. N. & Mal'kova, T. A. (1975a). Zh. Obshch. Khim. 45, 1065–1069  CAS Google Scholar
First citationShafranskii, V. N. & Mal'kova, T. A. (1975b). J. Gen. Chem. (USSR), 45, 1051–1054.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSollott, G. P. & Peterson, W. R. (1969). J. Org. Chem. 34, 1506–1508.  CrossRef CAS Web of Science Google Scholar
First citationTurkington, R. W. & Tracy, F. M. (1958). Anal. Chem. 30, 1699–1701.  CrossRef CAS Web of Science Google Scholar
First citationYarbro, S. & Flaschka, H. A. (1976). Microchem. J. 21, 415–423.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds