organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(1-Carb­oxy­methyl-1,4-anhydro-2,3-O-iso­propyl­­idene-α-D-erythro­furanos­yl)thymine

aDepartment of Organic Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, England, bIdenix Pharmaceuticals, Inc., 60 Hampshire Street, Cambridge, MA 02139, USA, and cDepartment of Chemical Crystallography, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, England
*Correspondence e-mail: sarah.jenkinson@chem.ox.ac.uk

(Received 11 January 2010; accepted 13 January 2010; online 20 January 2010)

X-Ray crystallography unequivocally determined the stereochemistry of the thymine base in the title compound, C14H18N2O7. The absolute stereochemistry was determined from the use of D-ribose as the starting material. There are two independent mol­ecules in the asymmetric unit (Z′ = 2) which exist as N—H⋯O hydrogen-bonded pairs in the crystal structure.

Related literature

The title compound was obtained during studies on the synthesis of the 5-carbon analogue of psicofuran­ine, a naturally occurring nucleoside. For related literature on psicofuran­ine, see: Schroeder & Hoeksema (1959[Schroeder, W. & Hoeksema, H. (1959). J. Am. Chem. Soc. 81, 1767-1768.]); Smith et al. (1973[Smith, C. G., Poutsiaka, J. W. & Schreiber, E. C. (1973). J. Int. Med. Res. 1, 489-503.]); Garrett (1960[Garrett, E. R. (1960). J. Am. Chem. Soc. 82, 827-832.]). For anomeric bromination see: Probert et al. (2005[Probert, M. R., Watkin, D. J., Stewart, A. J., Storer, R. & Fleet, G. W. J. (2005). Acta Cryst. E61, o1718-o1720.]); Smith et al. (1999[Smith, M. D., Long, D. D., Martín, A., Campbell, N., Blériot, Y. & Fleet, G. W. J. (1999). Synlett, 7, 1151-1154.]). For the extiction correction, see: Larson (1970[Larson, A. C. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 291-294. Copenhagen: Munksgaard.]).

[Scheme 1]

Experimental

Crystal data
  • C14H18N2O7

  • Mr = 326.31

  • Monoclinic, P 21

  • a = 7.8937 (5) Å

  • b = 13.3471 (10) Å

  • c = 14.9208 (10) Å

  • β = 103.565 (4)°

  • V = 1528.17 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 150 K

  • 0.40 × 0.20 × 0.03 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) Tmin = 0.83, Tmax = 1.00

  • 9120 measured reflections

  • 3090 independent reflections

  • 2453 reflections with I > 2σ(I)

  • Rint = 0.065

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.114

  • S = 0.95

  • 3090 reflections

  • 416 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N26—H261⋯O1 0.88 1.93 2.791 (6) 164
N3—H31⋯O24 0.88 2.01 2.863 (6) 165

Data collection: COLLECT (Nonius, 2001[Nonius (2001). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003[Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.]); molecular graphics: CAMERON (Watkin et al., 1996[Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.]); software used to prepare material for publication: CRYSTALS.

Supporting information


Comment top

Nucleosides are a powerful class of anti-viral and anti-bacterial agents. Psicofuranine 1 (Fig. 1) is a naturally occurring nucleoside with a branch at the anomeric position of the sugar (Schroeder & Hoeksema, 1959). It has potent anti-bacterial and anti-tumour activity but is cardiotoxic in man (Smith et al., 1973). Psicofuranine is also unstable in acidic and basic conditions with the N-glycosidic bond readily undergoing hydrolytic cleavage (Garrett, 1960). During studies on the synthesis of the 5-carbon analogue of psicofuranine 2 the ester 4 was synthesized. Anomeric radical bromination (Smith et al., 1999) gave rise to a single isolable bromide 5 (Probert et al., 2005) which on displacement with silylated thymine gave a single nucleoside product. The stereochemistry at the anomeric position of the sugar was firmly established by X-ray crystallography and the structure was confirmed as 6 in which the thymine is in the α rather than the desired β position.

