organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,2-Dihydr­­oxy-2-(3-methyl­but-2-en­yl)-3-oxo-2,3-di­hydro-1H-indene-1-carboxylic acid monohydrate

aInstituto de Química, Universidade Federal Fluminense, Centro, CEP 24020-150, Niterói, RJ, Brazil, bInstituto de Química e Biotecnologia, Universidade Federal de Alagoas, CEP 57072-970, Maceió, Al, Brazil, and cNúcleo de Pesquisas em Produtos Naturais, Universidade Federal do Rio de Janeiro, Ilha do Fundão, CEP 21944-971, Rio de Janeiro, RJ, Brazil
*Correspondence e-mail: vrsm@qui.ufal.br

(Received 3 December 2009; accepted 5 January 2010; online 13 January 2010)

The title compound, C15H16O5·H2O, is an inter­mediate of the Hooker oxidation reaction, used for the synthesis of 2-hydr­oxy-3-(2-methyl­prop-1-en­yl)naphthalene-1,4-dione (nor-lapachol). The packing in the crystal structure is arranged by an O—H⋯O hydrogen-bonded network along the [100] and [010] directions. Each organic mol­ecule is linked to four other mol­ecules via the hydr­oxy groups. The water solvent mol­ecule is connected to carboxylic acid groups by three hydrogen bonds.

Related literature

For a related structure, see Cunningham et al. (1999[Cunningham, I. D., Danks, T. N., O'Connell, K. T. A. & Scott, P. W. (1999). J. Org. Chem. 64, 7330-7337.]). For information on the mechanism of the Hooker oxidation reaction, see: Hooker (1936[Hooker, S. C. (1936). J. Am. Chem. Soc. 58, 1168-1173.]); Hooker & Steyermark (1936[Hooker, S. C. & Steyermark, A. (1936). J. Am. Chem. Soc. 58, 1179-1181.]); Fieser & Fieser, (1948[Fieser, L. F. & Fieser, M. (1948). J. Am. Chem. Soc. 70, 3215-3222.]); Fieser & Bader (1951[Fieser, L. F. & Bader, A. R. (1951). J. Am. Chem. Soc. 73, 681-684.]); Fieser et al. (1936[Fieser, L. F., Hartwell, J. L. & Seligman, A. M. (1936). J. Am. Chem. Soc. 58, 1223-1228.]); Lee et al. (1995[Lee, K., Turnbull, P. & Moore, H. W. (1995). J. Org. Chem. 60, 461-464.]).

[Scheme 1]

Experimental

Crystal data
  • C15H16O5·H2O

  • Mr = 294.29

  • Monoclinic, P 21

  • a = 9.5514 (7) Å

  • b = 5.7762 (5) Å

  • c = 13.1324 (9) Å

  • β = 92.126 (12)°

  • V = 724.03 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 298 K

  • 0.21 × 0.15 × 0.09 mm

Data collection
  • Enraf–Nonius FR590 diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.981, Tmax = 0.991

  • 18985 measured reflections

  • 1827 independent reflections

  • 1490 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.093

  • S = 1.06

  • 1827 reflections

  • 195 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2i 0.82 1.93 2.729 (2) 166
O2—H2⋯O1ii 0.82 2.08 2.846 (2) 155
O4—H4⋯O1Wii 0.82 1.72 2.520 (3) 164
O1W—H1B⋯O5iii 0.84 1.96 2.785 (3) 167
O1W—H1A⋯O5 0.84 2.05 2.884 (3) 173
Symmetry codes: (i) [-x+2, y+{\script{1\over 2}}, -z]; (ii) x, y-1, z; (iii) [-x+1, y+{\script{1\over 2}}, -z].

Data collection: COLLECT (Nonius, 2004[Nonius (2004). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DIRAX/LSQ (Duisenberg, 1992[Duisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92-96.]); data reduction: EVALCCD (Duisenberg et al., 2003[Duisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220-229.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae, 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]) and ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

For many years investigations on the Hooker intermediate were object of preparation of nor-lapachol (Fieser et al., 1936), principally due to the different oxidation mechanism (Lee et al., 1995) in which the substrate 2-hydroxy-3-(3-methylbut-2-enyl)naphthalene-1,4-dione) (lapachol) undergoes rearrangement into nor-lapachol (Fieser et al., 1951). This Hooker oxidation reaction is applicable to a large number of hydroxynaphthoquinones with side chains in the quinone ring (Hooker, 1936; Hooker & Steyermark, 1936).

Although spectroscopic data (NMR and elemental analysis) has indicated (Fieser et al., 1948) the likely structure of the intermediate, X-ray diffraction study has never been performed. We report herein the synthesis and the crystal structure of the title compound, (I). An ORTEP-3 (Farrugia, 1997) drawing of (I) is shown in Fig. 1, and selected geometric parameters are presented in Table 1. The five-membered ring adopts an envelope conformation [q2 = 0.260 (2) Å e φ2 = -147.3 (5)°]. The ring is stretched and this is reflected in the larger bond length of C1—C2, like in the oxoindane ester methyl trans-2-(trans-4-tert-butylcyclohexyl)methyl-2,3-dihydroxy- 1-oxoindan-3-carboxylate (Cunningham et al., 1999). The crystal packing is stabilized by five hydrogen bonds (Table 1) forming a hydrogen-bonded network along the [010] and [100] directions (Figure 2).

Related literature top

For a related structure, see Cunningham et al. (1999). For information on the mechanism of the Hooker oxidation reaction, see: Hooker (1936); Hooker & Steyermark (1936); Fieser & Fieser, (1948); Fieser & Bader (1951); Fieser et al. (1936); Lee et al. (1995).

Experimental top

Lapachol (10.0 g, 41.3 mmol) in THF (70 ml) was added to a solution of Na2CO3 (4.8 g, 45.3 mmol) in water (100 ml). The mixture was refluxed under N2 and when the temperature reached 316K , H2O2 (32 ml) was added. The reaction mixture remained under reflux for one hour and after this period it was cooled to 283K. Then conc. HCl was added until appearance of a white precipitate, which was filtered under vaccum [yield; 81%, 493-494K, lit. (Fieser et al., 1951): 492-493K].

Refinement top

The hydrogen atoms of the water were placed at calculated positions and other H atoms C—H = 0.93–0.97 Å and O—H (hydroxyl group) = 0.82Å were placed into the calculated idealized positions. All H atoms were refined with fixed individual displacement parameters [Uiso(H) = 1.2Ueq (Csp2) or 1.5Ueq (Csp3) and (O—H)] using a riding model. Due to the absence of anomalous dispersion the The Flack parameter was not refined.

Structure description top

For many years investigations on the Hooker intermediate were object of preparation of nor-lapachol (Fieser et al., 1936), principally due to the different oxidation mechanism (Lee et al., 1995) in which the substrate 2-hydroxy-3-(3-methylbut-2-enyl)naphthalene-1,4-dione) (lapachol) undergoes rearrangement into nor-lapachol (Fieser et al., 1951). This Hooker oxidation reaction is applicable to a large number of hydroxynaphthoquinones with side chains in the quinone ring (Hooker, 1936; Hooker & Steyermark, 1936).

Although spectroscopic data (NMR and elemental analysis) has indicated (Fieser et al., 1948) the likely structure of the intermediate, X-ray diffraction study has never been performed. We report herein the synthesis and the crystal structure of the title compound, (I). An ORTEP-3 (Farrugia, 1997) drawing of (I) is shown in Fig. 1, and selected geometric parameters are presented in Table 1. The five-membered ring adopts an envelope conformation [q2 = 0.260 (2) Å e φ2 = -147.3 (5)°]. The ring is stretched and this is reflected in the larger bond length of C1—C2, like in the oxoindane ester methyl trans-2-(trans-4-tert-butylcyclohexyl)methyl-2,3-dihydroxy- 1-oxoindan-3-carboxylate (Cunningham et al., 1999). The crystal packing is stabilized by five hydrogen bonds (Table 1) forming a hydrogen-bonded network along the [010] and [100] directions (Figure 2).

For a related structure, see Cunningham et al. (1999). For information on the mechanism of the Hooker oxidation reaction, see: Hooker (1936); Hooker & Steyermark (1936); Fieser & Fieser, (1948); Fieser & Bader (1951); Fieser et al. (1936); Lee et al. (1995).

Computing details top

Data collection: COLLECT (Nonius, 2004); cell refinement: DIRAX/LSQ (Duisenberg, 1992); data reduction: EVALCCD (Duisenberg et al., 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae, 2006) and ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. : The molecular structure of (I) with displacement ellipsoids are drawn at the 50% probability level. A hydrogen bond is shown as a dashed line.
[Figure 2] Fig. 2. : A packing diagram of (I) (Macrae et al., 2006). Hydrogen bonds are shown as dotted lines.
1,2-Dihydroxy-2-(3-methylbut-2-enyl)-3-oxo-2,3-dihydro-1H-indene-1- carboxylic acid monohydrate top
Crystal data top
C15H16O5·H2OF(000) = 312
Mr = 294.29Dx = 1.357 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 18985 reflections
a = 9.5514 (7) Åθ = 3.1–27.5°
b = 5.7762 (5) ŵ = 0.11 mm1
c = 13.1324 (9) ÅT = 298 K
β = 92.126 (12)°Prism, colourless
V = 724.03 (10) Å30.21 × 0.15 × 0.09 mm
Z = 2
Data collection top
Enraf–Nonius FR590
diffractometer
1490 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
CCD rotation images, thick slices scansθmax = 27.5°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1212
Tmin = 0.981, Tmax = 0.991k = 77
18985 measured reflectionsl = 1717
1827 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.093H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0546P)2]
where P = (Fo2 + 2Fc2)/3
1827 reflections(Δ/σ)max = 0.029
195 parametersΔρmax = 0.15 e Å3
1 restraintΔρmin = 0.17 e Å3
Crystal data top
C15H16O5·H2OV = 724.03 (10) Å3
Mr = 294.29Z = 2
Monoclinic, P21Mo Kα radiation
a = 9.5514 (7) ŵ = 0.11 mm1
b = 5.7762 (5) ÅT = 298 K
c = 13.1324 (9) Å0.21 × 0.15 × 0.09 mm
β = 92.126 (12)°
Data collection top
Enraf–Nonius FR590
diffractometer
1827 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1490 reflections with I > 2σ(I)
Tmin = 0.981, Tmax = 0.991Rint = 0.034
18985 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0371 restraint
wR(F2) = 0.093H-atom parameters constrained
S = 1.06Δρmax = 0.15 e Å3
1827 reflectionsΔρmin = 0.17 e Å3
195 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O1W0.5721 (2)0.8481 (4)0.0536 (2)0.0823 (9)
H1A0.61620.72430.04480.123*
H1B0.48670.85120.03720.123*
O10.90465 (17)0.6665 (3)0.10377 (11)0.0322 (4)
H10.91570.63920.04330.048*
O21.01902 (18)0.1204 (3)0.09344 (12)0.0334 (4)
H20.99170.00370.11570.05*
O31.03440 (19)0.0001 (3)0.30071 (13)0.0403 (4)
O40.73158 (19)0.1340 (3)0.14502 (13)0.0407 (4)
H40.67440.06210.10920.061*
O50.7005 (2)0.4019 (3)0.02549 (15)0.0484 (5)
C10.8810 (2)0.4586 (4)0.15549 (16)0.0268 (5)
C21.0096 (2)0.2926 (4)0.16956 (16)0.0281 (5)
C30.9894 (2)0.1855 (4)0.27440 (16)0.0283 (5)
C40.9048 (2)0.3500 (4)0.33153 (16)0.0288 (5)
C50.8816 (2)0.3586 (5)0.43499 (17)0.0375 (6)
H50.92060.24910.47950.045*
C60.7988 (3)0.5348 (5)0.46952 (18)0.0411 (6)
H60.78270.54620.53870.049*
C70.7396 (3)0.6945 (5)0.40303 (18)0.0411 (6)
H70.68420.81220.42820.049*
C80.7608 (2)0.6834 (5)0.29942 (17)0.0349 (5)
H80.71970.79070.25480.042*
C90.8446 (2)0.5086 (4)0.26450 (16)0.0270 (5)
C100.7606 (2)0.3286 (4)0.10134 (17)0.0282 (5)
C111.1452 (2)0.4353 (5)0.1714 (2)0.0373 (6)
H11A1.16240.48810.10290.045*
H11B1.13330.57090.21380.045*
C121.2692 (3)0.3023 (5)0.2109 (2)0.0428 (6)
H121.28880.16490.17740.051*
C131.3534 (3)0.3581 (5)0.2876 (2)0.0420 (6)
C141.4737 (3)0.2069 (7)0.3225 (3)0.0626 (9)
H14A1.46210.16230.39210.094*
H14B1.55990.29080.31720.094*
H14C1.4760.07110.28050.094*
C151.3374 (4)0.5712 (7)0.3500 (3)0.0759 (11)
H15A1.35210.53390.42080.114*
H15B1.24470.63260.33870.114*
H15C1.4050.68440.33070.114*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O1W0.0610 (13)0.0400 (13)0.142 (2)0.0055 (11)0.0517 (14)0.0227 (15)
O10.0497 (9)0.0228 (9)0.0242 (7)0.0045 (7)0.0027 (7)0.0025 (7)
O20.0465 (10)0.0265 (9)0.0274 (8)0.0033 (7)0.0040 (7)0.0043 (7)
O30.0463 (10)0.0360 (10)0.0382 (10)0.0086 (8)0.0046 (8)0.0069 (9)
O40.0463 (10)0.0323 (10)0.0424 (10)0.0122 (8)0.0154 (7)0.0085 (9)
O50.0588 (11)0.0386 (11)0.0458 (11)0.0091 (9)0.0246 (9)0.0103 (8)
C10.0341 (12)0.0224 (12)0.0238 (11)0.0019 (9)0.0006 (9)0.0017 (9)
C20.0334 (11)0.0246 (11)0.0263 (11)0.0016 (9)0.0003 (9)0.0041 (9)
C30.0289 (10)0.0303 (13)0.0252 (10)0.0023 (10)0.0065 (8)0.0000 (10)
C40.0283 (11)0.0315 (12)0.0263 (11)0.0018 (10)0.0027 (9)0.0004 (10)
C50.0386 (12)0.0475 (16)0.0259 (11)0.0041 (12)0.0033 (10)0.0052 (11)
C60.0414 (14)0.0581 (18)0.0241 (12)0.0001 (13)0.0034 (11)0.0045 (12)
C70.0426 (13)0.0433 (15)0.0380 (13)0.0036 (12)0.0089 (11)0.0046 (13)
C80.0422 (12)0.0297 (13)0.0327 (12)0.0013 (11)0.0014 (10)0.0017 (11)
C90.0307 (11)0.0248 (11)0.0256 (11)0.0052 (9)0.0009 (9)0.0005 (9)
C100.0349 (11)0.0226 (12)0.0269 (11)0.0015 (9)0.0010 (9)0.0005 (9)
C110.0329 (12)0.0359 (14)0.0434 (14)0.0057 (10)0.0037 (11)0.0034 (11)
C120.0330 (12)0.0399 (15)0.0558 (16)0.0009 (11)0.0083 (12)0.0098 (13)
C130.0336 (12)0.0421 (15)0.0503 (15)0.0053 (12)0.0028 (11)0.0000 (13)
C140.0361 (14)0.066 (2)0.085 (2)0.0035 (15)0.0045 (14)0.0077 (19)
C150.083 (3)0.065 (3)0.078 (3)0.008 (2)0.024 (2)0.0182 (19)
Geometric parameters (Å, º) top
O1W—H1A0.840C6—C71.378 (4)
O1W—H1B0.840C6—H60.93
O1—C11.402 (3)C7—C81.385 (3)
O1—H10.82C7—H70.93
O2—C21.415 (3)C8—C91.378 (3)
O2—H20.82C8—H80.93
O3—C31.200 (3)C11—C121.489 (4)
O4—C101.297 (3)C11—H11A0.97
O4—H40.82C11—H11B0.97
O5—C101.208 (3)C12—C131.306 (4)
C1—C91.514 (3)C12—H120.93
C1—C101.527 (3)C13—C151.490 (5)
C1—C21.564 (3)C13—C141.501 (4)
C2—C31.528 (3)C14—H14A0.96
C2—C111.534 (3)C14—H14B0.96
C3—C41.471 (3)C14—H14C0.96
C4—C91.381 (3)C15—H15A0.96
C4—C51.386 (3)C15—H15B0.96
C5—C61.376 (4)C15—H15C0.96
C5—H50.93
H1A—O1W—H1B118C9—C8—H8121
C1—O1—H1109.5C7—C8—H8121
C2—O2—H2109.5C8—C9—C4120.5 (2)
C10—O4—H4109.5C8—C9—C1127.7 (2)
O1—C1—C9109.97 (18)C4—C9—C1111.8 (2)
O1—C1—C10109.13 (17)O5—C10—O4124.5 (2)
C9—C1—C10109.80 (18)O5—C10—C1122.6 (2)
O1—C1—C2116.27 (18)O4—C10—C1112.94 (19)
C9—C1—C2102.25 (17)C12—C11—C2112.8 (2)
C10—C1—C2109.17 (18)C12—C11—H11A109
O2—C2—C3111.45 (19)C2—C11—H11A109
O2—C2—C11108.25 (18)C12—C11—H11B109
C3—C2—C11109.75 (19)C2—C11—H11B109
O2—C2—C1114.67 (18)H11A—C11—H11B107.8
C3—C2—C1103.27 (18)C13—C12—C11126.9 (3)
C11—C2—C1109.33 (18)C13—C12—H12116.5
O3—C3—C4128.8 (2)C11—C12—H12116.5
O3—C3—C2124.4 (2)C12—C13—C15123.7 (3)
C4—C3—C2106.77 (19)C12—C13—C14122.3 (3)
C9—C4—C5121.5 (2)C15—C13—C14113.9 (3)
C9—C4—C3109.08 (19)C13—C14—H14A109.5
C5—C4—C3129.4 (2)C13—C14—H14B109.5
C6—C5—C4117.7 (2)H14A—C14—H14B109.5
C6—C5—H5121.2C13—C14—H14C109.5
C4—C5—H5121.2H14A—C14—H14C109.5
C5—C6—C7120.9 (2)H14B—C14—H14C109.5
C5—C6—H6119.5C13—C15—H15A109.5
C7—C6—H6119.5C13—C15—H15B109.5
C6—C7—C8121.4 (3)H15A—C15—H15B109.5
C6—C7—H7119.3C13—C15—H15C109.5
C8—C7—H7119.3H15A—C15—H15C109.5
C9—C8—C7118.0 (2)H15B—C15—H15C109.5
O1—C1—C2—O294.2 (2)C7—C8—C9—C40.1 (3)
C9—C1—C2—O2146.03 (19)C7—C8—C9—C1178.9 (2)
C10—C1—C2—O229.8 (2)C5—C4—C9—C81.0 (3)
O1—C1—C2—C3144.38 (19)C3—C4—C9—C8179.4 (2)
C9—C1—C2—C324.6 (2)C5—C4—C9—C1177.9 (2)
C10—C1—C2—C391.7 (2)C3—C4—C9—C11.7 (3)
O1—C1—C2—C1127.6 (3)O1—C1—C9—C840.0 (3)
C9—C1—C2—C1192.2 (2)C10—C1—C9—C880.0 (3)
C10—C1—C2—C11151.53 (18)C2—C1—C9—C8164.2 (2)
O2—C2—C3—O330.5 (3)O1—C1—C9—C4141.13 (19)
C11—C2—C3—O389.4 (3)C10—C1—C9—C498.8 (2)
C1—C2—C3—O3154.2 (2)C2—C1—C9—C417.0 (2)
O2—C2—C3—C4148.40 (18)O1—C1—C10—O50.7 (3)
C11—C2—C3—C491.7 (2)C9—C1—C10—O5121.3 (2)
C1—C2—C3—C424.8 (2)C2—C1—C10—O5127.3 (2)
O3—C3—C4—C9163.8 (2)O1—C1—C10—O4179.68 (19)
C2—C3—C4—C915.1 (2)C9—C1—C10—O459.1 (3)
O3—C3—C4—C515.8 (4)C2—C1—C10—O452.3 (2)
C2—C3—C4—C5165.4 (2)O2—C2—C11—C1269.4 (3)
C9—C4—C5—C61.6 (4)C3—C2—C11—C1252.5 (3)
C3—C4—C5—C6179.0 (2)C1—C2—C11—C12165.1 (2)
C4—C5—C6—C71.0 (4)C2—C11—C12—C13123.5 (3)
C5—C6—C7—C80.1 (4)C11—C12—C13—C150.3 (5)
C6—C7—C8—C90.7 (4)C11—C12—C13—C14178.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.821.932.729 (2)166
O2—H2···O1ii0.822.082.846 (2)155
O4—H4···O1Wii0.821.722.520 (3)164
O1W—H1B···O5iii0.841.962.785 (3)167
O1W—H1A···O50.842.052.884 (3)173
Symmetry codes: (i) x+2, y+1/2, z; (ii) x, y1, z; (iii) x+1, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC15H16O5·H2O
Mr294.29
Crystal system, space groupMonoclinic, P21
Temperature (K)298
a, b, c (Å)9.5514 (7), 5.7762 (5), 13.1324 (9)
β (°) 92.126 (12)
V3)724.03 (10)
Z2
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.21 × 0.15 × 0.09
Data collection
DiffractometerEnraf–Nonius FR590
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.981, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
18985, 1827, 1490
Rint0.034
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.093, 1.06
No. of reflections1827
No. of parameters195
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.15, 0.17

Computer programs: COLLECT (Nonius, 2004), DIRAX/LSQ (Duisenberg, 1992), EVALCCD (Duisenberg et al., 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Mercury (Macrae, 2006) and ORTEP-3 (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.821.932.729 (2)166.3
O2—H2···O1ii0.822.082.846 (2)154.7
O4—H4···O1Wii0.821.722.520 (3)164.2
O1W—H1B···O5iii0.841.962.785 (3)167
O1W—H1A···O50.842.052.884 (3)173
Symmetry codes: (i) x+2, y+1/2, z; (ii) x, y1, z; (iii) x+1, y+1/2, z.
 

Acknowledgements

This work was supported by the Brazilian agencies FAPEAL, FAPERJ, CAPES and CNPq.

References

First citationCunningham, I. D., Danks, T. N., O'Connell, K. T. A. & Scott, P. W. (1999). J. Org. Chem. 64, 7330-7337.  Web of Science CSD CrossRef CAS Google Scholar
First citationDuisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92–96.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDuisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220–229.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFieser, L. F. & Bader, A. R. (1951). J. Am. Chem. Soc. 73, 681–684.  CrossRef CAS Web of Science Google Scholar
First citationFieser, L. F. & Fieser, M. (1948). J. Am. Chem. Soc. 70, 3215–3222.  CrossRef PubMed CAS Web of Science Google Scholar
First citationFieser, L. F., Hartwell, J. L. & Seligman, A. M. (1936). J. Am. Chem. Soc. 58, 1223–1228.  CrossRef CAS Google Scholar
First citationHooker, S. C. (1936). J. Am. Chem. Soc. 58, 1168–1173.  CrossRef CAS Google Scholar
First citationHooker, S. C. & Steyermark, A. (1936). J. Am. Chem. Soc. 58, 1179–1181.  CrossRef CAS Google Scholar
First citationLee, K., Turnbull, P. & Moore, H. W. (1995). J. Org. Chem. 60, 461-464.  CrossRef CAS Web of Science Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNonius (2004). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds