organic compounds
2,7-Dibromo-9,9-bis[(pyridin-1-ium-4-yl)methyl]fluorene dinitrate
aMicroscale Science Institute, Weifang University, Weifang 261061, People's Republic of China, and bNew Materials and Function Coordination Chemistry Laboratory, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China
*Correspondence e-mail: ffjian2008@163.com
In the title compound, C25H20Br2N22+·2NO3−, the cation lies on a twofold rotation axis which imposes disorder of the dibromofluorene unit. In addition, the unique nitrate anion is disordered over two general sites of equal occupancy. The is stabilized by intermolecular N—H⋯O hydrogen bonds.
Related literature
For applications of bipyridine derivatives, see: Varughese & Pedireddi (2005, 2006); Pedireddi & Lekshmi (2004); Friscic & MacGillivray (2005).
Experimental
Crystal data
|
Data collection: SMART (Bruker, 1997); cell SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).
Supporting information
https://doi.org/10.1107/S1600536809054828/lh2955sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536809054828/lh2955Isup2.hkl
To a warm solution of 2,7-dibromo-9,9-(4-pyridyl-methyl)fluorene [2.55 g, 5.0 mmol] in EtOH (50 ml), HNO3(10.0 mmol) was added dropwise with stirring. The mixture turned clear yellow. 1 h later, the yellow solution was filtered, and the filtrate was evaporated at room temperature in air. Three days later, crystals suitable for an X-ray
were obtained.H atoms were fixed geometrically and allowed to ride on their attached atoms, with C—H distances = 0.93-0.97 Å, and with Uiso=1.2Ueq(C). The H atom bonded to N1 was refined independently with an isotropic displacement parameter. The occupancies of the disorder components of the nitrate anion were intially refined but then fixed at 0.50:0.50.
Bipyridine compounds have been studied as spacer molecules both in organic and organic-inorganic hybrid complexes (Varughese & Pedireddi, 2005,2006) Their ability to form intermolecular hydrogen bonds is of particular interest (Pedireddi & Lekshmi, 2004; Friscic & MacGillivray, 2005). We present herein the
of the titlecompound. The of the title compund is shown in Fig. 1. The cation moleclue lies on a twofold rotation axis about which the dibromofluorene moiety is disordered. Atom C1 lies on the twofold rotation axis. In addtion, the unique nitrate anion is disodered over two general sites with equall occupancies. The is stabilized by intermoecular N-H···O hydrogen bonds.For applications of bipyridine derivatives, see: Varughese & Pedireddi (2005, 2006); Pedireddi & Lekshmi (2004); Friscic & MacGillivray (2005).
Data collection: SMART (Bruker, 1997); cell
SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. The molecular structure of the title compound showing 30% probability displacement ellipsoids. The disorder is not shown but thinner bonds show the areas where disorder occurs. |
C25H20Br2N22+·2NO3− | F(000) = 2528 |
Mr = 632.27 | Dx = 1.568 Mg m−3 |
Orthorhombic, Fdd2 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: F 2 -2d | Cell parameters from 2016 reflections |
a = 14.874 (3) Å | θ = 3.3–27.9° |
b = 33.592 (7) Å | µ = 3.07 mm−1 |
c = 10.720 (2) Å | T = 293 K |
V = 5356.2 (18) Å3 | Block, yellow |
Z = 8 | 0.25 × 0.20 × 0.18 mm |
Bruker SMART CCD diffractometer | 3053 independent reflections |
Radiation source: fine-focus sealed tube | 1355 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.065 |
φ scans and ω scans with κ offsets | θmax = 27.5°, θmin = 3.0° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −18→19 |
Tmin = 0.514, Tmax = 0.608 | k = −43→42 |
12890 measured reflections | l = −13→13 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.041 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.114 | w = 1/[σ2(Fo2) + (0.0494P)2] where P = (Fo2 + 2Fc2)/3 |
S = 0.91 | (Δ/σ)max < 0.001 |
3053 reflections | Δρmax = 0.20 e Å−3 |
238 parameters | Δρmin = −0.18 e Å−3 |
77 restraints | Absolute structure: Flack (1983), 1443 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.002 (14) |
C25H20Br2N22+·2NO3− | V = 5356.2 (18) Å3 |
Mr = 632.27 | Z = 8 |
Orthorhombic, Fdd2 | Mo Kα radiation |
a = 14.874 (3) Å | µ = 3.07 mm−1 |
b = 33.592 (7) Å | T = 293 K |
c = 10.720 (2) Å | 0.25 × 0.20 × 0.18 mm |
Bruker SMART CCD diffractometer | 3053 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 1355 reflections with I > 2σ(I) |
Tmin = 0.514, Tmax = 0.608 | Rint = 0.065 |
12890 measured reflections |
R[F2 > 2σ(F2)] = 0.041 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.114 | Δρmax = 0.20 e Å−3 |
S = 0.91 | Δρmin = −0.18 e Å−3 |
3053 reflections | Absolute structure: Flack (1983), 1443 Friedel pairs |
238 parameters | Absolute structure parameter: 0.002 (14) |
77 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Br1 | 0.5373 (4) | 0.34967 (12) | 1.0031 (6) | 0.177 (2) | 0.50 |
Br2 | 0.4644 (3) | 0.66079 (12) | 0.9441 (5) | 0.1266 (12) | 0.50 |
C1 | 0.5000 | 0.5000 | 0.8526 (6) | 0.0493 (14) | |
C2 | 0.5086 (13) | 0.4687 (4) | 0.9446 (10) | 0.074 (3) | 0.50 |
C3 | 0.5195 (12) | 0.4279 (4) | 0.9302 (8) | 0.082 (3) | 0.50 |
H3A | 0.5215 | 0.4168 | 0.8508 | 0.099* | 0.50 |
C4 | 0.5274 (9) | 0.4036 (3) | 1.0347 (11) | 0.085 (3) | 0.50 |
C5 | 0.5244 (7) | 0.4202 (2) | 1.1534 (9) | 0.086 (3) | 0.50 |
H5A | 0.5297 | 0.4039 | 1.2233 | 0.103* | 0.50 |
C6 | 0.5136 (7) | 0.4610 (3) | 1.1677 (9) | 0.085 (3) | 0.50 |
H6A | 0.5116 | 0.4721 | 1.2472 | 0.101* | 0.50 |
C7 | 0.5057 (10) | 0.4853 (2) | 1.0633 (12) | 0.074 (3) | 0.50 |
C8 | 0.4931 (10) | 0.5280 (2) | 1.0631 (10) | 0.066 (2) | 0.50 |
C9 | 0.4851 (7) | 0.5582 (2) | 1.1511 (8) | 0.075 (2) | 0.50 |
H9A | 0.4857 | 0.5521 | 1.2357 | 0.090* | 0.50 |
C10 | 0.4761 (7) | 0.5975 (2) | 1.1126 (8) | 0.077 (2) | 0.50 |
H10A | 0.4708 | 0.6177 | 1.1715 | 0.093* | 0.50 |
C11 | 0.4752 (8) | 0.6066 (3) | 0.9861 (8) | 0.067 (2) | 0.50 |
C12 | 0.4832 (11) | 0.5765 (3) | 0.8981 (7) | 0.063 (2) | 0.50 |
H12A | 0.4826 | 0.5826 | 0.8135 | 0.075* | 0.50 |
C13 | 0.4922 (12) | 0.5371 (3) | 0.9366 (9) | 0.058 (2) | 0.50 |
N1 | 0.8313 (2) | 0.53409 (10) | 0.9320 (5) | 0.0682 (11) | |
C14 | 0.58325 (19) | 0.50368 (11) | 0.7642 (5) | 0.0510 (9) | |
H14A | 0.5919 | 0.4785 | 0.7217 | 0.061* | |
H14B | 0.5705 | 0.5237 | 0.7013 | 0.061* | |
C15 | 0.6693 (2) | 0.51471 (10) | 0.8298 (4) | 0.0467 (9) | |
C16 | 0.7043 (2) | 0.55303 (12) | 0.8175 (6) | 0.0694 (14) | |
H16A | 0.6722 | 0.5724 | 0.7744 | 0.083* | |
C17 | 0.7869 (3) | 0.56209 (14) | 0.8696 (6) | 0.0766 (15) | |
H17A | 0.8111 | 0.5875 | 0.8610 | 0.092* | |
C18 | 0.8004 (2) | 0.49768 (12) | 0.9466 (6) | 0.0690 (13) | |
H18A | 0.8341 | 0.4790 | 0.9900 | 0.083* | |
C19 | 0.7187 (2) | 0.48735 (11) | 0.8980 (5) | 0.0589 (11) | |
H19A | 0.6963 | 0.4618 | 0.9108 | 0.071* | |
O1 | 0.5248 (7) | 0.3942 (3) | 0.4656 (13) | 0.111 (4) | 0.50 |
O2 | 0.4986 (12) | 0.4542 (5) | 0.5171 (11) | 0.045 (3) | 0.50 |
O3 | 0.4155 (14) | 0.4101 (6) | 0.5905 (15) | 0.076 (4) | 0.50 |
N2 | 0.4807 (2) | 0.41997 (11) | 0.52359 (13) | 0.0733 (12) | |
O1A | 0.5534 (7) | 0.4013 (4) | 0.5514 (14) | 0.151 (7) | 0.50 |
O2A | 0.4890 (13) | 0.4546 (6) | 0.4700 (11) | 0.055 (3) | 0.50 |
O3A | 0.4017 (12) | 0.4069 (6) | 0.5454 (15) | 0.060 (3) | 0.50 |
H1N | 0.883 (3) | 0.5389 (11) | 0.968 (5) | 0.078 (13)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.170 (2) | 0.098 (2) | 0.262 (6) | 0.0198 (17) | 0.038 (3) | 0.097 (3) |
Br2 | 0.1092 (12) | 0.0779 (15) | 0.193 (4) | 0.0056 (9) | −0.0114 (15) | −0.0480 (15) |
C1 | 0.037 (2) | 0.063 (3) | 0.048 (4) | −0.002 (2) | 0.000 | 0.000 |
C2 | 0.050 (5) | 0.108 (6) | 0.064 (5) | 0.002 (5) | 0.008 (5) | 0.028 (5) |
C3 | 0.061 (5) | 0.113 (6) | 0.073 (6) | −0.001 (5) | 0.012 (5) | 0.034 (5) |
C4 | 0.073 (5) | 0.111 (5) | 0.071 (6) | 0.003 (5) | 0.008 (5) | 0.041 (5) |
C5 | 0.079 (5) | 0.109 (6) | 0.070 (5) | 0.002 (4) | 0.004 (4) | 0.034 (5) |
C6 | 0.072 (4) | 0.114 (6) | 0.068 (5) | 0.005 (5) | 0.005 (4) | 0.030 (5) |
C7 | 0.052 (4) | 0.111 (6) | 0.057 (5) | 0.001 (5) | 0.004 (4) | 0.032 (5) |
C8 | 0.057 (4) | 0.094 (5) | 0.048 (5) | −0.007 (4) | 0.002 (4) | −0.023 (4) |
C9 | 0.073 (4) | 0.097 (5) | 0.055 (5) | 0.000 (4) | 0.005 (4) | −0.025 (4) |
C10 | 0.074 (4) | 0.098 (5) | 0.060 (5) | 0.001 (4) | 0.003 (4) | −0.021 (4) |
C11 | 0.060 (4) | 0.085 (4) | 0.056 (5) | 0.001 (4) | 0.003 (4) | −0.028 (4) |
C12 | 0.052 (4) | 0.078 (4) | 0.058 (5) | −0.001 (4) | 0.000 (4) | −0.019 (4) |
C13 | 0.047 (4) | 0.079 (4) | 0.049 (5) | −0.002 (4) | 0.002 (4) | −0.018 (4) |
N1 | 0.0453 (18) | 0.082 (3) | 0.078 (3) | −0.0047 (17) | −0.0146 (19) | −0.004 (2) |
C14 | 0.0398 (15) | 0.064 (2) | 0.049 (3) | −0.0031 (16) | 0.0002 (16) | 0.0011 (19) |
C15 | 0.0409 (17) | 0.0531 (19) | 0.046 (3) | 0.0005 (15) | 0.0012 (17) | 0.0044 (18) |
C16 | 0.052 (2) | 0.059 (2) | 0.097 (4) | −0.0097 (17) | −0.015 (2) | 0.016 (2) |
C17 | 0.057 (2) | 0.069 (3) | 0.104 (5) | −0.0135 (19) | −0.020 (2) | 0.004 (3) |
C18 | 0.052 (2) | 0.073 (3) | 0.082 (4) | 0.0064 (18) | −0.016 (2) | 0.007 (3) |
C19 | 0.049 (2) | 0.056 (2) | 0.072 (3) | 0.0011 (16) | −0.0079 (19) | 0.003 (2) |
O1 | 0.090 (8) | 0.061 (4) | 0.182 (13) | 0.012 (5) | 0.057 (7) | 0.000 (7) |
O2 | 0.055 (6) | 0.045 (4) | 0.036 (8) | −0.003 (3) | 0.001 (6) | −0.004 (6) |
O3 | 0.085 (9) | 0.075 (5) | 0.068 (12) | −0.030 (5) | 0.023 (7) | −0.023 (8) |
N2 | 0.061 (2) | 0.063 (3) | 0.096 (4) | 0.0058 (19) | 0.029 (2) | 0.002 (2) |
O1A | 0.064 (5) | 0.102 (8) | 0.29 (2) | 0.016 (5) | 0.025 (8) | 0.086 (11) |
O2A | 0.049 (4) | 0.072 (5) | 0.043 (9) | −0.002 (3) | −0.004 (6) | 0.012 (7) |
O3A | 0.051 (5) | 0.078 (6) | 0.051 (9) | −0.013 (4) | 0.005 (5) | −0.018 (6) |
Br1—C4 | 1.849 (9) | C11—C12 | 1.3900 |
Br2—C11 | 1.881 (9) | C12—C13 | 1.3900 |
C1—C2i | 1.446 (9) | C12—H12A | 0.9300 |
C1—C2 | 1.446 (9) | N1—C18 | 1.316 (5) |
C1—C13 | 1.543 (8) | N1—C17 | 1.330 (5) |
C1—C13i | 1.543 (9) | N1—H1N | 0.87 (5) |
C1—C14i | 1.564 (5) | C14—C15 | 1.506 (5) |
C1—C14 | 1.564 (5) | C14—H14A | 0.9700 |
C2—C3 | 1.3900 | C14—H14B | 0.9700 |
C2—C7 | 1.3900 | C15—C19 | 1.386 (5) |
C3—C4 | 1.3900 | C15—C16 | 1.395 (5) |
C3—H3A | 0.9300 | C16—C17 | 1.384 (6) |
C4—C5 | 1.3900 | C16—H16A | 0.9300 |
C5—C6 | 1.3900 | C17—H17A | 0.9300 |
C5—H5A | 0.9300 | C18—C19 | 1.366 (5) |
C6—C7 | 1.3900 | C18—H18A | 0.9300 |
C6—H6A | 0.9300 | C19—H19A | 0.9300 |
C7—C8 | 1.447 (9) | O1—N2 | 1.252 (11) |
C8—C9 | 1.3900 | O2—N2 | 1.182 (19) |
C8—C13 | 1.3900 | O3—N2 | 1.25 (2) |
C9—C10 | 1.3900 | N2—O3A | 1.28 (2) |
C9—H9A | 0.9300 | N2—O1A | 1.284 (11) |
C10—C11 | 1.3900 | N2—O2A | 1.30 (2) |
C10—H10A | 0.9300 | ||
C2i—C1—C2 | 94.1 (12) | C11—C12—C13 | 120.0 |
C2—C1—C13 | 101.3 (5) | C11—C12—H12A | 120.0 |
C2i—C1—C13i | 101.3 (6) | C13—C12—H12A | 120.0 |
C13—C1—C13i | 108.6 (13) | C12—C13—C8 | 120.0 |
C2i—C1—C14i | 113.6 (7) | C12—C13—C1 | 127.0 (7) |
C2—C1—C14i | 115.2 (7) | C8—C13—C1 | 112.9 (7) |
C13—C1—C14i | 111.0 (7) | C18—N1—C17 | 122.9 (4) |
C13i—C1—C14i | 110.4 (11) | C18—N1—H1N | 115 (3) |
C2i—C1—C14 | 115.2 (7) | C17—N1—H1N | 122 (3) |
C2—C1—C14 | 113.6 (7) | C15—C14—C1 | 114.1 (4) |
C13—C1—C14 | 110.4 (6) | C15—C14—H14A | 108.7 |
C13i—C1—C14 | 111.0 (11) | C1—C14—H14A | 108.7 |
C14i—C1—C14 | 105.4 (5) | C15—C14—H14B | 108.7 |
C3—C2—C7 | 120.0 | C1—C14—H14B | 108.7 |
C3—C2—C1 | 130.7 (9) | H14A—C14—H14B | 107.6 |
C7—C2—C1 | 109.3 (9) | C19—C15—C16 | 117.6 (3) |
C2—C3—C4 | 120.0 | C19—C15—C14 | 122.3 (3) |
C2—C3—H3A | 120.0 | C16—C15—C14 | 120.0 (3) |
C4—C3—H3A | 120.0 | C17—C16—C15 | 119.8 (4) |
C3—C4—C5 | 120.0 | C17—C16—H16A | 120.1 |
C3—C4—Br1 | 115.7 (7) | C15—C16—H16A | 120.1 |
C5—C4—Br1 | 124.2 (7) | N1—C17—C16 | 119.2 (4) |
C6—C5—C4 | 120.0 | N1—C17—H17A | 120.4 |
C6—C5—H5A | 120.0 | C16—C17—H17A | 120.4 |
C4—C5—H5A | 120.0 | N1—C18—C19 | 120.1 (4) |
C7—C6—C5 | 120.0 | N1—C18—H18A | 119.9 |
C7—C6—H6A | 120.0 | C19—C18—H18A | 119.9 |
C5—C6—H6A | 120.0 | C18—C19—C15 | 120.3 (3) |
C6—C7—C2 | 120.0 | C18—C19—H19A | 119.8 |
C6—C7—C8 | 126.5 (11) | C15—C19—H19A | 119.8 |
C2—C7—C8 | 113.5 (11) | O2—N2—O3 | 117.7 (13) |
C9—C8—C13 | 120.0 | O2—N2—O1 | 121.8 (11) |
C9—C8—C7 | 137.2 (10) | O3—N2—O1 | 120.5 (11) |
C13—C8—C7 | 102.8 (10) | O2—N2—O3A | 123.6 (14) |
C10—C9—C8 | 120.0 | O1—N2—O3A | 109.5 (9) |
C10—C9—H9A | 120.0 | O2—N2—O1A | 107.4 (9) |
C8—C9—H9A | 120.0 | O3—N2—O1A | 113.0 (11) |
C9—C10—C11 | 120.0 | O3A—N2—O1A | 124.4 (11) |
C9—C10—H10A | 120.0 | O3—N2—O2A | 124.2 (15) |
C11—C10—H10A | 120.0 | O1—N2—O2A | 110.5 (10) |
C12—C11—C10 | 120.0 | O3A—N2—O2A | 118.4 (13) |
C12—C11—Br2 | 123.4 (5) | O1A—N2—O2A | 117.2 (11) |
C10—C11—Br2 | 116.6 (5) |
Symmetry code: (i) −x+1, −y+1, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N···O2ii | 0.87 (5) | 1.85 (5) | 2.72 (2) | 170 (4) |
N1—H1N···O2Aii | 0.87 (5) | 1.92 (5) | 2.73 (2) | 154 (4) |
Symmetry code: (ii) −x+3/2, −y+1, z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C25H20Br2N22+·2NO3− |
Mr | 632.27 |
Crystal system, space group | Orthorhombic, Fdd2 |
Temperature (K) | 293 |
a, b, c (Å) | 14.874 (3), 33.592 (7), 10.720 (2) |
V (Å3) | 5356.2 (18) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 3.07 |
Crystal size (mm) | 0.25 × 0.20 × 0.18 |
Data collection | |
Diffractometer | Bruker SMART CCD |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.514, 0.608 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 12890, 3053, 1355 |
Rint | 0.065 |
(sin θ/λ)max (Å−1) | 0.649 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.041, 0.114, 0.91 |
No. of reflections | 3053 |
No. of parameters | 238 |
No. of restraints | 77 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.20, −0.18 |
Absolute structure | Flack (1983), 1443 Friedel pairs |
Absolute structure parameter | 0.002 (14) |
Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N···O2i | 0.87 (5) | 1.85 (5) | 2.72 (2) | 170 (4) |
N1—H1N···O2Ai | 0.87 (5) | 1.92 (5) | 2.73 (2) | 154 (4) |
Symmetry code: (i) −x+3/2, −y+1, z+1/2. |
Acknowledgements
The authors would like to thank the National Natural Science Foundation of Shandong (Y2007B14, Y2008B29) and Weifang University for research grants.
References
Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Friscic, T. & MacGillivray, L. R. (2005). Chem. Commun. pp. 5748–5750. Web of Science CrossRef Google Scholar
Pedireddi, V. R. & Lekshmi, N. S. (2004). Tetrahedron Lett. 45, 1903–1905. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Varughese, S. & Pedireddi, V. R. (2005). Chem. Commun. pp. 1824–1836. Web of Science CSD CrossRef Google Scholar
Varughese, S. & Pedireddi, V. R. (2006). Chem. Eur. J. 12, 1597–1600. Web of Science CSD CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Bipyridine compounds have been studied as spacer molecules both in organic and organic-inorganic hybrid complexes (Varughese & Pedireddi, 2005,2006) Their ability to form intermolecular hydrogen bonds is of particular interest (Pedireddi & Lekshmi, 2004; Friscic & MacGillivray, 2005). We present herein the crystal structure of the titlecompound. The asymmetric unit of the title compund is shown in Fig. 1. The cation moleclue lies on a twofold rotation axis about which the dibromofluorene moiety is disordered. Atom C1 lies on the twofold rotation axis. In addtion, the unique nitrate anion is disodered over two general sites with equall occupancies. The crystal structure is stabilized by intermoecular N-H···O hydrogen bonds.