metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[di­aqua­tris­(μ4-isophthalato)dilanthanum(III)]

aInstitute of Materials Physical Chemistry and the Key Laboratory for Functional Materials of Fujian Higher Education, Huaqiao University, Quanzhou, Fujian 362021, People's Republic of China
*Correspondence e-mail: lqfan@hqu.edu.cn

(Received 14 December 2009; accepted 18 December 2009; online 30 January 2010)

In the title coordination polymer, [La2(C8H4O4)3(H2O)2]n, there are two independent LaIII atoms which are coordinated differently in slightly distorted penta­gonal-bipyramidal and slightly disorted bicapped trigonal-prismatic environments. The LaIII ions are bridged by μ4-isophthalate ligands, forming two-dimensional layers. In the crystal structure, these layers are connected by inter­molecular O—H⋯O hydrogen bonds into a three-dimensional network.

Related literature

For background information on lanthanide coordination polymers, see: Cheng et al. (2007[Cheng, J.-W., Zheng, S.-T., Ma, E. & Yang, G.-Y. (2007). Inorg. Chem. 46, 10534-10538.]); Dorweiler et al. (2009[Dorweiler, J. D., Nemykin, V. N., Ley, A. N., Pike, R. D. & Berry, S. M. (2009). Inorg. Chem. 48, 9365-9376.]); Mondal et al. (2009[Mondal, K. C., Sengupta, O., Dutta, P., Seehra, M., Nayak, S. K. & Mukherjee, P. S. (2009). Inorg. Chim. Acta, 362, 1913-1917.]) and for the use of multicarboxyl group ligands in this type of polymer, see: Mahata et al. (2007[Mahata, P., Ramya, K. V. & Natarajan, S. (2007). Dalton Trans. pp. 4017-4026.]); Zhou et al. (2008[Zhou, R.-Z., Cui, X.-B., Song, J.-F., Xu, X.-Y., Xu, J.-Q. & Wang, T.-G. (2008). J. Solid State Chem. 181, 2099-2107.]).

[Scheme 1]

Experimental

Crystal data
  • [La2(C8H4O4)3(H2O)2]

  • Mr = 806.19

  • Monoclinic, P 21 /n

  • a = 13.3956 (12) Å

  • b = 14.4877 (8) Å

  • c = 13.5754 (11) Å

  • β = 103.998 (5)°

  • V = 2556.4 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.37 mm−1

  • T = 293 K

  • 0.20 × 0.15 × 0.10 mm

Data collection
  • Rigaku Mercury diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2007[Rigaku (2007). CrystalClear. Rigaku Corporation, Akishima, Tokyo, Japan.]) Tmin = 0.717, Tmax = 1.000

  • 19411 measured reflections

  • 5841 independent reflections

  • 5111 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.139

  • S = 1.08

  • 5841 reflections

  • 361 parameters

  • 18 restraints

  • H-atom parameters constrained

  • Δρmax = 2.72 e Å−3

  • Δρmin = −1.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O13—H13A⋯O2i 0.85 2.27 2.814 (8) 122
O13—H13B⋯O11i 0.85 2.20 2.976 (8) 152
O14—H14B⋯O10ii 0.85 1.97 2.795 (8) 162
O14—H14A⋯O7iii 0.85 2.10 2.656 (8) 122
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) -x+1, -y, -z+1.

Data collection: CrystalClear (Rigaku, 2007[Rigaku (2007). CrystalClear. Rigaku Corporation, Akishima, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2004[Brandenburg, K. (2004). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Investigations of the constructions of coordination polymers based on lanthanide metals have attracted great interests not only for their diverse structures but also for their luminescent and magnetic properties (Cheng et al., 2007; Dorweiler et al., 2009; Mondal et al., 2009). Because ligands containing multicarboxyl groups can give rise to abundant coordination modes, they have been selected to build lanthanide coordination polymers (Mahata et al., 2007; Zhou et al., 2008). We report herein the crystal structure of the title La(III) compound, (I).

As shown in Fig.1, the asymmetric unit of (I) contains two independent LaIII ions, three isophthalato (ip) ligands, and two coordinated water molecules. Atom La1 is coordinated by seven O atoms in a slightly distorted pentagonal bipyramidal environment. The pentagonal plane is occupied by four oxygen atoms from four ip ligands and one oxygen atom from a water molecule, and the two apical sites are occupied by another two oxygen atoms from two ip ligands. The coordination geometry of La2 is a slightly disortoted bi-capped trigonal prism. The LaIII ions are bridged by µ4-isophthalato ligands to form two-dimensional layers (Fig. 2). In the crystal structure, these layers are connected by intermolecular O—H···O hydrogen bonds to form a three-dimensional network.

Related literature top

For background information on lanthanide coordination polymers, see: Cheng et al. (2007); Dorweiler et al. (2009); Mondal et al. (2009) and for the use of multicarboxyl group ligands in this type of polymer, see: Mahata et al. (2007); Zhou et al. (2008).

Experimental top

A mixture of La2O3 (0.163 g, 0.5 mmol), isophthalic acid (0.166 g, 1 mmol) and H2O (10 ml) was placed in a 23 ml Teflon-lined reactor, which was heated to 443 K for 7 days and then cooled to room temperature at a rate of 0.2 K h—1. The colorless crystals obtained were washed with water and dried in air (yield 16% based on La).

Refinement top

H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 Å, O—H = 0.85 Å, Uiso(H) = 1.2Ueq(C or O).

Structure description top

Investigations of the constructions of coordination polymers based on lanthanide metals have attracted great interests not only for their diverse structures but also for their luminescent and magnetic properties (Cheng et al., 2007; Dorweiler et al., 2009; Mondal et al., 2009). Because ligands containing multicarboxyl groups can give rise to abundant coordination modes, they have been selected to build lanthanide coordination polymers (Mahata et al., 2007; Zhou et al., 2008). We report herein the crystal structure of the title La(III) compound, (I).

As shown in Fig.1, the asymmetric unit of (I) contains two independent LaIII ions, three isophthalato (ip) ligands, and two coordinated water molecules. Atom La1 is coordinated by seven O atoms in a slightly distorted pentagonal bipyramidal environment. The pentagonal plane is occupied by four oxygen atoms from four ip ligands and one oxygen atom from a water molecule, and the two apical sites are occupied by another two oxygen atoms from two ip ligands. The coordination geometry of La2 is a slightly disortoted bi-capped trigonal prism. The LaIII ions are bridged by µ4-isophthalato ligands to form two-dimensional layers (Fig. 2). In the crystal structure, these layers are connected by intermolecular O—H···O hydrogen bonds to form a three-dimensional network.

For background information on lanthanide coordination polymers, see: Cheng et al. (2007); Dorweiler et al. (2009); Mondal et al. (2009) and for the use of multicarboxyl group ligands in this type of polymer, see: Mahata et al. (2007); Zhou et al. (2008).

Computing details top

Data collection: CrystalClear (Rigaku, 2007); cell refinement: CrystalClear (Rigaku, 2007); data reduction: CrystalClear (Rigaku, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2004); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I), showing the atom-numbering scheme. H atoms are not included and displacement ellipsoids are drawn at the 30% probability level. Additional symmetry related atoms are included to complete the coordination geomtry around the La atoms [Symmetry codes: (A) 1.5 — x, —0.5 + y, 0.5 — z; (B) 0.5 + x, 0.5 — y, —0.5 + z; (C) 1.5 — x, 0.5 + y, 0.5 — z; (D) 1 — x, — y, 1 — z].
[Figure 2] Fig. 2. View of part of the two-dimensional layer of (I). H atoms are not included.
Poly[diaquatris(µ4-isophthalato)dilanthanum(III)] top
Crystal data top
[La2(C8H4O4)3(H2O)2]F(000) = 1544
Mr = 806.19Dx = 2.095 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 6025 reflections
a = 13.3956 (12) Åθ = 3.1–27.5°
b = 14.4877 (8) ŵ = 3.37 mm1
c = 13.5754 (11) ÅT = 293 K
β = 103.998 (5)°Prism, colorless
V = 2556.4 (3) Å30.20 × 0.15 × 0.10 mm
Z = 4
Data collection top
Rigaku Mercury
diffractometer
5841 independent reflections
Radiation source: fine-focus sealed tube5111 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
ω scansθmax = 27.5°, θmin = 2.1°
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2007)
h = 1716
Tmin = 0.717, Tmax = 1.000k = 1818
19411 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.139H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0811P)2 + 4.3612P]
where P = (Fo2 + 2Fc2)/3
5841 reflections(Δ/σ)max = 0.001
361 parametersΔρmax = 2.72 e Å3
18 restraintsΔρmin = 1.33 e Å3
Crystal data top
[La2(C8H4O4)3(H2O)2]V = 2556.4 (3) Å3
Mr = 806.19Z = 4
Monoclinic, P21/nMo Kα radiation
a = 13.3956 (12) ŵ = 3.37 mm1
b = 14.4877 (8) ÅT = 293 K
c = 13.5754 (11) Å0.20 × 0.15 × 0.10 mm
β = 103.998 (5)°
Data collection top
Rigaku Mercury
diffractometer
5841 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2007)
5111 reflections with I > 2σ(I)
Tmin = 0.717, Tmax = 1.000Rint = 0.042
19411 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04818 restraints
wR(F2) = 0.139H-atom parameters constrained
S = 1.08Δρmax = 2.72 e Å3
5841 reflectionsΔρmin = 1.33 e Å3
361 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
La10.84385 (2)0.31714 (2)0.38814 (2)0.02027 (12)
La20.61501 (2)0.06678 (2)0.32769 (2)0.02238 (12)
O10.6774 (3)0.2657 (3)0.2958 (3)0.0358 (10)
O20.5239 (4)0.2049 (3)0.2615 (4)0.0375 (11)
O30.7107 (4)0.5678 (4)0.1326 (5)0.0545 (15)
O40.5900 (4)0.6718 (3)0.1260 (5)0.0510 (14)
O50.7672 (4)0.2617 (4)0.5144 (4)0.0463 (13)
O60.6532 (4)0.1469 (4)0.4850 (4)0.0463 (13)
O70.5312 (4)0.0136 (3)0.7733 (4)0.0383 (11)
O80.5033 (4)0.1180 (3)0.8868 (3)0.0392 (11)
O90.8372 (4)0.3771 (3)0.2105 (3)0.0359 (10)
O100.8799 (4)0.4248 (3)0.0703 (4)0.0395 (11)
O110.6533 (4)0.0748 (3)0.1637 (4)0.0437 (12)
O120.7235 (4)0.0402 (3)0.0943 (4)0.0482 (13)
O130.9519 (5)0.3449 (5)0.5562 (4)0.071 (2)
H13B1.00270.38190.57030.085*
H13A0.93120.31190.59910.085*
O140.4569 (4)0.0722 (3)0.3964 (4)0.0454 (13)
H14A0.41650.04550.34660.054*
H14B0.44650.06880.45570.054*
C10.5822 (5)0.2719 (5)0.2627 (5)0.0319 (13)
C20.6223 (5)0.5905 (5)0.1368 (5)0.0381 (15)
C30.7040 (5)0.2086 (5)0.5416 (5)0.0373 (15)
C40.5455 (5)0.0912 (5)0.8170 (5)0.0318 (13)
C50.8589 (4)0.3606 (4)0.1257 (4)0.0265 (12)
C60.7158 (6)0.0436 (5)0.1157 (5)0.0366 (15)
C70.5369 (5)0.3625 (5)0.2226 (6)0.0409 (16)
C80.5967 (5)0.4312 (4)0.1954 (6)0.0365 (15)
H8A0.66640.42010.20180.044*
C90.5563 (6)0.5166 (5)0.1589 (7)0.0497 (19)
C100.4527 (8)0.5310 (7)0.1490 (10)0.082 (3)
H10A0.42310.58640.12190.099*
C110.3917 (9)0.4641 (9)0.1789 (11)0.098 (4)
H11A0.32290.47590.17650.118*
C120.4353 (7)0.3788 (6)0.2126 (9)0.072 (3)
H12A0.39390.33240.22850.086*
C130.6907 (5)0.2169 (5)0.6486 (5)0.0353 (14)
C140.6329 (5)0.1517 (5)0.6845 (5)0.0339 (14)
H14C0.60480.10240.64310.041*
C150.6156 (5)0.1586 (5)0.7833 (5)0.0320 (13)
C160.6589 (6)0.2315 (6)0.8462 (5)0.0457 (18)
H16A0.64740.23710.91080.055*
C170.7189 (6)0.2949 (6)0.8120 (6)0.0466 (19)
H17A0.74950.34260.85460.056*
C180.7350 (6)0.2888 (5)0.7121 (6)0.0428 (16)
H18A0.77510.33270.68960.051*
C190.8584 (5)0.2627 (4)0.0888 (5)0.0320 (13)
C200.7905 (5)0.2005 (4)0.1165 (5)0.0337 (14)
H20A0.74710.22010.15640.040*
C210.7878 (5)0.1090 (5)0.0845 (6)0.0399 (16)
C220.8536 (7)0.0792 (5)0.0250 (7)0.056 (2)
H22A0.85200.01820.00330.067*
C230.9201 (7)0.1409 (5)0.0010 (7)0.059 (2)
H23A0.96490.12100.03930.071*
C240.9221 (6)0.2322 (5)0.0284 (6)0.0427 (17)
H24A0.96620.27340.00780.051*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
La10.02440 (19)0.01671 (19)0.02177 (19)0.00019 (11)0.00959 (13)0.00025 (11)
La20.0265 (2)0.0186 (2)0.02394 (19)0.00009 (12)0.00989 (14)0.00050 (11)
O10.033 (2)0.039 (3)0.034 (2)0.000 (2)0.0058 (19)0.001 (2)
O20.039 (3)0.024 (2)0.049 (3)0.003 (2)0.009 (2)0.008 (2)
O30.035 (3)0.046 (3)0.083 (4)0.002 (2)0.015 (3)0.017 (3)
O40.047 (3)0.027 (3)0.079 (4)0.002 (2)0.016 (3)0.008 (2)
O50.051 (3)0.058 (3)0.035 (3)0.018 (3)0.021 (2)0.001 (2)
O60.047 (3)0.058 (3)0.036 (3)0.018 (3)0.014 (2)0.009 (2)
O70.038 (3)0.039 (3)0.041 (3)0.005 (2)0.015 (2)0.002 (2)
O80.041 (3)0.048 (3)0.031 (2)0.001 (2)0.0141 (19)0.003 (2)
O90.040 (2)0.039 (3)0.031 (2)0.007 (2)0.0132 (19)0.0029 (19)
O100.056 (3)0.029 (2)0.036 (3)0.008 (2)0.017 (2)0.0010 (19)
O110.057 (3)0.040 (3)0.043 (3)0.011 (2)0.027 (2)0.003 (2)
O120.060 (3)0.030 (3)0.061 (3)0.002 (2)0.027 (3)0.003 (2)
O130.068 (4)0.105 (5)0.035 (3)0.049 (4)0.006 (3)0.004 (3)
O140.046 (3)0.058 (3)0.039 (3)0.007 (2)0.024 (2)0.013 (2)
C10.038 (3)0.031 (3)0.027 (3)0.005 (3)0.008 (2)0.001 (2)
C20.034 (4)0.032 (4)0.047 (4)0.001 (3)0.008 (3)0.008 (3)
C30.035 (3)0.043 (4)0.036 (3)0.007 (3)0.013 (3)0.004 (3)
C40.025 (3)0.039 (4)0.030 (3)0.002 (3)0.004 (2)0.000 (3)
C50.025 (3)0.024 (3)0.031 (3)0.000 (2)0.008 (2)0.004 (2)
C60.049 (4)0.031 (3)0.034 (3)0.003 (3)0.016 (3)0.000 (3)
C70.033 (3)0.029 (4)0.057 (4)0.004 (3)0.005 (3)0.006 (3)
C80.032 (3)0.033 (4)0.046 (4)0.001 (3)0.012 (3)0.005 (3)
C90.034 (4)0.035 (4)0.077 (6)0.003 (3)0.009 (4)0.011 (4)
C100.055 (5)0.046 (5)0.149 (8)0.009 (4)0.029 (5)0.036 (5)
C110.060 (6)0.079 (6)0.160 (9)0.010 (5)0.034 (6)0.044 (6)
C120.051 (5)0.041 (4)0.127 (7)0.003 (4)0.029 (5)0.023 (5)
C130.037 (3)0.041 (4)0.032 (3)0.007 (3)0.017 (3)0.006 (3)
C140.033 (3)0.040 (4)0.032 (3)0.004 (3)0.012 (2)0.003 (3)
C150.031 (3)0.039 (4)0.028 (3)0.002 (3)0.011 (2)0.001 (3)
C160.052 (4)0.057 (5)0.029 (3)0.017 (4)0.012 (3)0.011 (3)
C170.046 (4)0.055 (5)0.045 (4)0.026 (4)0.023 (3)0.022 (4)
C180.046 (4)0.042 (4)0.045 (4)0.008 (3)0.019 (3)0.004 (3)
C190.036 (3)0.027 (3)0.034 (3)0.000 (3)0.011 (3)0.001 (3)
C200.044 (4)0.026 (3)0.034 (3)0.006 (3)0.017 (3)0.002 (3)
C210.043 (4)0.033 (4)0.050 (4)0.008 (3)0.022 (3)0.004 (3)
C220.073 (6)0.032 (4)0.078 (6)0.013 (4)0.049 (5)0.005 (4)
C230.081 (6)0.034 (4)0.083 (6)0.006 (4)0.061 (5)0.012 (4)
C240.044 (4)0.036 (4)0.055 (4)0.004 (3)0.027 (3)0.002 (3)
Geometric parameters (Å, º) top
La1—O12i2.291 (5)C1—C71.492 (9)
La1—O4ii2.310 (5)C2—C91.465 (10)
La1—O8iii2.338 (5)C3—C131.510 (9)
La1—O52.343 (5)C4—C151.500 (9)
La1—O12.396 (4)C5—C191.504 (9)
La1—O132.422 (5)C5—La2i3.056 (6)
La1—O92.545 (4)C6—C211.486 (10)
La2—O3ii2.266 (5)C7—C121.356 (11)
La2—O62.376 (5)C7—C81.383 (9)
La2—O22.402 (4)C8—C91.392 (10)
La2—O7iv2.403 (5)C8—H8A0.9300
La2—O112.405 (5)C9—C101.377 (12)
La2—O10ii2.471 (5)C10—C111.391 (14)
La2—O142.514 (5)C10—H10A0.9300
La2—O9ii2.897 (5)C11—C121.395 (14)
O1—C11.250 (8)C11—H11A0.9300
O2—C11.243 (8)C12—H12A0.9300
O3—C21.244 (9)C13—C141.382 (9)
O3—La2i2.266 (5)C13—C181.391 (10)
O4—C21.251 (8)C14—C151.418 (9)
O4—La1i2.310 (5)C14—H14C0.9300
O5—C31.263 (8)C15—C161.394 (10)
O6—C31.264 (8)C16—C171.373 (10)
O7—C41.265 (8)C16—H16A0.9300
O7—La2iv2.403 (5)C17—C181.426 (10)
O8—C41.276 (8)C17—H17A0.9300
O8—La1v2.338 (5)C18—H18A0.9300
O9—C51.276 (7)C19—C241.391 (9)
O9—La2i2.897 (5)C19—C201.395 (9)
O10—C51.269 (7)C20—C211.393 (9)
O10—La2i2.471 (5)C20—H20A0.9300
O11—C61.262 (8)C21—C221.400 (10)
O12—C61.258 (8)C22—C231.367 (10)
O12—La1ii2.291 (5)C22—H22A0.9300
O13—H13B0.8500C23—C241.379 (11)
O13—H13A0.8501C23—H23A0.9300
O14—H14A0.8500C24—H24A0.9300
O14—H14B0.8501
O12i—La1—O4ii178.4 (2)C7—C1—La2164.5 (5)
O12i—La1—O8iii91.26 (18)O3—C2—O4123.4 (7)
O4ii—La1—O8iii89.77 (18)O3—C2—C9116.3 (6)
O12i—La1—O588.85 (19)O4—C2—C9120.3 (7)
O4ii—La1—O589.6 (2)O5—C3—O6123.5 (6)
O8iii—La1—O5134.94 (17)O5—C3—C13118.4 (6)
O12i—La1—O189.71 (19)O6—C3—C13118.0 (6)
O4ii—La1—O190.01 (18)O7—C4—O8125.1 (6)
O8iii—La1—O1148.99 (15)O7—C4—C15118.1 (6)
O5—La1—O176.07 (17)O8—C4—C15116.8 (6)
O12i—La1—O1385.0 (2)O10—C5—O9121.9 (6)
O4ii—La1—O1394.3 (2)O10—C5—C19118.6 (5)
O8iii—La1—O1366.51 (17)O9—C5—C19119.5 (5)
O5—La1—O1368.62 (19)O10—C5—La2i51.4 (3)
O1—La1—O13144.36 (18)O9—C5—La2i70.7 (3)
O12i—La1—O982.32 (17)C19—C5—La2i169.2 (4)
O4ii—La1—O999.13 (19)O12—C6—O11124.5 (6)
O8iii—La1—O971.23 (15)O12—C6—C21117.0 (6)
O5—La1—O9152.80 (17)O11—C6—C21118.5 (6)
O1—La1—O978.20 (15)C12—C7—C8118.7 (7)
O13—La1—O9135.42 (17)C12—C7—C1120.0 (7)
O3ii—La2—O678.3 (2)C8—C7—C1121.4 (6)
O3ii—La2—O2119.00 (18)C7—C8—C9122.3 (7)
O6—La2—O284.73 (19)C7—C8—H8A118.9
O3ii—La2—O7iv142.19 (18)C9—C8—H8A118.9
O6—La2—O7iv135.92 (17)C10—C9—C8117.8 (7)
O2—La2—O7iv85.41 (16)C10—C9—C2120.8 (7)
O3ii—La2—O1177.4 (2)C8—C9—C2121.4 (7)
O6—La2—O11139.53 (17)C9—C10—C11121.0 (9)
O2—La2—O1179.43 (17)C9—C10—H10A119.5
O7iv—La2—O1179.77 (17)C11—C10—H10A119.5
O3ii—La2—O10ii89.1 (2)C10—C11—C12119.0 (10)
O6—La2—O10ii86.12 (17)C10—C11—H11A120.5
O2—La2—O10ii147.73 (16)C12—C11—H11A120.5
O7iv—La2—O10ii79.90 (17)C7—C12—C11121.2 (9)
O11—La2—O10ii125.15 (16)C7—C12—H12A119.4
O3ii—La2—O14145.5 (2)C11—C12—H12A119.4
O6—La2—O1470.65 (17)C14—C13—C18119.0 (6)
O2—La2—O1473.46 (17)C14—C13—C3119.4 (6)
O7iv—La2—O1465.34 (16)C18—C13—C3121.6 (6)
O11—La2—O14136.85 (18)C13—C14—C15121.3 (6)
O10ii—La2—O1474.30 (17)C13—C14—H14C119.4
O3ii—La2—O9ii77.81 (16)C15—C14—H14C119.4
O6—La2—O9ii128.00 (17)C16—C15—C14119.6 (6)
O2—La2—O9ii146.91 (15)C16—C15—C4120.3 (6)
O7iv—La2—O9ii67.88 (15)C14—C15—C4120.0 (6)
O11—La2—O9ii76.96 (15)C17—C16—C15119.3 (7)
O10ii—La2—O9ii48.19 (14)C17—C16—H16A120.3
O14—La2—O9ii109.79 (15)C15—C16—H16A120.3
C1—O1—La1154.9 (4)C16—C17—C18121.1 (7)
C1—O2—La2112.7 (4)C16—C17—H17A119.5
C2—O3—La2i158.2 (6)C18—C17—H17A119.5
C2—O4—La1i137.7 (5)C13—C18—C17119.7 (7)
C3—O5—La1150.0 (5)C13—C18—H18A120.1
C3—O6—La2149.2 (5)C17—C18—H18A120.1
C4—O7—La2iv135.1 (4)C24—C19—C20119.2 (6)
C4—O8—La1v134.3 (4)C24—C19—C5122.8 (6)
C5—O9—La1145.9 (4)C20—C19—C5118.1 (6)
C5—O9—La2i84.7 (3)C21—C20—C19120.0 (6)
La1—O9—La2i122.32 (17)C21—C20—H20A120.0
C5—O10—La2i105.0 (4)C19—C20—H20A120.0
C6—O11—La2141.0 (5)C20—C21—C22120.1 (6)
C6—O12—La1ii142.2 (5)C20—C21—C6119.2 (6)
La1—O13—H13B125.4C22—C21—C6120.7 (6)
La1—O13—H13A109.3C23—C22—C21119.1 (7)
H13B—O13—H13A125.2C23—C22—H22A120.4
La2—O14—H14A96.9C21—C22—H22A120.4
La2—O14—H14B134.0C22—C23—C24121.4 (7)
H14A—O14—H14B120.6C22—C23—H23A119.3
O2—C1—O1122.1 (6)C24—C23—H23A119.3
O2—C1—C7118.9 (6)C23—C24—C19120.2 (7)
O1—C1—C7119.0 (6)C23—C24—H24A119.9
O2—C1—La245.6 (3)C19—C24—H24A119.9
O1—C1—La276.5 (4)
Symmetry codes: (i) x+3/2, y+1/2, z+1/2; (ii) x+3/2, y1/2, z+1/2; (iii) x+1/2, y+1/2, z1/2; (iv) x+1, y, z+1; (v) x1/2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O13—H13A···O2vi0.852.272.814 (8)122
O13—H13B···O11vi0.852.202.976 (8)152
O14—H14B···O10v0.851.972.795 (8)162
O14—H14A···O7iv0.852.102.656 (8)122
Symmetry codes: (iv) x+1, y, z+1; (v) x1/2, y+1/2, z+1/2; (vi) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[La2(C8H4O4)3(H2O)2]
Mr806.19
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)13.3956 (12), 14.4877 (8), 13.5754 (11)
β (°) 103.998 (5)
V3)2556.4 (3)
Z4
Radiation typeMo Kα
µ (mm1)3.37
Crystal size (mm)0.20 × 0.15 × 0.10
Data collection
DiffractometerRigaku Mercury
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2007)
Tmin, Tmax0.717, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
19411, 5841, 5111
Rint0.042
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.139, 1.08
No. of reflections5841
No. of parameters361
No. of restraints18
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)2.72, 1.33

Computer programs: CrystalClear (Rigaku, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2004), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O13—H13A···O2i0.852.2682.814 (8)122.19
O13—H13B···O11i0.852.1992.976 (8)151.85
O14—H14B···O10ii0.851.9742.795 (8)162.09
O14—H14A···O7iii0.852.1042.656 (8)122.2
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x1/2, y+1/2, z+1/2; (iii) x+1, y, z+1.
 

Acknowledgements

This work was supported financially by the Young Talent Fund of Fujian Province (No. 2007 F3060).

References

First citationBrandenburg, K. (2004). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationCheng, J.-W., Zheng, S.-T., Ma, E. & Yang, G.-Y. (2007). Inorg. Chem. 46, 10534–10538.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationDorweiler, J. D., Nemykin, V. N., Ley, A. N., Pike, R. D. & Berry, S. M. (2009). Inorg. Chem. 48, 9365–9376.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMahata, P., Ramya, K. V. & Natarajan, S. (2007). Dalton Trans. pp. 4017–4026.  Web of Science CSD CrossRef Google Scholar
First citationMondal, K. C., Sengupta, O., Dutta, P., Seehra, M., Nayak, S. K. & Mukherjee, P. S. (2009). Inorg. Chim. Acta, 362, 1913–1917.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (2007). CrystalClear. Rigaku Corporation, Akishima, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhou, R.-Z., Cui, X.-B., Song, J.-F., Xu, X.-Y., Xu, J.-Q. & Wang, T.-G. (2008). J. Solid State Chem. 181, 2099–2107.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds