organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3,4-O-Iso­propyl­­idene-2-C-methyl-D-galactonolactone

aDepartment of Organic Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, England, and bDepartment of Chemical Crystallography, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, England
*Correspondence e-mail: sarah.jenkinson@chem.ox.ac.uk

(Received 5 January 2010; accepted 13 January 2010; online 20 January 2010)

X-ray crystallography unequivocally confirmed the stereochemistry of the 2-C-methyl group in the title mol­ecule, C10H16O6, in which the 1,5-lactone ring exists in a boat conformation. The use of D-galactose in the synthesis determined the absolute stereochemistry. The crystal exists as O—H⋯O hydrogen-bonded layers in the ab plane, with each mol­ecule acting as a donor and acceptor for two hydrogen bonds.

Related literature

For related literature on branched sugars, see: Booth et al. (2008[Booth, K. V., da Cruz, F. P., Hotchkiss, D. J., Jenkinson, S. F., Jones, N. A., Weymouth-Wilson, A. C., Clarkson, R., Heinz, T. & Fleet, G. W. J. (2008). Tetrahedron Asymmetry, 19, 2417-2424.], 2009[Booth, K. V., Jenkinson, S. F., Best, D., Fernandez Nieto, F., Estevez, R. J., Wormald, M. R., Weymouth-Wilson, A. C. & Fleet, G. W. J. (2009). Tetrahedron Lett. 50, 5088-5093.]); da Cruz et al. (2008[Cruz, F. P. da, Horne, G. & Fleet, G. W. J. (2008). Tetrahedron Lett. 49, 6812-6815.]); Hotchkiss et al. (2006[Hotchkiss, D. J., Jenkinson, S. F., Storer, R., Heinz, T. & Fleet, G. W. J. (2006). Tetrahedron Lett. 47, 315-318.], 2007[Hotchkiss, D. J., Soengas, R., Booth, K. V., Weymouth-Wilson, A. C., Eastwick-Field, V. & Fleet, G. W. J. (2007). Tetrahedron Lett. 48, 517-520.]); Jenkinson et al. (2007[Jenkinson, S. F., Jones, N. A., Moussa, A., Stewart, A. J., Heinz, T. & Fleet, G. W. J. (2007). Tetrahedron Lett. 48, 4441-4445.]); Jones et al. (2007[Jones, N. A., Jenkinson, S. F., Soengas, R., Fanefjord, M., Wormald, M. R., Dwek, R. A., Kiran, G. P., Devendar, R., Takata, G., Morimoto, K., Izumori, K. & Fleet, G. W. J. (2007). Tetrahedron Asymmetry, 18, 774-786.], 2008[Jones, N. A., Rao, D., Yoshihara, A., Gullapalli, P., Morimoto, K., Takata, G., Hunter, S. J., Wormald, M. R., Dwek, R. A., Izumori, K. & Fleet, G. W. J. (2008). Tetrahedron Asymmetry, 19, 1904-1918.]); Rao et al. (2008[Rao, D., Yoshihara, A., Gullapalli, P., Morimoto, K., Takata, G., da Cruz, F. P., Jenkinson, S. F., Wormald, M. R., Dwek, R. A., Fleet, G. W. J. & Izumori, K. (2008). Tetrahedron Lett. 49, 3316-3121.]). For the conformations of related 1,5-lactones, see: Baird et al. (1987[Baird, P. D., Dho, J. C., Fleet, G. W. J., Peach, J. M., Prout, K. & Smith, P. W. (1987). J. Chem. Soc., Perkin Trans. 1, pp. 1785-1791.]); Booth et al. (2007a[Booth, K. V., Watkin, D. J., Jenkinson, S. F. & Fleet, G. W. J. (2007a). Acta Cryst. E63, o1128-o1130.],b[Booth, K. V., Watkin, D. J., Jenkinson, S. F. & Fleet, G. W. J. (2007b). Acta Cryst. E63, o1759-o1760.]); Bruce et al. (1990[Bruce, I., Fleet, G. W. J., Girdhar, A., Haraldsson, M., Peach, J. M. & Watkin, D. J. (1990). Tetrahedron, 46, 19-32.]); Punzo et al. (2005[Punzo, F., Watkin, D. J., Jenkinson, S. F., da Cruz, F. P. & Fleet, G. W. J. (2005). Acta Cryst. E61, o511-o512.], 2006[Punzo, F., Watkin, D. J., Jenkinson, S. F., da Cruz, F. P. & Fleet, G. W. J. (2006). Acta Cryst. E62, o321-o323.]).

[Scheme 1]

Experimental

Crystal data
  • C10H16O6

  • Mr = 232.23

  • Monoclinic, P 21

  • a = 6.0553 (2) Å

  • b = 11.3612 (4) Å

  • c = 8.2946 (3) Å

  • β = 105.0854 (14)°

  • V = 550.97 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 150 K

  • 0.50 × 0.40 × 0.10 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) Tmin = 0.91, Tmax = 0.99

  • 5558 measured reflections

  • 1314 independent reflections

  • 1229 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.068

  • S = 0.98

  • 1313 reflections

  • 145 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O8—H81⋯O1i 0.81 1.99 2.771 (3) 162
O1—H11⋯O6ii 0.86 1.99 2.737 (3) 145
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+1]; (ii) x-1, y, z.

Data collection: COLLECT (Nonius, 2001[Nonius (2001). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003[Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.]); molecular graphics: CAMERON (Watkin et al., 1996[Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.]); software used to prepare material for publication: CRYSTALS.

Supporting information


Comment top

2-C-Methyl branched sugars constitute a class of rare sugars with chemotherapeutic potential (Rao et al., 2008; Jones et al., 2008; Booth et al., 2008) as well as being chirons for the enantiospecfic synthesis of complex targets (Hotchkiss et al., 2006; Hotchkiss et al., 2007; da Cruz et al., 2008; Booth et al., 2009) including 2'-C-methyl nucleosides (Jenkinson et al., 2007). In a project to investigate the physical and biological properties of 2-C-methyl-D-galactose 4, D-galactose 1 [the use of which determines the absolute stereochemistry of the product] was converted by a number of steps to the lactols 2 (Fig. 1) (Jones et al., 2007). The reaction of 2 with sodium cyanide in water gave a chain extension to afford a single isolated crystalline product 3 (Fig. 2). 3,4-O-Isopropylidene-1,5-lactones, such as 3, invariably crystallize in a boat conformation (Baird et al., 1987; Bruce et al., 1990; Punzo et al., 2005); the diastereoselectivity may be rationalized by the formation of the galactono-lactone 3 with less steric congestion (Punzo et al., 2006; Booth et al., 2007a; Booth et al., 2007b) than in the epimeric talono-lactone. The structure of 3 is confirmed by the X-ray crystallographic analysis reported in this paper. The lactone 3 is an intermediate for the unambiguous synthesis of 2-C-methyl-D-galactose 4.

The 6-membered lactone ring adopts a boat conformation with the hydroxy group rather than the methyl group in the flagpole position (Fig. 2). The title compound exists as O—H···O hydrogen bonded layers of molecules in the ab-plane (Fig. 3, Fig. 4). Each molecule acts as a donor and acceptor for 2 hydrogen bonds. Only classical hydrogen bonds have been considered.

Related literature top

For related literature on branched sugars, see: Booth et al. (2008, 2009); da Cruz et al. (2008); Hotchkiss et al. (2006, 2007); Jenkinson et al. (2007); Jones et al. (2007, 2008); Rao et al. (2008). For the conformations of related 1,5-lactones, see: Baird et al. (1987); Booth et al. (2007a,b); Bruce et al. (1990); Punzo et al. (2005, 2006).

Experimental top

The title compound was recrystallized by vapour diffusion from a mixture of ethyl acetate and cyclohexane: m.p. 423–429 K; [α]D25 +102.7 (c, 0.995 in MeOH).

Refinement top

In the absence of significant anomalous scattering, Friedel pairs were merged and the absolute configuration was assigned from the starting material.

One outlying reflection was omitted for the refinement as it was thought to be partially occluded by the beam stop.

The H atoms were all located in a difference map, but those attached to carbon atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H in the range 0.93–0.98, O—H = 0.82 Å) and Uiso(H) (in the range 1.2–1.5 times Ueq of the parent atom), after which the positions were refined with riding constraints.

Structure description top

2-C-Methyl branched sugars constitute a class of rare sugars with chemotherapeutic potential (Rao et al., 2008; Jones et al., 2008; Booth et al., 2008) as well as being chirons for the enantiospecfic synthesis of complex targets (Hotchkiss et al., 2006; Hotchkiss et al., 2007; da Cruz et al., 2008; Booth et al., 2009) including 2'-C-methyl nucleosides (Jenkinson et al., 2007). In a project to investigate the physical and biological properties of 2-C-methyl-D-galactose 4, D-galactose 1 [the use of which determines the absolute stereochemistry of the product] was converted by a number of steps to the lactols 2 (Fig. 1) (Jones et al., 2007). The reaction of 2 with sodium cyanide in water gave a chain extension to afford a single isolated crystalline product 3 (Fig. 2). 3,4-O-Isopropylidene-1,5-lactones, such as 3, invariably crystallize in a boat conformation (Baird et al., 1987; Bruce et al., 1990; Punzo et al., 2005); the diastereoselectivity may be rationalized by the formation of the galactono-lactone 3 with less steric congestion (Punzo et al., 2006; Booth et al., 2007a; Booth et al., 2007b) than in the epimeric talono-lactone. The structure of 3 is confirmed by the X-ray crystallographic analysis reported in this paper. The lactone 3 is an intermediate for the unambiguous synthesis of 2-C-methyl-D-galactose 4.

The 6-membered lactone ring adopts a boat conformation with the hydroxy group rather than the methyl group in the flagpole position (Fig. 2). The title compound exists as O—H···O hydrogen bonded layers of molecules in the ab-plane (Fig. 3, Fig. 4). Each molecule acts as a donor and acceptor for 2 hydrogen bonds. Only classical hydrogen bonds have been considered.

For related literature on branched sugars, see: Booth et al. (2008, 2009); da Cruz et al. (2008); Hotchkiss et al. (2006, 2007); Jenkinson et al. (2007); Jones et al. (2007, 2008); Rao et al. (2008). For the conformations of related 1,5-lactones, see: Baird et al. (1987); Booth et al. (2007a,b); Bruce et al. (1990); Punzo et al. (2005, 2006).

Computing details top

Data collection: COLLECT (Nonius, 2001); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS (Betteridge et al., 2003).

Figures top
[Figure 1] Fig. 1. Synthetic Scheme
[Figure 2] Fig. 2. The title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitary radius.
[Figure 3] Fig. 3. Packing diagram of the title compound projected along the a-axis.Hydrogen bonds are shown by dotted lines.
[Figure 4] Fig. 4. Packing diagram of the title compound projected along the c-axis.Hydrogen bonds are shown by dotted lines.
3,4-O-Isopropylidene-2-C-methyl-D-galactonolactone top
Crystal data top
C10H16O6F(000) = 248
Mr = 232.23Dx = 1.400 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 1236 reflections
a = 6.0553 (2) Åθ = 5–27°
b = 11.3612 (4) ŵ = 0.12 mm1
c = 8.2946 (3) ÅT = 150 K
β = 105.0854 (14)°Plate, colourless
V = 550.97 (3) Å30.50 × 0.40 × 0.10 mm
Z = 2
Data collection top
Nonius KappaCCD
diffractometer
1229 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ω scansθmax = 27.5°, θmin = 5.2°
Absorption correction: multi-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
h = 77
Tmin = 0.91, Tmax = 0.99k = 1414
5558 measured reflectionsl = 1010
1314 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.029H-atom parameters constrained
wR(F2) = 0.068 Method = Modified Sheldrick w = 1/[σ2(F2) + (0.03P)2 + 0.19P],
where P = [max(Fo2,0) + 2Fc2]/3
S = 0.98(Δ/σ)max = 0.000170
1313 reflectionsΔρmax = 0.22 e Å3
145 parametersΔρmin = 0.18 e Å3
1 restraint
Crystal data top
C10H16O6V = 550.97 (3) Å3
Mr = 232.23Z = 2
Monoclinic, P21Mo Kα radiation
a = 6.0553 (2) ŵ = 0.12 mm1
b = 11.3612 (4) ÅT = 150 K
c = 8.2946 (3) Å0.50 × 0.40 × 0.10 mm
β = 105.0854 (14)°
Data collection top
Nonius KappaCCD
diffractometer
1314 independent reflections
Absorption correction: multi-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
1229 reflections with I > 2σ(I)
Tmin = 0.91, Tmax = 0.99Rint = 0.028
5558 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0291 restraint
wR(F2) = 0.068H-atom parameters constrained
S = 0.98Δρmax = 0.22 e Å3
1313 reflectionsΔρmin = 0.18 e Å3
145 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.1833 (2)0.44365 (15)0.34373 (17)0.0239
C20.2057 (3)0.50024 (18)0.1948 (2)0.0213
C30.3440 (3)0.61260 (18)0.2310 (2)0.0182
O40.5789 (2)0.57762 (14)0.31079 (16)0.0207
C50.7424 (3)0.65953 (18)0.3392 (2)0.0190
O60.9366 (2)0.63080 (16)0.41067 (17)0.0258
C70.6739 (3)0.78590 (18)0.2822 (2)0.0185
O80.5348 (2)0.82928 (15)0.38453 (17)0.0224
C90.8833 (3)0.86206 (19)0.2930 (3)0.0236
C100.5160 (3)0.78355 (18)0.1047 (2)0.0193
C110.3342 (3)0.68457 (18)0.0755 (2)0.0190
O120.3897 (2)0.61111 (14)0.04874 (16)0.0232
C130.5062 (3)0.6857 (2)0.1390 (2)0.0225
O140.6490 (2)0.75665 (14)0.00941 (15)0.0220
C150.3374 (4)0.7604 (2)0.2640 (2)0.0300
C160.6590 (4)0.6125 (2)0.2164 (3)0.0307
H210.05140.52210.12800.0253*
H220.28310.44570.13270.0254*
H310.28760.66350.30960.0192*
H910.83390.94200.26010.0333*
H930.97910.86650.40430.0339*
H920.97110.83230.21820.0336*
H1010.44450.86260.07840.0218*
H1110.17510.71720.03540.0205*
H1520.42590.80920.32370.0421*
H1510.24640.81160.21130.0424*
H1530.24120.70870.34400.0423*
H1610.74450.66760.26930.0459*
H1630.75960.56800.13320.0464*
H1620.56540.56450.30030.0462*
H810.62060.84780.47290.0319*
H110.09020.47900.39080.0358*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0268 (7)0.0221 (7)0.0249 (7)0.0017 (6)0.0104 (6)0.0072 (6)
C20.0241 (9)0.0199 (9)0.0194 (9)0.0019 (8)0.0050 (7)0.0033 (7)
C30.0163 (8)0.0196 (9)0.0185 (8)0.0022 (7)0.0043 (7)0.0024 (7)
O40.0184 (6)0.0193 (6)0.0232 (7)0.0023 (5)0.0035 (5)0.0035 (5)
C50.0203 (9)0.0226 (10)0.0148 (8)0.0012 (7)0.0063 (7)0.0010 (7)
O60.0196 (6)0.0291 (7)0.0272 (7)0.0038 (6)0.0031 (5)0.0015 (6)
C70.0194 (8)0.0196 (9)0.0170 (8)0.0014 (7)0.0057 (7)0.0032 (7)
O80.0222 (6)0.0250 (7)0.0207 (6)0.0006 (6)0.0068 (5)0.0069 (5)
C90.0227 (9)0.0232 (10)0.0249 (10)0.0026 (8)0.0063 (8)0.0035 (8)
C100.0235 (9)0.0176 (9)0.0171 (8)0.0001 (8)0.0058 (7)0.0002 (7)
C110.0214 (9)0.0181 (9)0.0176 (8)0.0007 (7)0.0051 (7)0.0003 (7)
O120.0324 (7)0.0206 (7)0.0185 (6)0.0065 (6)0.0100 (6)0.0021 (5)
C130.0308 (10)0.0228 (9)0.0144 (8)0.0088 (8)0.0070 (7)0.0017 (7)
O140.0252 (7)0.0249 (7)0.0173 (6)0.0066 (6)0.0082 (5)0.0036 (5)
C150.0354 (11)0.0336 (12)0.0187 (9)0.0047 (9)0.0028 (8)0.0035 (8)
C160.0400 (11)0.0315 (11)0.0239 (10)0.0037 (9)0.0140 (9)0.0059 (9)
Geometric parameters (Å, º) top
O1—C21.430 (2)C9—H920.976
O1—H110.864C10—C111.548 (3)
C2—C31.513 (3)C10—O141.426 (2)
C2—H210.985C10—H1010.996
C2—H220.997C11—O121.432 (2)
C3—O41.459 (2)C11—H1111.005
C3—C111.516 (3)O12—C131.432 (2)
C3—H310.995C13—O141.439 (2)
O4—C51.334 (2)C13—C151.513 (3)
C5—O61.216 (2)C13—C161.506 (3)
C5—C71.534 (3)C15—H1520.990
C7—O81.430 (2)C15—H1510.979
C7—C91.519 (3)C15—H1530.961
C7—C101.533 (3)C16—H1610.985
O8—H810.808C16—H1630.940
C9—H910.973C16—H1620.947
C9—H930.956
C2—O1—H11113.6C7—C10—O14108.81 (14)
O1—C2—C3112.29 (15)C11—C10—O14103.99 (14)
O1—C2—H21108.0C7—C10—H101108.8
C3—C2—H21107.1C11—C10—H101111.7
O1—C2—H22109.3O14—C10—H101109.7
C3—C2—H22108.4C10—C11—C3112.96 (15)
H21—C2—H22111.8C10—C11—O12104.22 (14)
C2—C3—O4106.51 (15)C3—C11—O12109.48 (15)
C2—C3—C11112.89 (15)C10—C11—H111111.4
O4—C3—C11110.51 (14)C3—C11—H111107.6
C2—C3—H31110.7O12—C11—H111111.2
O4—C3—H31108.7C11—O12—C13105.74 (14)
C11—C3—H31107.5O12—C13—O14102.88 (13)
C3—O4—C5118.76 (15)O12—C13—C15110.69 (16)
O4—C5—O6118.55 (17)O14—C13—C15111.39 (17)
O4—C5—C7118.00 (15)O12—C13—C16109.71 (17)
O6—C5—C7123.44 (17)O14—C13—C16108.15 (17)
C5—C7—O8107.07 (14)C15—C13—C16113.47 (16)
C5—C7—C9111.12 (15)C13—O14—C10106.42 (14)
O8—C7—C9112.38 (15)C13—C15—H152107.5
C5—C7—C10109.30 (14)C13—C15—H151112.7
O8—C7—C10105.05 (14)H152—C15—H151109.4
C9—C7—C10111.64 (15)C13—C15—H153108.1
C7—O8—H81106.8H152—C15—H153107.9
C7—C9—H91108.9H151—C15—H153111.2
C7—C9—H93112.0C13—C16—H161106.9
H91—C9—H93106.6C13—C16—H163109.6
C7—C9—H92110.5H161—C16—H163110.7
H91—C9—H92108.9C13—C16—H162108.3
H93—C9—H92109.8H161—C16—H162108.8
C7—C10—C11113.78 (14)H163—C16—H162112.3
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H22···O14i1.002.463.391 (3)155
C3—H31···O6ii1.002.513.204 (3)127
C15—H153···O6iii0.962.523.454 (3)163
O8—H81···O1iv0.811.992.771 (3)162
O1—H11···O6ii0.861.992.737 (3)145
Symmetry codes: (i) x+1, y1/2, z; (ii) x1, y, z; (iii) x1, y, z1; (iv) x+1, y+1/2, z+1.

Experimental details

Crystal data
Chemical formulaC10H16O6
Mr232.23
Crystal system, space groupMonoclinic, P21
Temperature (K)150
a, b, c (Å)6.0553 (2), 11.3612 (4), 8.2946 (3)
β (°) 105.0854 (14)
V3)550.97 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.50 × 0.40 × 0.10
Data collection
DiffractometerNonius KappaCCD
Absorption correctionMulti-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
Tmin, Tmax0.91, 0.99
No. of measured, independent and
observed [I > 2σ(I)] reflections
5558, 1314, 1229
Rint0.028
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.068, 0.98
No. of reflections1313
No. of parameters145
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.18

Computer programs: COLLECT (Nonius, 2001), DENZO/SCALEPACK (Otwinowski & Minor, 1997), SIR92 (Altomare et al., 1994), CRYSTALS (Betteridge et al., 2003), CAMERON (Watkin et al., 1996).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O8—H81···O1i0.811.992.771 (3)162
O1—H11···O6ii0.861.992.737 (3)145
Symmetry codes: (i) x+1, y+1/2, z+1; (ii) x1, y, z.
 

Acknowledgements

We would like to thank the Chemical Crystallography department and ALT at Oxford University for use of the difractometers.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBaird, P. D., Dho, J. C., Fleet, G. W. J., Peach, J. M., Prout, K. & Smith, P. W. (1987). J. Chem. Soc., Perkin Trans. 1, pp. 1785–1791.  Google Scholar
First citationBetteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBooth, K. V., da Cruz, F. P., Hotchkiss, D. J., Jenkinson, S. F., Jones, N. A., Weymouth-Wilson, A. C., Clarkson, R., Heinz, T. & Fleet, G. W. J. (2008). Tetrahedron Asymmetry, 19, 2417–2424.  Web of Science CrossRef CAS Google Scholar
First citationBooth, K. V., Jenkinson, S. F., Best, D., Fernandez Nieto, F., Estevez, R. J., Wormald, M. R., Weymouth-Wilson, A. C. & Fleet, G. W. J. (2009). Tetrahedron Lett. 50, 5088–5093.  Google Scholar
First citationBooth, K. V., Watkin, D. J., Jenkinson, S. F. & Fleet, G. W. J. (2007a). Acta Cryst. E63, o1128–o1130.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBooth, K. V., Watkin, D. J., Jenkinson, S. F. & Fleet, G. W. J. (2007b). Acta Cryst. E63, o1759–o1760.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruce, I., Fleet, G. W. J., Girdhar, A., Haraldsson, M., Peach, J. M. & Watkin, D. J. (1990). Tetrahedron, 46, 19–32.  CSD CrossRef CAS Web of Science Google Scholar
First citationCruz, F. P. da, Horne, G. & Fleet, G. W. J. (2008). Tetrahedron Lett. 49, 6812–6815.  Google Scholar
First citationHotchkiss, D. J., Jenkinson, S. F., Storer, R., Heinz, T. & Fleet, G. W. J. (2006). Tetrahedron Lett. 47, 315–318.  Web of Science CrossRef CAS Google Scholar
First citationHotchkiss, D. J., Soengas, R., Booth, K. V., Weymouth-Wilson, A. C., Eastwick-Field, V. & Fleet, G. W. J. (2007). Tetrahedron Lett. 48, 517–520.  Web of Science CrossRef CAS Google Scholar
First citationJenkinson, S. F., Jones, N. A., Moussa, A., Stewart, A. J., Heinz, T. & Fleet, G. W. J. (2007). Tetrahedron Lett. 48, 4441–4445.  Web of Science CrossRef CAS Google Scholar
First citationJones, N. A., Jenkinson, S. F., Soengas, R., Fanefjord, M., Wormald, M. R., Dwek, R. A., Kiran, G. P., Devendar, R., Takata, G., Morimoto, K., Izumori, K. & Fleet, G. W. J. (2007). Tetrahedron Asymmetry, 18, 774–786.  Web of Science CrossRef CAS Google Scholar
First citationJones, N. A., Rao, D., Yoshihara, A., Gullapalli, P., Morimoto, K., Takata, G., Hunter, S. J., Wormald, M. R., Dwek, R. A., Izumori, K. & Fleet, G. W. J. (2008). Tetrahedron Asymmetry, 19, 1904–1918.  Web of Science CrossRef CAS Google Scholar
First citationNonius (2001). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPunzo, F., Watkin, D. J., Jenkinson, S. F., da Cruz, F. P. & Fleet, G. W. J. (2005). Acta Cryst. E61, o511–o512.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPunzo, F., Watkin, D. J., Jenkinson, S. F., da Cruz, F. P. & Fleet, G. W. J. (2006). Acta Cryst. E62, o321–o323.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRao, D., Yoshihara, A., Gullapalli, P., Morimoto, K., Takata, G., da Cruz, F. P., Jenkinson, S. F., Wormald, M. R., Dwek, R. A., Fleet, G. W. J. & Izumori, K. (2008). Tetrahedron Lett. 49, 3316–3121.  Web of Science CrossRef CAS Google Scholar
First citationWatkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds