organic compounds
1,2-Dihydroxy-2-(3-methylbut-2-enyl)-3-oxo-2,3-dihydro-1H-indene-1-carboxylic acid monohydrate
aInstituto de Química, Universidade Federal Fluminense, Centro, CEP 24020-150, Niterói, RJ, Brazil, bInstituto de Química e Biotecnologia, Universidade Federal de Alagoas, CEP 57072-970, Maceió, Al, Brazil, and cNúcleo de Pesquisas em Produtos Naturais, Universidade Federal do Rio de Janeiro, Ilha do Fundão, CEP 21944-971, Rio de Janeiro, RJ, Brazil
*Correspondence e-mail: vrsm@qui.ufal.br
The title compound, C15H16O5·H2O, is an intermediate of the Hooker oxidation reaction, used for the synthesis of 2-hydroxy-3-(2-methylprop-1-enyl)naphthalene-1,4-dione (nor-lapachol). The packing in the is arranged by an O—H⋯O hydrogen-bonded network along the [100] and [010] directions. Each organic molecule is linked to four other molecules via the hydroxy groups. The water solvent molecule is connected to carboxylic acid groups by three hydrogen bonds.
Related literature
For a related structure, see Cunningham et al. (1999). For information on the mechanism of the Hooker oxidation reaction, see: Hooker (1936); Hooker & Steyermark (1936); Fieser & Fieser, (1948); Fieser & Bader (1951); Fieser et al. (1936); Lee et al. (1995).
Experimental
Crystal data
|
Refinement
|
Data collection: COLLECT (Nonius, 2004); cell DIRAX/LSQ (Duisenberg, 1992); data reduction: EVALCCD (Duisenberg et al., 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae, 2006) and ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.
Supporting information
https://doi.org/10.1107/S1600536810000516/lh2966sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810000516/lh2966Isup2.hkl
Lapachol (10.0 g, 41.3 mmol) in THF (70 ml) was added to a solution of Na2CO3 (4.8 g, 45.3 mmol) in water (100 ml). The mixture was refluxed under N2 and when the temperature reached 316K , H2O2 (32 ml) was added. The reaction mixture remained under reflux for one hour and after this period it was cooled to 283K. Then conc. HCl was added until appearance of a white precipitate, which was filtered under vaccum [yield; 81%, 493-494K, lit. (Fieser et al., 1951): 492-493K].
The hydrogen atoms of the water were placed at calculated positions and other H atoms C—H = 0.93–0.97 Å and O—H (hydroxyl group) = 0.82Å were placed into the calculated idealized positions. All H atoms were refined with fixed individual displacement parameters [Uiso(H) = 1.2Ueq (Csp2) or 1.5Ueq (Csp3) and (O—H)] using a riding model. Due to the absence of
the The was not refined.For many years investigations on the Hooker intermediate were object of preparation of nor-lapachol (Fieser et al., 1936), principally due to the different oxidation mechanism (Lee et al., 1995) in which the substrate 2-hydroxy-3-(3-methylbut-2-enyl)naphthalene-1,4-dione) (lapachol) undergoes rearrangement into nor-lapachol (Fieser et al., 1951). This Hooker oxidation reaction is applicable to a large number of hydroxynaphthoquinones with side chains in the quinone ring (Hooker, 1936; Hooker & Steyermark, 1936).
Although spectroscopic data (NMR and elemental analysis) has indicated (Fieser et al., 1948) the likely structure of the intermediate, X-ray diffraction study has never been performed. We report herein the synthesis and the φ2 = -147.3 (5)°]. The ring is stretched and this is reflected in the larger bond length of C1—C2, like in the oxoindane ester methyl trans-2-(trans-4-tert-butylcyclohexyl)methyl-2,3-dihydroxy- 1-oxoindan-3-carboxylate (Cunningham et al., 1999). The crystal packing is stabilized by five hydrogen bonds (Table 1) forming a hydrogen-bonded network along the [010] and [100] directions (Figure 2).
of the title compound, (I). An ORTEP-3 (Farrugia, 1997) drawing of (I) is shown in Fig. 1, and selected geometric parameters are presented in Table 1. The five-membered ring adopts an [q2 = 0.260 (2) Å eFor a related structure, see Cunningham et al. (1999). For information on the mechanism of the Hooker oxidation reaction, see: Hooker (1936); Hooker & Steyermark (1936); Fieser & Fieser, (1948); Fieser & Bader (1951); Fieser et al. (1936); Lee et al. (1995).
Data collection: COLLECT (Nonius, 2004); cell
DIRAX/LSQ (Duisenberg, 1992); data reduction: EVALCCD (Duisenberg et al., 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae, 2006) and ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).C15H16O5·H2O | F(000) = 312 |
Mr = 294.29 | Dx = 1.357 Mg m−3 |
Monoclinic, P21 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2yb | Cell parameters from 18985 reflections |
a = 9.5514 (7) Å | θ = 3.1–27.5° |
b = 5.7762 (5) Å | µ = 0.11 mm−1 |
c = 13.1324 (9) Å | T = 298 K |
β = 92.126 (12)° | Prism, colourless |
V = 724.03 (10) Å3 | 0.21 × 0.15 × 0.09 mm |
Z = 2 |
Enraf–Nonius FR590 diffractometer | 1490 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.034 |
CCD rotation images, thick slices scans | θmax = 27.5°, θmin = 3.1° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −12→12 |
Tmin = 0.981, Tmax = 0.991 | k = −7→7 |
18985 measured reflections | l = −17→17 |
1827 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.037 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.093 | H-atom parameters constrained |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0546P)2] where P = (Fo2 + 2Fc2)/3 |
1827 reflections | (Δ/σ)max = 0.029 |
195 parameters | Δρmax = 0.15 e Å−3 |
1 restraint | Δρmin = −0.17 e Å−3 |
C15H16O5·H2O | V = 724.03 (10) Å3 |
Mr = 294.29 | Z = 2 |
Monoclinic, P21 | Mo Kα radiation |
a = 9.5514 (7) Å | µ = 0.11 mm−1 |
b = 5.7762 (5) Å | T = 298 K |
c = 13.1324 (9) Å | 0.21 × 0.15 × 0.09 mm |
β = 92.126 (12)° |
Enraf–Nonius FR590 diffractometer | 1827 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 1490 reflections with I > 2σ(I) |
Tmin = 0.981, Tmax = 0.991 | Rint = 0.034 |
18985 measured reflections |
R[F2 > 2σ(F2)] = 0.037 | 1 restraint |
wR(F2) = 0.093 | H-atom parameters constrained |
S = 1.06 | Δρmax = 0.15 e Å−3 |
1827 reflections | Δρmin = −0.17 e Å−3 |
195 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1W | 0.5721 (2) | 0.8481 (4) | 0.0536 (2) | 0.0823 (9) | |
H1A | 0.6162 | 0.7243 | 0.0448 | 0.123* | |
H1B | 0.4867 | 0.8512 | 0.0372 | 0.123* | |
O1 | 0.90465 (17) | 0.6665 (3) | 0.10377 (11) | 0.0322 (4) | |
H1 | 0.9157 | 0.6392 | 0.0433 | 0.048* | |
O2 | 1.01902 (18) | 0.1204 (3) | 0.09344 (12) | 0.0334 (4) | |
H2 | 0.9917 | −0.0037 | 0.1157 | 0.05* | |
O3 | 1.03440 (19) | 0.0001 (3) | 0.30071 (13) | 0.0403 (4) | |
O4 | 0.73158 (19) | 0.1340 (3) | 0.14502 (13) | 0.0407 (4) | |
H4 | 0.6744 | 0.0621 | 0.1092 | 0.061* | |
O5 | 0.7005 (2) | 0.4019 (3) | 0.02549 (15) | 0.0484 (5) | |
C1 | 0.8810 (2) | 0.4586 (4) | 0.15549 (16) | 0.0268 (5) | |
C2 | 1.0096 (2) | 0.2926 (4) | 0.16956 (16) | 0.0281 (5) | |
C3 | 0.9894 (2) | 0.1855 (4) | 0.27440 (16) | 0.0283 (5) | |
C4 | 0.9048 (2) | 0.3500 (4) | 0.33153 (16) | 0.0288 (5) | |
C5 | 0.8816 (2) | 0.3586 (5) | 0.43499 (17) | 0.0375 (6) | |
H5 | 0.9206 | 0.2491 | 0.4795 | 0.045* | |
C6 | 0.7988 (3) | 0.5348 (5) | 0.46952 (18) | 0.0411 (6) | |
H6 | 0.7827 | 0.5462 | 0.5387 | 0.049* | |
C7 | 0.7396 (3) | 0.6945 (5) | 0.40303 (18) | 0.0411 (6) | |
H7 | 0.6842 | 0.8122 | 0.4282 | 0.049* | |
C8 | 0.7608 (2) | 0.6834 (5) | 0.29942 (17) | 0.0349 (5) | |
H8 | 0.7197 | 0.7907 | 0.2548 | 0.042* | |
C9 | 0.8446 (2) | 0.5086 (4) | 0.26450 (16) | 0.0270 (5) | |
C10 | 0.7606 (2) | 0.3286 (4) | 0.10134 (17) | 0.0282 (5) | |
C11 | 1.1452 (2) | 0.4353 (5) | 0.1714 (2) | 0.0373 (6) | |
H11A | 1.1624 | 0.4881 | 0.1029 | 0.045* | |
H11B | 1.1333 | 0.5709 | 0.2138 | 0.045* | |
C12 | 1.2692 (3) | 0.3023 (5) | 0.2109 (2) | 0.0428 (6) | |
H12 | 1.2888 | 0.1649 | 0.1774 | 0.051* | |
C13 | 1.3534 (3) | 0.3581 (5) | 0.2876 (2) | 0.0420 (6) | |
C14 | 1.4737 (3) | 0.2069 (7) | 0.3225 (3) | 0.0626 (9) | |
H14A | 1.4621 | 0.1623 | 0.3921 | 0.094* | |
H14B | 1.5599 | 0.2908 | 0.3172 | 0.094* | |
H14C | 1.476 | 0.0711 | 0.2805 | 0.094* | |
C15 | 1.3374 (4) | 0.5712 (7) | 0.3500 (3) | 0.0759 (11) | |
H15A | 1.3521 | 0.5339 | 0.4208 | 0.114* | |
H15B | 1.2447 | 0.6326 | 0.3387 | 0.114* | |
H15C | 1.405 | 0.6844 | 0.3307 | 0.114* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1W | 0.0610 (13) | 0.0400 (13) | 0.142 (2) | 0.0055 (11) | −0.0517 (14) | −0.0227 (15) |
O1 | 0.0497 (9) | 0.0228 (9) | 0.0242 (7) | −0.0045 (7) | 0.0027 (7) | 0.0025 (7) |
O2 | 0.0465 (10) | 0.0265 (9) | 0.0274 (8) | −0.0033 (7) | 0.0040 (7) | −0.0043 (7) |
O3 | 0.0463 (10) | 0.0360 (10) | 0.0382 (10) | 0.0086 (8) | −0.0046 (8) | 0.0069 (9) |
O4 | 0.0463 (10) | 0.0323 (10) | 0.0424 (10) | −0.0122 (8) | −0.0154 (7) | 0.0085 (9) |
O5 | 0.0588 (11) | 0.0386 (11) | 0.0458 (11) | −0.0091 (9) | −0.0246 (9) | 0.0103 (8) |
C1 | 0.0341 (12) | 0.0224 (12) | 0.0238 (11) | −0.0019 (9) | 0.0006 (9) | 0.0017 (9) |
C2 | 0.0334 (11) | 0.0246 (11) | 0.0263 (11) | −0.0016 (9) | 0.0003 (9) | −0.0041 (9) |
C3 | 0.0289 (10) | 0.0303 (13) | 0.0252 (10) | −0.0023 (10) | −0.0065 (8) | 0.0000 (10) |
C4 | 0.0283 (11) | 0.0315 (12) | 0.0263 (11) | −0.0018 (10) | −0.0027 (9) | 0.0004 (10) |
C5 | 0.0386 (12) | 0.0475 (16) | 0.0259 (11) | 0.0041 (12) | −0.0033 (10) | 0.0052 (11) |
C6 | 0.0414 (14) | 0.0581 (18) | 0.0241 (12) | −0.0001 (13) | 0.0034 (11) | −0.0045 (12) |
C7 | 0.0426 (13) | 0.0433 (15) | 0.0380 (13) | 0.0036 (12) | 0.0089 (11) | −0.0046 (13) |
C8 | 0.0422 (12) | 0.0297 (13) | 0.0327 (12) | 0.0013 (11) | 0.0014 (10) | 0.0017 (11) |
C9 | 0.0307 (11) | 0.0248 (11) | 0.0256 (11) | −0.0052 (9) | 0.0009 (9) | −0.0005 (9) |
C10 | 0.0349 (11) | 0.0226 (12) | 0.0269 (11) | 0.0015 (9) | −0.0010 (9) | 0.0005 (9) |
C11 | 0.0329 (12) | 0.0359 (14) | 0.0434 (14) | −0.0057 (10) | 0.0037 (11) | −0.0034 (11) |
C12 | 0.0330 (12) | 0.0399 (15) | 0.0558 (16) | −0.0009 (11) | 0.0083 (12) | −0.0098 (13) |
C13 | 0.0336 (12) | 0.0421 (15) | 0.0503 (15) | −0.0053 (12) | 0.0028 (11) | 0.0000 (13) |
C14 | 0.0361 (14) | 0.066 (2) | 0.085 (2) | −0.0035 (15) | −0.0045 (14) | 0.0077 (19) |
C15 | 0.083 (3) | 0.065 (3) | 0.078 (3) | 0.008 (2) | −0.024 (2) | −0.0182 (19) |
O1W—H1A | 0.840 | C6—C7 | 1.378 (4) |
O1W—H1B | 0.840 | C6—H6 | 0.93 |
O1—C1 | 1.402 (3) | C7—C8 | 1.385 (3) |
O1—H1 | 0.82 | C7—H7 | 0.93 |
O2—C2 | 1.415 (3) | C8—C9 | 1.378 (3) |
O2—H2 | 0.82 | C8—H8 | 0.93 |
O3—C3 | 1.200 (3) | C11—C12 | 1.489 (4) |
O4—C10 | 1.297 (3) | C11—H11A | 0.97 |
O4—H4 | 0.82 | C11—H11B | 0.97 |
O5—C10 | 1.208 (3) | C12—C13 | 1.306 (4) |
C1—C9 | 1.514 (3) | C12—H12 | 0.93 |
C1—C10 | 1.527 (3) | C13—C15 | 1.490 (5) |
C1—C2 | 1.564 (3) | C13—C14 | 1.501 (4) |
C2—C3 | 1.528 (3) | C14—H14A | 0.96 |
C2—C11 | 1.534 (3) | C14—H14B | 0.96 |
C3—C4 | 1.471 (3) | C14—H14C | 0.96 |
C4—C9 | 1.381 (3) | C15—H15A | 0.96 |
C4—C5 | 1.386 (3) | C15—H15B | 0.96 |
C5—C6 | 1.376 (4) | C15—H15C | 0.96 |
C5—H5 | 0.93 | ||
H1A—O1W—H1B | 118 | C9—C8—H8 | 121 |
C1—O1—H1 | 109.5 | C7—C8—H8 | 121 |
C2—O2—H2 | 109.5 | C8—C9—C4 | 120.5 (2) |
C10—O4—H4 | 109.5 | C8—C9—C1 | 127.7 (2) |
O1—C1—C9 | 109.97 (18) | C4—C9—C1 | 111.8 (2) |
O1—C1—C10 | 109.13 (17) | O5—C10—O4 | 124.5 (2) |
C9—C1—C10 | 109.80 (18) | O5—C10—C1 | 122.6 (2) |
O1—C1—C2 | 116.27 (18) | O4—C10—C1 | 112.94 (19) |
C9—C1—C2 | 102.25 (17) | C12—C11—C2 | 112.8 (2) |
C10—C1—C2 | 109.17 (18) | C12—C11—H11A | 109 |
O2—C2—C3 | 111.45 (19) | C2—C11—H11A | 109 |
O2—C2—C11 | 108.25 (18) | C12—C11—H11B | 109 |
C3—C2—C11 | 109.75 (19) | C2—C11—H11B | 109 |
O2—C2—C1 | 114.67 (18) | H11A—C11—H11B | 107.8 |
C3—C2—C1 | 103.27 (18) | C13—C12—C11 | 126.9 (3) |
C11—C2—C1 | 109.33 (18) | C13—C12—H12 | 116.5 |
O3—C3—C4 | 128.8 (2) | C11—C12—H12 | 116.5 |
O3—C3—C2 | 124.4 (2) | C12—C13—C15 | 123.7 (3) |
C4—C3—C2 | 106.77 (19) | C12—C13—C14 | 122.3 (3) |
C9—C4—C5 | 121.5 (2) | C15—C13—C14 | 113.9 (3) |
C9—C4—C3 | 109.08 (19) | C13—C14—H14A | 109.5 |
C5—C4—C3 | 129.4 (2) | C13—C14—H14B | 109.5 |
C6—C5—C4 | 117.7 (2) | H14A—C14—H14B | 109.5 |
C6—C5—H5 | 121.2 | C13—C14—H14C | 109.5 |
C4—C5—H5 | 121.2 | H14A—C14—H14C | 109.5 |
C5—C6—C7 | 120.9 (2) | H14B—C14—H14C | 109.5 |
C5—C6—H6 | 119.5 | C13—C15—H15A | 109.5 |
C7—C6—H6 | 119.5 | C13—C15—H15B | 109.5 |
C6—C7—C8 | 121.4 (3) | H15A—C15—H15B | 109.5 |
C6—C7—H7 | 119.3 | C13—C15—H15C | 109.5 |
C8—C7—H7 | 119.3 | H15A—C15—H15C | 109.5 |
C9—C8—C7 | 118.0 (2) | H15B—C15—H15C | 109.5 |
O1—C1—C2—O2 | −94.2 (2) | C7—C8—C9—C4 | 0.1 (3) |
C9—C1—C2—O2 | 146.03 (19) | C7—C8—C9—C1 | 178.9 (2) |
C10—C1—C2—O2 | 29.8 (2) | C5—C4—C9—C8 | 1.0 (3) |
O1—C1—C2—C3 | 144.38 (19) | C3—C4—C9—C8 | −179.4 (2) |
C9—C1—C2—C3 | 24.6 (2) | C5—C4—C9—C1 | −177.9 (2) |
C10—C1—C2—C3 | −91.7 (2) | C3—C4—C9—C1 | 1.7 (3) |
O1—C1—C2—C11 | 27.6 (3) | O1—C1—C9—C8 | 40.0 (3) |
C9—C1—C2—C11 | −92.2 (2) | C10—C1—C9—C8 | −80.0 (3) |
C10—C1—C2—C11 | 151.53 (18) | C2—C1—C9—C8 | 164.2 (2) |
O2—C2—C3—O3 | 30.5 (3) | O1—C1—C9—C4 | −141.13 (19) |
C11—C2—C3—O3 | −89.4 (3) | C10—C1—C9—C4 | 98.8 (2) |
C1—C2—C3—O3 | 154.2 (2) | C2—C1—C9—C4 | −17.0 (2) |
O2—C2—C3—C4 | −148.40 (18) | O1—C1—C10—O5 | 0.7 (3) |
C11—C2—C3—C4 | 91.7 (2) | C9—C1—C10—O5 | 121.3 (2) |
C1—C2—C3—C4 | −24.8 (2) | C2—C1—C10—O5 | −127.3 (2) |
O3—C3—C4—C9 | −163.8 (2) | O1—C1—C10—O4 | −179.68 (19) |
C2—C3—C4—C9 | 15.1 (2) | C9—C1—C10—O4 | −59.1 (3) |
O3—C3—C4—C5 | 15.8 (4) | C2—C1—C10—O4 | 52.3 (2) |
C2—C3—C4—C5 | −165.4 (2) | O2—C2—C11—C12 | −69.4 (3) |
C9—C4—C5—C6 | −1.6 (4) | C3—C2—C11—C12 | 52.5 (3) |
C3—C4—C5—C6 | 179.0 (2) | C1—C2—C11—C12 | 165.1 (2) |
C4—C5—C6—C7 | 1.0 (4) | C2—C11—C12—C13 | −123.5 (3) |
C5—C6—C7—C8 | 0.1 (4) | C11—C12—C13—C15 | 0.3 (5) |
C6—C7—C8—C9 | −0.7 (4) | C11—C12—C13—C14 | 178.4 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···O2i | 0.82 | 1.93 | 2.729 (2) | 166 |
O2—H2···O1ii | 0.82 | 2.08 | 2.846 (2) | 155 |
O4—H4···O1Wii | 0.82 | 1.72 | 2.520 (3) | 164 |
O1W—H1B···O5iii | 0.84 | 1.96 | 2.785 (3) | 167 |
O1W—H1A···O5 | 0.84 | 2.05 | 2.884 (3) | 173 |
Symmetry codes: (i) −x+2, y+1/2, −z; (ii) x, y−1, z; (iii) −x+1, y+1/2, −z. |
Experimental details
Crystal data | |
Chemical formula | C15H16O5·H2O |
Mr | 294.29 |
Crystal system, space group | Monoclinic, P21 |
Temperature (K) | 298 |
a, b, c (Å) | 9.5514 (7), 5.7762 (5), 13.1324 (9) |
β (°) | 92.126 (12) |
V (Å3) | 724.03 (10) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.11 |
Crystal size (mm) | 0.21 × 0.15 × 0.09 |
Data collection | |
Diffractometer | Enraf–Nonius FR590 |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.981, 0.991 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 18985, 1827, 1490 |
Rint | 0.034 |
(sin θ/λ)max (Å−1) | 0.650 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.037, 0.093, 1.06 |
No. of reflections | 1827 |
No. of parameters | 195 |
No. of restraints | 1 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.15, −0.17 |
Computer programs: COLLECT (Nonius, 2004), DIRAX/LSQ (Duisenberg, 1992), EVALCCD (Duisenberg et al., 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Mercury (Macrae, 2006) and ORTEP-3 (Farrugia, 1997).
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···O2i | 0.82 | 1.93 | 2.729 (2) | 166.3 |
O2—H2···O1ii | 0.82 | 2.08 | 2.846 (2) | 154.7 |
O4—H4···O1Wii | 0.82 | 1.72 | 2.520 (3) | 164.2 |
O1W—H1B···O5iii | 0.84 | 1.96 | 2.785 (3) | 167 |
O1W—H1A···O5 | 0.84 | 2.05 | 2.884 (3) | 173 |
Symmetry codes: (i) −x+2, y+1/2, −z; (ii) x, y−1, z; (iii) −x+1, y+1/2, −z. |
Acknowledgements
This work was supported by the Brazilian agencies FAPEAL, FAPERJ, CAPES and CNPq.
References
Cunningham, I. D., Danks, T. N., O'Connell, K. T. A. & Scott, P. W. (1999). J. Org. Chem. 64, 7330-7337. Web of Science CSD CrossRef CAS Google Scholar
Duisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92–96. CrossRef CAS Web of Science IUCr Journals Google Scholar
Duisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220–229. Web of Science CrossRef CAS IUCr Journals Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Fieser, L. F. & Bader, A. R. (1951). J. Am. Chem. Soc. 73, 681–684. CrossRef CAS Web of Science Google Scholar
Fieser, L. F. & Fieser, M. (1948). J. Am. Chem. Soc. 70, 3215–3222. CrossRef PubMed CAS Web of Science Google Scholar
Fieser, L. F., Hartwell, J. L. & Seligman, A. M. (1936). J. Am. Chem. Soc. 58, 1223–1228. CrossRef CAS Google Scholar
Hooker, S. C. (1936). J. Am. Chem. Soc. 58, 1168–1173. CrossRef CAS Google Scholar
Hooker, S. C. & Steyermark, A. (1936). J. Am. Chem. Soc. 58, 1179–1181. CrossRef CAS Google Scholar
Lee, K., Turnbull, P. & Moore, H. W. (1995). J. Org. Chem. 60, 461-464. CrossRef CAS Web of Science Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Nonius (2004). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
For many years investigations on the Hooker intermediate were object of preparation of nor-lapachol (Fieser et al., 1936), principally due to the different oxidation mechanism (Lee et al., 1995) in which the substrate 2-hydroxy-3-(3-methylbut-2-enyl)naphthalene-1,4-dione) (lapachol) undergoes rearrangement into nor-lapachol (Fieser et al., 1951). This Hooker oxidation reaction is applicable to a large number of hydroxynaphthoquinones with side chains in the quinone ring (Hooker, 1936; Hooker & Steyermark, 1936).
Although spectroscopic data (NMR and elemental analysis) has indicated (Fieser et al., 1948) the likely structure of the intermediate, X-ray diffraction study has never been performed. We report herein the synthesis and the crystal structure of the title compound, (I). An ORTEP-3 (Farrugia, 1997) drawing of (I) is shown in Fig. 1, and selected geometric parameters are presented in Table 1. The five-membered ring adopts an envelope conformation [q2 = 0.260 (2) Å e φ2 = -147.3 (5)°]. The ring is stretched and this is reflected in the larger bond length of C1—C2, like in the oxoindane ester methyl trans-2-(trans-4-tert-butylcyclohexyl)methyl-2,3-dihydroxy- 1-oxoindan-3-carboxylate (Cunningham et al., 1999). The crystal packing is stabilized by five hydrogen bonds (Table 1) forming a hydrogen-bonded network along the [010] and [100] directions (Figure 2).