There are two crystallographically distinct molecules in the asymmetric unit which are related by a pseudo 2-fold rotation axis (Fig 2). When the two molecules are mapped they show good overlap (Fig. 3) with RMS deviations of 0.1055 on the positions, 0.082 for the bonds and 3.8892 for the torsion angles. These two molecules form hydrogen bonded pairs in the crystal structure (Fig. 4, Fig. 5). In both cases the central nitrogen (N3, N26) between the two carbonyls of the thymine acts as the donor but hydrogen bonds are formed to different carbonyls of the two thymine rings. The absolute stereochemistry was determined from the use of D-ribose as the starting material. Only classical hydrogen bonding was considered.

Related literature top

The title compound was obtained during studies on the synthesis of the

5-carbon analogue of psicofuranine, a naturally occurring nucleoside. For related literature on psicofuranine, see: Schroeder & Hoeksema (1959); Smith et al. (1973); Garrett (1960). For anomeric bromination see: Probert et al. (2005); Smith et al. (1999). For the extiction correction, see:, see: Larson (1970).

Experimental top

The title compound was recrystallized by diffusion from a mixture of methanol and acetone: m.p. 457–458 K; [α]D25 -235.2 (c, 0.84 in CHCl3).

Refinement top

In the absence of significant anomalous scattering, Friedel pairs were merged and the absolute configuration was assigned from the use of D-ribose as the starting material.

The H atoms were all located in a difference map, but those attached to carbon atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H in the range 0.93–0.98, N—H in the range 0.86–0.89 N—H to 0.86 O—H = 0.82 Å) and Uiso(H) (in the range 1.2–1.5 times Ueq of the parent atom), after which the positions were refined with riding constraints.

Structure description top

Nucleosides are a powerful class of anti-viral and anti-bacterial agents. Psicofuranine 1 (Fig. 1) is a naturally occurring nucleoside with a branch at the anomeric position of the sugar (Schroeder & Hoeksema, 1959). It has potent anti-bacterial and anti-tumour activity but is cardiotoxic in man (Smith et al., 1973). Psicofuranine is also unstable in acidic and basic conditions with the N-glycosidic bond readily undergoing hydrolytic cleavage (Garrett, 1960). During studies on the synthesis of the 5-carbon analogue of psicofuranine 2 the ester 4 was synthesized. Anomeric radical bromination (Smith et al., 1999) gave rise to a single isolable bromide 5 (Probert et al., 2005) which on displacement with silylated thymine gave a single nucleoside product. The stereochemistry at the anomeric position of the sugar was firmly established by X-ray crystallography and the structure was confirmed as 6 in which the thymine is in the α rather than the desired β position.

There are two crystallographically distinct molecules in the asymmetric unit which are related by a pseudo 2-fold rotation axis (Fig 2). When the two molecules are mapped they show good overlap (Fig. 3) with RMS deviations of 0.1055 on the positions, 0.082 for the bonds and 3.8892 for the torsion angles. These two molecules form hydrogen bonded pairs in the crystal structure (Fig. 4, Fig. 5). In both cases the central nitrogen (N3, N26) between the two carbonyls of the thymine acts as the donor but hydrogen bonds are formed to different carbonyls of the two thymine rings. The absolute stereochemistry was determined from the use of D-ribose as the starting material. Only classical hydrogen bonding was considered.

The title compound was obtained during studies on the synthesis of the

5-carbon analogue of psicofuranine, a naturally occurring nucleoside. For related literature on psicofuranine, see: Schroeder & Hoeksema (1959); Smith et al. (1973); Garrett (1960). For anomeric bromination see: Probert et al. (2005); Smith et al. (1999). For the extiction correction, see:, see: Larson (1970).

Computing details top

Data collection: COLLECT (Nonius, 2001); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS (Betteridge et al., 2003).

Figures top
[Figure 1] Fig. 1. Synthetic Scheme
[Figure 2] Fig. 2. The asymmetric unit of the title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitary radius.
[Figure 3] Fig. 3. Overlay of the two molecules in the asymmetric unit.
[Figure 4] Fig. 4. Hydrogen bonded dimer repeating unit. Hydrogen bonds are shown by dotted lines.
[Figure 5] Fig. 5. Packing diagram projected along the a-axis. Hydrogen bonds are shown by dotted lines.
1-(1-Carboxymethyl-1,4-anhydro-2,3-O-isopropylidene-α-D- erythrofuranosyl)thymine top
Crystal data top
C14H18N2O7F(000) = 688
Mr = 326.31Dx = 1.418 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 2763 reflections
a = 7.8937 (5) Åθ = 5–26°
b = 13.3471 (10) ŵ = 0.12 mm1
c = 14.9208 (10) ÅT = 150 K
β = 103.565 (4)°Plate, colourless
V = 1528.17 (18) Å30.40 × 0.20 × 0.03 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
2453 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.065
ω scansθmax = 26.1°, θmin = 5.2°
Absorption correction: multi-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
h = 99
Tmin = 0.83, Tmax = 1.00k = 1416
9120 measured reflectionsl = 1818
3090 independent reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.047 Method = Modified Sheldrick w = 1/[σ2(F2) + (0.04P)2 + 0.5P],
where P = (max(Fo2,0) + 2Fc2)/3
wR(F2) = 0.114(Δ/σ)max = 0.000161
S = 0.95Δρmax = 0.34 e Å3
3090 reflectionsΔρmin = 0.31 e Å3
416 parametersExtinction correction: Larson (1970), Equation 22
1 restraintExtinction coefficient: 590 (70)
Primary atom site location: structure-invariant direct methods
Crystal data top
C14H18N2O7V = 1528.17 (18) Å3
Mr = 326.31Z = 4
Monoclinic, P21Mo Kα radiation
a = 7.8937 (5) ŵ = 0.12 mm1
b = 13.3471 (10) ÅT = 150 K
c = 14.9208 (10) Å0.40 × 0.20 × 0.03 mm
β = 103.565 (4)°
Data collection top
Nonius KappaCCD
diffractometer
3090 independent reflections
Absorption correction: multi-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
2453 reflections with I > 2σ(I)
Tmin = 0.83, Tmax = 1.00Rint = 0.065
9120 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0471 restraint
wR(F2) = 0.114H-atom parameters constrained
S = 0.95Δρmax = 0.34 e Å3
3090 reflectionsΔρmin = 0.31 e Å3
416 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.2931 (4)0.3816 (2)0.81712 (19)0.0363
C20.3274 (5)0.3347 (3)0.8903 (3)0.0308
N30.3044 (5)0.3728 (3)0.9715 (2)0.0346
C40.3343 (6)0.3220 (3)1.0559 (3)0.0348
O50.3097 (4)0.3655 (2)1.1245 (2)0.0414
C60.3964 (5)0.2203 (3)1.0536 (3)0.0336
C70.4220 (5)0.1836 (3)0.9739 (3)0.0321
N80.3912 (4)0.2388 (2)0.8940 (2)0.0290
C90.4110 (5)0.1982 (3)0.8058 (3)0.0292
O100.5057 (4)0.10739 (19)0.82495 (18)0.0320
C110.4357 (5)0.0365 (3)0.7525 (3)0.0348
C120.2451 (5)0.0597 (3)0.7235 (3)0.0343
C130.2338 (5)0.1728 (3)0.7383 (3)0.0320
O140.0903 (4)0.1860 (2)0.7798 (2)0.0374
C150.0163 (5)0.0881 (3)0.7891 (3)0.0356
O160.1544 (4)0.0203 (2)0.7876 (2)0.0362
C170.1363 (6)0.0703 (3)0.7081 (3)0.0455
C180.0325 (6)0.0826 (4)0.8799 (3)0.0469
C190.5238 (5)0.2679 (3)0.7618 (3)0.0324
O200.5064 (4)0.2774 (2)0.6798 (2)0.0417
O210.6543 (4)0.3076 (2)0.8269 (2)0.0380
C220.7785 (6)0.3686 (4)0.7933 (3)0.0443
C230.4312 (7)0.1600 (4)1.1418 (3)0.0465
O240.2166 (4)0.5799 (2)0.93916 (19)0.0374
C250.1273 (5)0.6136 (3)0.8657 (3)0.0313
N260.0825 (5)0.5521 (2)0.7891 (2)0.0323
C270.0261 (5)0.5758 (3)0.7053 (3)0.0310
O280.0626 (4)0.5168 (2)0.64081 (19)0.0375
N290.0943 (5)0.6715 (2)0.6997 (2)0.0306
C300.0454 (5)0.7396 (3)0.7711 (3)0.0326
C310.0618 (5)0.7156 (3)0.8524 (3)0.0305
C320.1154 (7)0.7889 (3)0.9308 (3)0.0461
C330.2093 (5)0.6978 (3)0.6101 (3)0.0305
O340.2864 (4)0.7906 (2)0.62183 (18)0.0339
C350.3007 (6)0.8493 (3)0.5385 (3)0.0351
C360.1471 (5)0.8204 (3)0.5013 (3)0.0333
C370.1111 (5)0.7103 (3)0.5318 (3)0.0339
O380.0732 (4)0.7037 (2)0.5655 (2)0.0364
C390.1460 (6)0.7998 (3)0.5517 (3)0.0354
O400.0075 (4)0.8694 (2)0.5505 (2)0.0368
C410.2020 (6)0.8002 (4)0.4618 (3)0.0415
C420.2914 (6)0.8224 (4)0.6342 (3)0.0473
C430.3599 (6)0.6221 (3)0.5830 (3)0.0347
O440.4208 (4)0.5954 (2)0.65563 (19)0.0351
C450.5767 (6)0.5327 (3)0.6364 (3)0.0430
O460.4246 (4)0.5982 (2)0.5041 (2)0.0448
H710.46240.11810.97220.0371*
H1110.45130.03160.77640.0408*
H1120.49500.04480.70260.0412*
H1210.19120.03720.65950.0412*
H1310.21630.21110.68010.0380*
H1720.19030.00600.71680.0643*
H1730.09630.07020.65140.0642*
H1710.22320.12350.70660.0639*
H1810.07800.01610.88710.0748*
H1830.07040.09510.92910.0752*
H1820.12130.13390.88090.0750*
H2220.85690.39990.84550.0703*
H2210.84440.32870.75980.0705*
H2230.71830.42100.75280.0699*
H2320.46440.09211.12920.0681*
H2330.32760.15831.16720.0683*
H2310.52920.19001.18630.0683*
H3010.09220.80510.76270.0356*
H3230.06890.85500.91140.0654*
H3220.24250.79180.94900.0654*
H3210.06970.76710.98300.0652*
H3510.40910.83240.49360.0382*
H3520.29920.92120.55380.0381*
H3610.16740.82830.43350.0381*
H3710.15350.66320.48070.0422*
H4120.24480.86680.45220.0641*
H4110.29340.74990.46460.0643*
H4130.10260.78360.41270.0639*
H4210.34810.88460.62560.0668*
H4220.37380.76730.64280.0670*
H4230.24210.82760.68790.0672*
H4530.61760.52380.69290.0613*
H4520.54960.46740.61410.0609*
H4510.66730.56540.58970.0615*
H2610.13020.49190.79470.0383*
H310.26940.43530.97070.0413*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0473 (17)0.0277 (14)0.0351 (16)0.0081 (13)0.0120 (14)0.0074 (13)
C20.034 (2)0.0255 (19)0.033 (2)0.0003 (17)0.0092 (18)0.0010 (18)
N30.0444 (19)0.0259 (15)0.0338 (19)0.0032 (16)0.0095 (16)0.0002 (15)
C40.034 (2)0.036 (2)0.035 (2)0.0036 (19)0.0083 (19)0.0014 (19)
O50.0476 (18)0.0436 (17)0.0347 (16)0.0022 (16)0.0128 (14)0.0064 (15)
C60.036 (2)0.035 (2)0.030 (2)0.0005 (19)0.0074 (18)0.0005 (18)
C70.031 (2)0.032 (2)0.032 (2)0.0015 (17)0.0062 (18)0.0057 (17)
N80.0345 (17)0.0266 (16)0.0267 (17)0.0057 (14)0.0090 (14)0.0010 (13)
C90.034 (2)0.0221 (18)0.031 (2)0.0012 (17)0.0079 (18)0.0014 (16)
O100.0344 (14)0.0229 (13)0.0370 (15)0.0019 (12)0.0052 (12)0.0029 (12)
C110.036 (2)0.029 (2)0.040 (2)0.0002 (19)0.0102 (19)0.0074 (19)
C120.035 (2)0.031 (2)0.037 (2)0.0000 (18)0.0094 (19)0.0027 (18)
C130.037 (2)0.028 (2)0.031 (2)0.0029 (18)0.0078 (18)0.0004 (17)
O140.0329 (16)0.0322 (15)0.0482 (18)0.0012 (13)0.0122 (14)0.0035 (13)
C150.032 (2)0.0252 (19)0.048 (3)0.0016 (18)0.0082 (19)0.0045 (19)
O160.0344 (16)0.0272 (14)0.0482 (18)0.0020 (13)0.0122 (14)0.0032 (13)
C170.033 (2)0.043 (3)0.059 (3)0.002 (2)0.008 (2)0.007 (2)
C180.044 (3)0.043 (2)0.057 (3)0.001 (2)0.018 (2)0.001 (2)
C190.032 (2)0.0254 (19)0.041 (2)0.0035 (18)0.010 (2)0.0018 (18)
O200.0489 (19)0.0462 (18)0.0318 (16)0.0022 (15)0.0131 (15)0.0039 (14)
O210.0370 (16)0.0353 (15)0.0405 (16)0.0056 (14)0.0070 (14)0.0041 (13)
C220.034 (2)0.041 (2)0.059 (3)0.009 (2)0.013 (2)0.010 (2)
C230.055 (3)0.049 (3)0.036 (2)0.009 (2)0.011 (2)0.008 (2)
O240.0423 (17)0.0327 (15)0.0333 (15)0.0038 (14)0.0012 (14)0.0006 (13)
C250.029 (2)0.031 (2)0.033 (2)0.0001 (18)0.0057 (18)0.0009 (18)
N260.0386 (19)0.0253 (16)0.0315 (19)0.0029 (15)0.0055 (16)0.0003 (14)
C270.036 (2)0.0234 (18)0.034 (2)0.0007 (17)0.0077 (18)0.0008 (17)
O280.0499 (18)0.0265 (14)0.0350 (16)0.0015 (14)0.0078 (14)0.0022 (13)
N290.0365 (19)0.0266 (16)0.0277 (17)0.0020 (15)0.0054 (15)0.0005 (14)
C300.037 (2)0.0256 (19)0.034 (2)0.0014 (17)0.0056 (19)0.0034 (17)
C310.035 (2)0.0270 (19)0.029 (2)0.0006 (18)0.0081 (18)0.0037 (17)
C320.056 (3)0.033 (2)0.043 (3)0.004 (2)0.002 (2)0.007 (2)
C330.038 (2)0.0236 (18)0.030 (2)0.0053 (17)0.0075 (18)0.0003 (16)
O340.0431 (17)0.0279 (14)0.0313 (14)0.0063 (13)0.0101 (14)0.0035 (12)
C350.041 (2)0.029 (2)0.033 (2)0.0036 (19)0.0027 (19)0.0061 (17)
C360.035 (2)0.030 (2)0.031 (2)0.0022 (18)0.0020 (18)0.0027 (17)
C370.040 (2)0.0294 (19)0.032 (2)0.0002 (19)0.0082 (19)0.0040 (18)
O380.0371 (16)0.0274 (14)0.0451 (17)0.0044 (13)0.0107 (14)0.0032 (13)
C390.043 (3)0.0258 (19)0.039 (2)0.0027 (19)0.013 (2)0.0005 (18)
O400.0356 (15)0.0291 (13)0.0456 (17)0.0016 (13)0.0092 (14)0.0033 (13)
C410.041 (3)0.046 (2)0.040 (2)0.002 (2)0.016 (2)0.002 (2)
C420.041 (3)0.050 (3)0.048 (3)0.004 (2)0.007 (2)0.009 (2)
C430.038 (2)0.030 (2)0.036 (2)0.0048 (19)0.008 (2)0.0004 (18)
O440.0372 (16)0.0325 (15)0.0353 (15)0.0068 (13)0.0081 (13)0.0031 (13)
C450.045 (3)0.033 (2)0.051 (3)0.011 (2)0.012 (2)0.001 (2)
O460.0479 (18)0.0505 (18)0.0323 (15)0.0102 (16)0.0022 (14)0.0051 (16)
Geometric parameters (Å, º) top
O1—C21.233 (5)O24—C251.240 (5)
C2—N31.365 (5)C25—N261.384 (5)
C2—N81.371 (5)C25—C311.453 (5)
N3—C41.401 (5)N26—C271.377 (5)
N3—H310.877N26—H2610.882
C4—O51.230 (5)C27—O281.224 (5)
C4—C61.448 (6)C27—N291.380 (5)
C6—C71.345 (6)N29—C301.385 (5)
C6—C231.512 (6)N29—C331.471 (5)
C7—N81.374 (5)C30—C311.346 (5)
C7—H710.933C30—H3010.946
N8—C91.464 (5)C31—C321.507 (6)
C9—O101.418 (5)C32—H3230.973
C9—C131.557 (6)C32—H3220.977
C9—C191.537 (5)C32—H3210.977
O10—C111.445 (5)C33—O341.408 (5)
C11—C121.497 (6)C33—C371.555 (5)
C11—H1110.974C33—C431.541 (6)
C11—H1120.974O34—C351.452 (5)
C12—C131.532 (5)C35—C361.497 (6)
C12—O161.423 (5)C35—H3510.981
C12—H1210.996C35—H3520.986
C13—O141.424 (5)C36—C371.544 (6)
C13—H1310.988C36—O401.427 (5)
O14—C151.452 (5)C36—H3610.992
C15—O161.420 (5)C37—O381.426 (5)
C15—C171.512 (6)C37—H3710.985
C15—C181.496 (6)O38—C391.440 (5)
C17—H1720.981C39—O401.431 (5)
C17—H1730.969C39—C411.507 (6)
C17—H1710.984C39—C421.504 (6)
C18—H1810.974C41—H4120.974
C18—H1830.973C41—H4110.979
C18—H1820.982C41—H4130.965
C19—O201.205 (5)C42—H4210.966
C19—O211.348 (5)C42—H4220.971
O21—C221.451 (5)C42—H4230.972
C22—H2220.969C43—O441.333 (5)
C22—H2210.962C43—O461.210 (5)
C22—H2230.972O44—C451.460 (5)
C23—H2320.974C45—H4530.979
C23—H2330.979C45—H4520.975
C23—H2310.979C45—H4510.977
O1—C2—N3123.3 (4)O24—C25—N26119.7 (4)
O1—C2—N8120.7 (3)O24—C25—C31124.8 (4)
N3—C2—N8115.9 (3)N26—C25—C31115.5 (3)
C2—N3—C4126.0 (3)C25—N26—C27126.7 (3)
C2—N3—H31116.7C25—N26—H261116.2
C4—N3—H31117.3C27—N26—H261117.2
N3—C4—O5119.6 (4)N26—C27—O28123.2 (3)
N3—C4—C6114.8 (4)N26—C27—N29114.8 (3)
O5—C4—C6125.6 (4)O28—C27—N29122.0 (4)
C4—C6—C7119.0 (4)C27—N29—C30121.7 (3)
C4—C6—C23118.2 (4)C27—N29—C33115.2 (3)
C7—C6—C23122.8 (4)C30—N29—C33122.9 (3)
C6—C7—N8122.6 (4)N29—C30—C31122.7 (4)
C6—C7—H71119.2N29—C30—H301118.4
N8—C7—H71118.2C31—C30—H301118.9
C7—N8—C2121.6 (3)C25—C31—C30118.3 (4)
C7—N8—C9123.1 (3)C25—C31—C32118.5 (4)
C2—N8—C9115.2 (3)C30—C31—C32123.2 (4)
N8—C9—O10107.4 (3)C31—C32—H323110.0
N8—C9—C13113.1 (3)C31—C32—H322108.9
O10—C9—C13107.2 (3)H323—C32—H322109.8
N8—C9—C19110.8 (3)C31—C32—H321109.6
O10—C9—C19105.8 (3)H323—C32—H321108.8
C13—C9—C19112.2 (3)H322—C32—H321109.7
C9—O10—C11108.5 (3)N29—C33—O34106.9 (3)
O10—C11—C12105.3 (3)N29—C33—C37113.4 (3)
O10—C11—H111110.1O34—C33—C37107.8 (3)
C12—C11—H111109.3N29—C33—C43110.8 (3)
O10—C11—H112109.2O34—C33—C43106.3 (3)
C12—C11—H112112.7C37—C33—C43111.2 (3)
H111—C11—H112110.1C33—O34—C35108.5 (3)
C11—C12—C13104.5 (3)O34—C35—C36105.7 (3)
C11—C12—O16111.1 (3)O34—C35—H351109.9
C13—C12—O16102.2 (3)C36—C35—H351109.9
C11—C12—H121112.9O34—C35—H352109.4
C13—C12—H121114.1C36—C35—H352111.7
O16—C12—H121111.4H351—C35—H352110.1
C12—C13—C9103.5 (3)C35—C36—C37104.2 (3)
C12—C13—O14105.3 (3)C35—C36—O40111.1 (3)
C9—C13—O14112.2 (3)C37—C36—O40102.1 (3)
C12—C13—H131112.6C35—C36—H361113.5
C9—C13—H131112.0C37—C36—H361112.1
O14—C13—H131110.9O40—C36—H361112.9
C13—O14—C15108.0 (3)C36—C37—C33103.5 (3)
O14—C15—O16104.2 (3)C36—C37—O38105.3 (3)
O14—C15—C17109.1 (3)C33—C37—O38112.1 (3)
O16—C15—C17111.0 (3)C36—C37—H371111.9
O14—C15—C18109.0 (3)C33—C37—H371112.0
O16—C15—C18110.2 (4)O38—C37—H371111.5
C17—C15—C18113.0 (4)C37—O38—C39107.7 (3)
C12—O16—C15106.6 (3)O38—C39—O40104.5 (3)
C15—C17—H172108.7O38—C39—C41109.9 (3)
C15—C17—H173109.6O40—C39—C41111.7 (3)
H172—C17—H173110.8O38—C39—C42108.4 (4)
C15—C17—H171109.0O40—C39—C42108.3 (3)
H172—C17—H171108.2C41—C39—C42113.7 (4)
H173—C17—H171110.5C39—O40—C36105.5 (3)
C15—C18—H181108.9C39—C41—H412108.6
C15—C18—H183109.1C39—C41—H411109.1
H181—C18—H183109.7H412—C41—H411110.7
C15—C18—H182108.4C39—C41—H413108.6
H181—C18—H182110.6H412—C41—H413110.2
H183—C18—H182110.0H411—C41—H413109.6
C9—C19—O20123.9 (4)C39—C42—H421110.6
C9—C19—O21110.5 (3)C39—C42—H422108.4
O20—C19—O21125.2 (4)H421—C42—H422110.6
C19—O21—C22115.8 (3)C39—C42—H423108.2
O21—C22—H222108.7H421—C42—H423109.6
O21—C22—H221111.1H422—C42—H423109.4
H222—C22—H221109.6C33—C43—O44111.4 (3)
O21—C22—H223110.3C33—C43—O46123.5 (4)
H222—C22—H223108.4O44—C43—O46124.8 (4)
H221—C22—H223108.7C43—O44—C45116.2 (3)
C6—C23—H232109.2O44—C45—H453109.5
C6—C23—H233110.6O44—C45—H452109.7
H232—C23—H233109.9H453—C45—H452109.2
C6—C23—H231109.0O44—C45—H451109.1
H232—C23—H231107.9H453—C45—H451109.6
H233—C23—H231110.3H452—C45—H451109.8
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H111···O5i0.972.523.301 (6)138
N26—H261···O10.881.932.791 (6)164
N3—H31···O240.882.012.863 (6)165
Symmetry code: (i) x+1, y1/2, z+2.

Experimental details

Crystal data
Chemical formulaC14H18N2O7
Mr326.31
Crystal system, space groupMonoclinic, P21
Temperature (K)150
a, b, c (Å)7.8937 (5), 13.3471 (10), 14.9208 (10)
β (°) 103.565 (4)
V3)1528.17 (18)
Z4
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.40 × 0.20 × 0.03
Data collection
DiffractometerNonius KappaCCD
Absorption correctionMulti-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
Tmin, Tmax0.83, 1.00
No. of measured, independent and
observed [I > 2σ(I)] reflections
9120, 3090, 2453
Rint0.065
(sin θ/λ)max1)0.618
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.114, 0.95
No. of reflections3090
No. of parameters416
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.34, 0.31

Computer programs: COLLECT (Nonius, 2001), DENZO/SCALEPACK (Otwinowski & Minor, 1997), SIR92 (Altomare et al., 1994), CRYSTALS (Betteridge et al., 2003), CAMERON (Watkin et al., 1996).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N26—H261···O10.881.932.791 (6)164
N3—H31···O240.882.012.863 (6)165
 

Acknowledgements

We would like to thank the Chemical Crystallography department and ALT at Oxford University for use of the diffractometers.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBetteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGarrett, E. R. (1960). J. Am. Chem. Soc. 82, 827–832.  CrossRef CAS Web of Science Google Scholar
First citationLarson, A. C. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 291–294. Copenhagen: Munksgaard.  Google Scholar
First citationNonius (2001). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationProbert, M. R., Watkin, D. J., Stewart, A. J., Storer, R. & Fleet, G. W. J. (2005). Acta Cryst. E61, o1718–o1720.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSchroeder, W. & Hoeksema, H. (1959). J. Am. Chem. Soc. 81, 1767–1768.  CrossRef CAS Web of Science Google Scholar
First citationSmith, M. D., Long, D. D., Martín, A., Campbell, N., Blériot, Y. & Fleet, G. W. J. (1999). Synlett, 7, 1151–1154.  CrossRef Google Scholar
First citationSmith, C. G., Poutsiaka, J. W. & Schreiber, E. C. (1973). J. Int. Med. Res. 1, 489–503.  CAS Google Scholar
First citationWatkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds