organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

6β,15β-Diacet­­oxy-1β,7β,13α-trihydr­­oxy-7α,20-ep­­oxy-ent-kaur-16-ene

aSchool of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, People's Republic of China, and bHenan College of Traditional Chinese Medicine, Zhengzhou, Henan 450008, People's Republic of China
*Correspondence e-mail: yanfulin03@xxmu.edu.cn

(Received 23 October 2009; accepted 10 January 2010; online 16 January 2010)

The title compound, C24H34O8, a natural ent-kaurane diterpenoid, is composed of four rings with the expected cis and trans junctions. The crystal structure is stabilized by inter­molecular O—H⋯O hydrogen bonds. In addition, an intra­molecular O—H⋯O hydrogen bond occurs.

Related literature

For the genus Isodon and diterpenoids, see: Sun et al. (2001[Sun, H. D., Xu, Y. L. & Jing, B. (2001). Diterpenoids from Isodon Species, pp. 4-17. Beijing: Science Press.]); Jung et al. (1990[Jung, B. S. & Shin, M. K. (1990). Encyclopedia of Illustrated Korean Natural Drugs. pp. 845-846. Seoul: Young Lim Sa.]); Li & Tian (2001[Li, B. L. & Tian, X. H. (2001). Phytochemistry, 58, 543-546.]); Yan et al. (2008[Yan, F. L., Wang, C. M., Guo, L. Q., Zhang, J. X. & Bai, S. P. (2008). J. Chem. Res. 9, 522-524.]); Han et al. (2005[Han, Q. B., Li, R. T. & Li, M. L. (2005). J. Asian Nat. Prod. Res. 7, 31-36.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.])

[Scheme 1]

Experimental

Crystal data
  • C24H34O8

  • Mr = 450.51

  • Orthorhombic, P 21 21 21

  • a = 10.295 (2) Å

  • b = 13.696 (3) Å

  • c = 15.802 (3) Å

  • V = 2228.1 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 93 K

  • 0.33 × 0.33 × 0.30 mm

Data collection
  • Rigaku SPIDER diffractometer

  • 18422 measured reflections

  • 2878 independent reflections

  • 2819 reflections with I > 2σ(I)

  • Rint = 0.034

  • Standard reflections: 0

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.073

  • S = 1.07

  • 2878 reflections

  • 306 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2O⋯O6i 0.85 (3) 1.96 (3) 2.7811 (17) 163 (3)
O5—H5O⋯O4 0.88 (3) 2.19 (3) 2.9373 (18) 142 (2)
O6—H6O⋯O8ii 0.94 (3) 1.83 (3) 2.7600 (17) 170 (2)
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y+2, z+{\script{1\over 2}}]; (ii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z].

Data collection: RAPID-AUTO (Rigaku, 2004[Rigaku (2004). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

The title compound (I), 6β, 15β-Diacetoxy-1β, 7β, 13α-trihydroxy-7α, 20-epoxy-ent-kaur-16-ene is a new natural ent-kaurane diterpenoid isolated from the medicinal plant Isodon japonica. The leaves of this plant has been used as an antibacterial, anti-inflammatory, stomachic, and anthelmintic agent in China, Korean and Japan by local people (Jung et al., 1990; Li & Tian, 2001). The structure of compound (I) was postulated from spectroscopic methods. In order to further confirm the structure and conformation of (I), a crystal structure analysis has been undertaken. The X-ray crystallographic analysis of (I) confirms the molecular structure of (I) proposed by spectroscopic methods.

Fig.1 shows its conformation: three hydroxyl groups adopt β, β, α-orientations at C1, C7 and C13, two acetoxyl groups adopt β-orientations at C6 and C15 respectively. There is a trans junction between ring A (C1–C5/C10) and ring B (C5–C10); cis junctions are present between ring B and ring C (C8/C9/C11–C14), and ring C and ring D (C8/C13–C16). The bond lengths and angles are within expected aranges (Allen et al., 1987). Conformation of ring can be seen according to the X-ray diffraction pattern (Fig.1). Ring A adopts chair conformation, with an average torsion angles of 51.43 (18) °. Rings B and C adopt boat conformation because of the formation of the oxygen bridge at C-7 and C-20. Ring D shows an evenlope conformation; the flap atom, C14, lies 0.693 Å from the plane defined by atoms C8, C15, C16 and C13. In addition, the six-membered rings O1/C20/C10/C5–C7 and O1/C7–C10/C20 both adopt boat conformations. Compound (I) contains nine chiral centers at C1(R), C5(R), C6(S), C7(S), C8(S), C9(S), C10(S), C13(S) and C15(R). Although the absolute configuration could not be reliably determined from anomalous dispersion effects, the negative optical rotation showed this compound to be in the ent-kaurane seuies as reported in genus Isodon (Sun et al.,2001), rather than in the kaurane series, and so allowed us to assign the correct configuration.

The molecular packing (Fig. 2) is stabilized by two different intermolecular O–H···O hydrogen bonds (Table 1; symmetry code as in Fig. 2). The crystal packing (Fig. 2) is further stabilized by an intramolecular O–H···O hydrogen bond (Table 1; symmetry code as in Fig. 2).

Related literature top

For the genus Isodon and diterpenoids, see: Sun et al. (2001); Jung et al. (1990); Li & Tian (2001); Yan et al. (2008); Han et al. (2005). For bond-length data, see: Allen et al. (1987)

Experimental top

The dried and crushed leaves of Isodon japonica (17 kg, collected from Tongbai Prefecture, Henan Province, China) were extracted four times with Me2CO/H2O (7:3, v/v) at room temperature over a period of six days. The extract was filtered and the solvent was removed under reduced pressure. The residue was then partitioned between water and AcOEt. After removal of the solvent, the AcOEt residue was separated by repeated silica gel (200-300 mesh) column chromatography and recrystallization from CHCl3/CH3OH(10:1), giving 70 mg of compound (I) (m.p. 505-507 K. Optical rotation: [α]D20 -79.6 ° (c 0.45, CH3OH). Single crystals suitable for X-ray diffraction were obtained by slow evaporation of a solution of the title compound in methanol at room temperature.

Refinement top

All the Friedel pairs were merged. All H atoms were included in calculated positions and refined as riding atoms, with C–H = 0.98Å (CH3), 0.99Å (CH2), 1.00Å (CH), and O–H = 0.89Å, and with Uiso(H) = 1.2 Ueq(C). The choice of enantiomer was based on comparison of the optical rotation with that of related compounds with known stereochemistry.

Structure description top

The title compound (I), 6β, 15β-Diacetoxy-1β, 7β, 13α-trihydroxy-7α, 20-epoxy-ent-kaur-16-ene is a new natural ent-kaurane diterpenoid isolated from the medicinal plant Isodon japonica. The leaves of this plant has been used as an antibacterial, anti-inflammatory, stomachic, and anthelmintic agent in China, Korean and Japan by local people (Jung et al., 1990; Li & Tian, 2001). The structure of compound (I) was postulated from spectroscopic methods. In order to further confirm the structure and conformation of (I), a crystal structure analysis has been undertaken. The X-ray crystallographic analysis of (I) confirms the molecular structure of (I) proposed by spectroscopic methods.

Fig.1 shows its conformation: three hydroxyl groups adopt β, β, α-orientations at C1, C7 and C13, two acetoxyl groups adopt β-orientations at C6 and C15 respectively. There is a trans junction between ring A (C1–C5/C10) and ring B (C5–C10); cis junctions are present between ring B and ring C (C8/C9/C11–C14), and ring C and ring D (C8/C13–C16). The bond lengths and angles are within expected aranges (Allen et al., 1987). Conformation of ring can be seen according to the X-ray diffraction pattern (Fig.1). Ring A adopts chair conformation, with an average torsion angles of 51.43 (18) °. Rings B and C adopt boat conformation because of the formation of the oxygen bridge at C-7 and C-20. Ring D shows an evenlope conformation; the flap atom, C14, lies 0.693 Å from the plane defined by atoms C8, C15, C16 and C13. In addition, the six-membered rings O1/C20/C10/C5–C7 and O1/C7–C10/C20 both adopt boat conformations. Compound (I) contains nine chiral centers at C1(R), C5(R), C6(S), C7(S), C8(S), C9(S), C10(S), C13(S) and C15(R). Although the absolute configuration could not be reliably determined from anomalous dispersion effects, the negative optical rotation showed this compound to be in the ent-kaurane seuies as reported in genus Isodon (Sun et al.,2001), rather than in the kaurane series, and so allowed us to assign the correct configuration.

The molecular packing (Fig. 2) is stabilized by two different intermolecular O–H···O hydrogen bonds (Table 1; symmetry code as in Fig. 2). The crystal packing (Fig. 2) is further stabilized by an intramolecular O–H···O hydrogen bond (Table 1; symmetry code as in Fig. 2).

For the genus Isodon and diterpenoids, see: Sun et al. (2001); Jung et al. (1990); Li & Tian (2001); Yan et al. (2008); Han et al. (2005). For bond-length data, see: Allen et al. (1987)

Computing details top

Data collection: RAPID-AUTO (Rigaku, 2004); cell refinement: RAPID-AUTO (Rigaku, 2004); data reduction: RAPID-AUTO (Rigaku, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as a small spheres of arbitrary radius.
[Figure 2] Fig. 2. O–H···O interactions (dotted lines) in the structure of the title compound. [Symmetry codes: (i) - x + 1/2, - y + 2, z + 1/2; (ii) x - 1/2, - y + 3/2, - z; (iii) - x + 1/2, - y + 2, z - 1/2; (iv) x + 1/2, - y + 3/2, - z.]
6β, 15β-Diacetoxy-1β, 7β, 13α-trihydroxy-7α, 20-epoxy- ent-kaur-16-ene top
Crystal data top
C24H34O8F(000) = 968
Mr = 450.51Dx = 1.343 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 8346 reflections
a = 10.295 (2) Åθ = 3.2–27.5°
b = 13.696 (3) ŵ = 0.10 mm1
c = 15.802 (3) ÅT = 93 K
V = 2228.1 (8) Å3Block, colorless
Z = 40.33 × 0.33 × 0.30 mm
Data collection top
Rigaku SPIDER
diffractometer
2819 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.034
Graphite monochromatorθmax = 27.5°, θmin = 3.2°
ω scansh = 1311
18422 measured reflectionsk = 1717
2878 independent reflectionsl = 2020
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.073 w = 1/[σ2(Fo2) + (0.0418P)2 + 0.1265P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
2878 reflectionsΔρmax = 0.21 e Å3
306 parametersΔρmin = 0.15 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0063 (13)
Crystal data top
C24H34O8V = 2228.1 (8) Å3
Mr = 450.51Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 10.295 (2) ŵ = 0.10 mm1
b = 13.696 (3) ÅT = 93 K
c = 15.802 (3) Å0.33 × 0.33 × 0.30 mm
Data collection top
Rigaku SPIDER
diffractometer
2819 reflections with I > 2σ(I)
18422 measured reflectionsRint = 0.034
2878 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.073H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.21 e Å3
2878 reflectionsΔρmin = 0.15 e Å3
306 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.01173 (10)0.68667 (8)0.26057 (7)0.0149 (2)
O20.30874 (12)0.88041 (9)0.42632 (7)0.0212 (3)
H2O0.315 (2)0.922 (2)0.4660 (19)0.058 (8)*
O30.33002 (10)0.57116 (8)0.24245 (7)0.0148 (2)
O40.21962 (12)0.43421 (9)0.20969 (8)0.0253 (3)
O50.10209 (11)0.61497 (8)0.14532 (7)0.0159 (2)
H5O0.099 (2)0.554 (2)0.1618 (16)0.050 (7)*
O60.13739 (12)0.96328 (8)0.03305 (7)0.0189 (3)
H6O0.105 (2)0.923 (2)0.0103 (16)0.055 (8)*
O70.43032 (11)0.75344 (8)0.18270 (7)0.0161 (2)
O80.51871 (12)0.65725 (10)0.08362 (8)0.0253 (3)
C10.18434 (16)0.83486 (12)0.43078 (10)0.0161 (3)
H10.11560.88640.43120.019*
C20.17508 (17)0.77546 (13)0.51205 (10)0.0188 (4)
H2A0.18940.81870.56130.023*
H2B0.08700.74700.51700.023*
C30.27532 (17)0.69440 (12)0.51243 (10)0.0193 (4)
H3A0.27160.66010.56750.023*
H3B0.36290.72350.50680.023*
C40.25500 (16)0.62004 (12)0.44115 (10)0.0171 (3)
C50.25206 (15)0.67689 (11)0.35551 (9)0.0135 (3)
H50.34370.69760.34450.016*
C60.21348 (15)0.61224 (11)0.28031 (9)0.0134 (3)
H60.15940.55710.30230.016*
C70.13183 (15)0.66985 (11)0.21737 (9)0.0127 (3)
C80.18916 (15)0.76762 (11)0.19036 (9)0.0124 (3)
C90.21621 (16)0.82954 (11)0.27169 (10)0.0144 (3)
H90.31270.83580.27690.017*
C100.16867 (15)0.77195 (11)0.35071 (9)0.0140 (3)
C110.16190 (17)0.93342 (12)0.26232 (10)0.0190 (4)
H11A0.06590.93140.26610.023*
H11B0.19450.97460.30920.023*
C120.20189 (18)0.97887 (11)0.17758 (10)0.0181 (3)
H12A0.29410.99920.18070.022*
H12B0.14891.03800.16730.022*
C130.18435 (16)0.90739 (11)0.10258 (10)0.0148 (3)
C140.09702 (16)0.82277 (11)0.12983 (10)0.0148 (3)
H14A0.07120.78170.08110.018*
H14B0.01820.84620.15950.018*
C150.31094 (15)0.76055 (11)0.13340 (9)0.0140 (3)
H150.30320.70260.09520.017*
C160.30844 (16)0.85321 (11)0.08147 (10)0.0153 (3)
C170.39369 (18)0.87883 (13)0.02315 (11)0.0245 (4)
H17A0.46500.83720.01060.029*
H17B0.38380.93890.00630.029*
C180.37174 (18)0.55017 (14)0.43998 (11)0.0238 (4)
H18A0.45030.58640.42450.029*
H18B0.35630.49830.39850.029*
H18C0.38300.52130.49620.029*
C190.13432 (17)0.55891 (13)0.45997 (10)0.0225 (4)
H19A0.14620.52410.51360.027*
H19B0.12090.51160.41430.027*
H19C0.05840.60180.46420.027*
C200.02593 (15)0.74576 (12)0.33582 (9)0.0159 (3)
H20A0.00790.70950.38530.019*
H20B0.02560.80630.32960.019*
C210.32071 (17)0.47860 (12)0.21399 (10)0.0176 (3)
C220.45078 (17)0.43876 (13)0.19149 (12)0.0228 (4)
H22A0.49940.42440.24330.027*
H22B0.49850.48700.15780.027*
H22C0.44010.37870.15860.027*
C230.52622 (16)0.69893 (12)0.15079 (11)0.0195 (3)
C240.64137 (18)0.69693 (15)0.20862 (13)0.0302 (4)
H24A0.70750.65300.18540.036*
H24B0.61450.67360.26460.036*
H24C0.67750.76290.21370.036*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0130 (5)0.0174 (5)0.0142 (5)0.0016 (4)0.0013 (4)0.0031 (4)
O20.0245 (7)0.0228 (6)0.0164 (6)0.0091 (5)0.0037 (5)0.0077 (5)
O30.0171 (6)0.0124 (5)0.0148 (5)0.0013 (4)0.0024 (4)0.0021 (4)
O40.0259 (7)0.0175 (6)0.0323 (7)0.0004 (5)0.0010 (6)0.0081 (5)
O50.0234 (6)0.0126 (5)0.0117 (5)0.0015 (5)0.0025 (5)0.0025 (4)
O60.0235 (6)0.0154 (6)0.0178 (5)0.0023 (5)0.0055 (5)0.0056 (5)
O70.0139 (6)0.0172 (5)0.0174 (5)0.0017 (5)0.0008 (4)0.0015 (5)
O80.0275 (7)0.0266 (7)0.0218 (6)0.0078 (6)0.0066 (5)0.0018 (5)
C10.0178 (8)0.0168 (7)0.0138 (7)0.0032 (6)0.0028 (6)0.0041 (6)
C20.0210 (9)0.0236 (8)0.0119 (7)0.0040 (7)0.0017 (6)0.0034 (6)
C30.0213 (9)0.0248 (9)0.0117 (7)0.0028 (7)0.0011 (6)0.0005 (6)
C40.0202 (9)0.0191 (8)0.0121 (7)0.0011 (7)0.0010 (6)0.0015 (6)
C50.0131 (8)0.0149 (7)0.0125 (7)0.0016 (6)0.0011 (6)0.0003 (6)
C60.0147 (8)0.0132 (7)0.0124 (7)0.0004 (6)0.0020 (6)0.0010 (6)
C70.0153 (8)0.0122 (7)0.0107 (6)0.0013 (6)0.0001 (6)0.0025 (6)
C80.0137 (8)0.0124 (7)0.0111 (6)0.0001 (6)0.0003 (6)0.0003 (5)
C90.0167 (8)0.0131 (7)0.0133 (7)0.0008 (6)0.0018 (6)0.0020 (6)
C100.0169 (8)0.0131 (7)0.0120 (7)0.0008 (6)0.0019 (6)0.0023 (6)
C110.0269 (9)0.0129 (7)0.0172 (7)0.0015 (7)0.0025 (7)0.0020 (6)
C120.0239 (9)0.0123 (7)0.0182 (7)0.0001 (7)0.0004 (7)0.0006 (6)
C130.0173 (8)0.0133 (7)0.0137 (7)0.0001 (6)0.0022 (6)0.0018 (6)
C140.0151 (8)0.0137 (7)0.0156 (7)0.0007 (6)0.0009 (6)0.0013 (6)
C150.0149 (8)0.0140 (7)0.0130 (7)0.0007 (6)0.0005 (6)0.0013 (6)
C160.0174 (8)0.0130 (7)0.0153 (7)0.0014 (6)0.0006 (6)0.0001 (6)
C170.0265 (10)0.0186 (8)0.0283 (9)0.0022 (7)0.0086 (8)0.0072 (7)
C180.0291 (10)0.0249 (9)0.0172 (8)0.0059 (8)0.0038 (7)0.0020 (7)
C190.0296 (10)0.0230 (8)0.0148 (8)0.0056 (8)0.0014 (7)0.0032 (7)
C200.0174 (8)0.0174 (7)0.0129 (7)0.0001 (7)0.0004 (6)0.0028 (6)
C210.0258 (9)0.0134 (7)0.0135 (7)0.0038 (7)0.0019 (7)0.0001 (6)
C220.0262 (10)0.0188 (8)0.0233 (8)0.0048 (7)0.0012 (7)0.0017 (7)
C230.0183 (8)0.0154 (8)0.0249 (8)0.0012 (7)0.0066 (7)0.0031 (6)
C240.0222 (10)0.0273 (10)0.0410 (11)0.0065 (8)0.0040 (8)0.0005 (8)
Geometric parameters (Å, º) top
O1—C71.431 (2)C9—C111.536 (2)
O1—C201.446 (2)C9—C101.556 (2)
O2—C11.426 (2)C9—H91.0000
O2—H2O0.85 (3)C10—C201.531 (2)
O3—C211.349 (2)C11—C121.533 (2)
O3—C61.454 (2)C11—H11A0.9900
O4—C211.207 (2)C11—H11B0.9900
O5—C71.398 (2)C12—C131.548 (2)
O5—H5O0.88 (3)C12—H12A0.9900
O6—C131.424 (2)C12—H12B0.9900
O6—H6O0.94 (3)C13—C161.515 (2)
O7—C231.337 (2)C13—C141.529 (2)
O7—C151.458 (2)C14—H14A0.9900
O8—C231.208 (2)C14—H14B0.9900
C1—C21.523 (2)C15—C161.511 (2)
C1—C101.539 (2)C15—H151.0000
C1—H11.0000C16—C171.320 (2)
C2—C31.516 (2)C17—H17A0.9500
C2—H2A0.9900C17—H17B0.9500
C2—H2B0.9900C18—H18A0.9800
C3—C41.533 (2)C18—H18B0.9800
C3—H3A0.9900C18—H18C0.9800
C3—H3B0.9900C19—H19A0.9800
C4—C191.527 (2)C19—H19B0.9800
C4—C181.536 (2)C19—H19C0.9800
C4—C51.562 (2)C20—H20A0.9900
C5—C61.534 (2)C20—H20B0.9900
C5—C101.561 (2)C21—C221.489 (2)
C5—H51.0000C22—H22A0.9800
C6—C71.523 (2)C22—H22B0.9800
C6—H61.0000C22—H22C0.9800
C7—C81.524 (2)C23—C241.497 (3)
C8—C141.544 (2)C24—H24A0.9800
C8—C151.546 (2)C24—H24B0.9800
C8—C91.565 (2)C24—H24C0.9800
C7—O1—C20113.28 (11)C12—C11—H11B109.4
C1—O2—H2O108.9 (18)C9—C11—H11B109.4
C21—O3—C6116.25 (13)H11A—C11—H11B108.0
C7—O5—H5O106.4 (16)C11—C12—C13112.37 (13)
C13—O6—H6O111.6 (16)C11—C12—H12A109.1
C23—O7—C15117.28 (12)C13—C12—H12A109.1
O2—C1—C2109.35 (14)C11—C12—H12B109.1
O2—C1—C10107.36 (12)C13—C12—H12B109.1
C2—C1—C10112.80 (13)H12A—C12—H12B107.9
O2—C1—H1109.1O6—C13—C16112.32 (13)
C2—C1—H1109.1O6—C13—C14115.17 (13)
C10—C1—H1109.1C16—C13—C14100.76 (12)
C3—C2—C1110.61 (13)O6—C13—C12106.89 (12)
C3—C2—H2A109.5C16—C13—C12112.34 (13)
C1—C2—H2A109.5C14—C13—C12109.42 (13)
C3—C2—H2B109.5C13—C14—C8100.61 (12)
C1—C2—H2B109.5C13—C14—H14A111.7
H2A—C2—H2B108.1C8—C14—H14A111.7
C2—C3—C4113.00 (13)C13—C14—H14B111.7
C2—C3—H3A109.0C8—C14—H14B111.7
C4—C3—H3A109.0H14A—C14—H14B109.4
C2—C3—H3B109.0O7—C15—C16111.13 (12)
C4—C3—H3B109.0O7—C15—C8112.12 (11)
H3A—C3—H3B107.8C16—C15—C8104.46 (12)
C19—C4—C3109.39 (14)O7—C15—H15109.7
C19—C4—C18107.29 (14)C16—C15—H15109.7
C3—C4—C18108.41 (14)C8—C15—H15109.7
C19—C4—C5115.24 (13)C17—C16—C15126.22 (15)
C3—C4—C5107.95 (13)C17—C16—C13125.76 (15)
C18—C4—C5108.38 (13)C15—C16—C13107.82 (13)
C6—C5—C4112.86 (12)C16—C17—H17A120.0
C6—C5—C10107.54 (12)C16—C17—H17B120.0
C4—C5—C10117.94 (13)H17A—C17—H17B120.0
C6—C5—H5105.9C4—C18—H18A109.5
C4—C5—H5105.9C4—C18—H18B109.5
C10—C5—H5105.9H18A—C18—H18B109.5
O3—C6—C7112.79 (12)C4—C18—H18C109.5
O3—C6—C5109.17 (12)H18A—C18—H18C109.5
C7—C6—C5110.47 (12)H18B—C18—H18C109.5
O3—C6—H6108.1C4—C19—H19A109.5
C7—C6—H6108.1C4—C19—H19B109.5
C5—C6—H6108.1H19A—C19—H19B109.5
O5—C7—O1106.61 (12)C4—C19—H19C109.5
O5—C7—C6111.98 (13)H19A—C19—H19C109.5
O1—C7—C6104.41 (12)H19B—C19—H19C109.5
O5—C7—C8109.21 (12)O1—C20—C10110.77 (12)
O1—C7—C8109.07 (12)O1—C20—H20A109.5
C6—C7—C8115.11 (13)C10—C20—H20A109.5
C7—C8—C14111.42 (13)O1—C20—H20B109.5
C7—C8—C15114.96 (12)C10—C20—H20B109.5
C14—C8—C1599.67 (11)H20A—C20—H20B108.1
C7—C8—C9108.37 (12)O4—C21—O3123.60 (15)
C14—C8—C9110.66 (12)O4—C21—C22125.26 (15)
C15—C8—C9111.57 (12)O3—C21—C22111.11 (14)
C11—C9—C10115.62 (13)C21—C22—H22A109.5
C11—C9—C8110.98 (13)C21—C22—H22B109.5
C10—C9—C8109.17 (12)H22A—C22—H22B109.5
C11—C9—H9106.9C21—C22—H22C109.5
C10—C9—H9106.9H22A—C22—H22C109.5
C8—C9—H9106.9H22B—C22—H22C109.5
C20—C10—C1110.99 (12)O8—C23—O7123.25 (16)
C20—C10—C9107.30 (13)O8—C23—C24125.35 (16)
C1—C10—C9110.06 (12)O7—C23—C24111.40 (15)
C20—C10—C5109.87 (12)C23—C24—H24A109.5
C1—C10—C5111.67 (13)C23—C24—H24B109.5
C9—C10—C5106.78 (12)H24A—C24—H24B109.5
C12—C11—C9111.26 (13)C23—C24—H24C109.5
C12—C11—H11A109.4H24A—C24—H24C109.5
C9—C11—H11A109.4H24B—C24—H24C109.5
O2—C1—C2—C362.53 (16)C8—C9—C10—C2054.65 (15)
C10—C1—C2—C356.86 (18)C11—C9—C10—C149.55 (18)
C1—C2—C3—C462.82 (18)C8—C9—C10—C1175.51 (13)
C2—C3—C4—C1971.09 (17)C11—C9—C10—C5170.93 (13)
C2—C3—C4—C18172.21 (14)C8—C9—C10—C563.11 (15)
C2—C3—C4—C555.00 (18)C6—C5—C10—C2047.55 (15)
C19—C4—C5—C649.47 (19)C4—C5—C10—C2081.40 (16)
C3—C4—C5—C6172.06 (13)C6—C5—C10—C1171.15 (12)
C18—C4—C5—C670.72 (17)C4—C5—C10—C142.20 (18)
C19—C4—C5—C1076.95 (18)C6—C5—C10—C968.50 (15)
C3—C4—C5—C1045.64 (18)C4—C5—C10—C9162.55 (13)
C18—C4—C5—C10162.86 (14)C10—C9—C11—C12173.29 (14)
C21—O3—C6—C794.07 (15)C8—C9—C11—C1248.25 (18)
C21—O3—C6—C5142.72 (13)C9—C11—C12—C1345.16 (19)
C4—C5—C6—O391.32 (15)C11—C12—C13—O6141.31 (14)
C10—C5—C6—O3136.89 (12)C11—C12—C13—C1695.05 (16)
C4—C5—C6—C7144.10 (13)C11—C12—C13—C1415.98 (19)
C10—C5—C6—C712.31 (16)O6—C13—C14—C8168.34 (12)
C20—O1—C7—O5178.14 (11)C16—C13—C14—C847.24 (14)
C20—O1—C7—C663.19 (15)C12—C13—C14—C871.27 (15)
C20—O1—C7—C860.34 (15)C7—C8—C14—C13171.67 (12)
O3—C6—C7—O553.61 (16)C15—C8—C14—C1349.89 (13)
C5—C6—C7—O5176.09 (12)C9—C8—C14—C1367.68 (15)
O3—C6—C7—O1168.56 (11)C23—O7—C15—C1697.73 (16)
C5—C6—C7—O168.96 (15)C23—O7—C15—C8145.78 (13)
O3—C6—C7—C871.91 (16)C7—C8—C15—O787.21 (15)
C5—C6—C7—C850.57 (17)C14—C8—C15—O7153.57 (12)
O5—C7—C8—C1455.65 (16)C9—C8—C15—O736.68 (16)
O1—C7—C8—C1460.50 (15)C7—C8—C15—C16152.35 (13)
C6—C7—C8—C14177.42 (12)C14—C8—C15—C1633.14 (14)
O5—C7—C8—C1556.79 (17)C9—C8—C15—C1683.76 (14)
O1—C7—C8—C15172.94 (11)O7—C15—C16—C1759.4 (2)
C6—C7—C8—C1570.14 (17)C8—C15—C16—C17179.46 (16)
O5—C7—C8—C9177.63 (12)O7—C15—C16—C13125.49 (13)
O1—C7—C8—C961.48 (15)C8—C15—C16—C134.39 (15)
C6—C7—C8—C955.43 (16)O6—C13—C16—C1725.4 (2)
C7—C8—C9—C11131.48 (14)C14—C13—C16—C17148.54 (17)
C14—C8—C9—C119.03 (17)C12—C13—C16—C1795.1 (2)
C15—C8—C9—C11100.98 (15)O6—C13—C16—C15149.65 (13)
C7—C8—C9—C102.89 (17)C14—C13—C16—C1526.56 (15)
C14—C8—C9—C10119.55 (14)C12—C13—C16—C1589.81 (15)
C15—C8—C9—C10130.43 (13)C7—O1—C20—C101.88 (17)
O2—C1—C10—C20162.52 (13)C1—C10—C20—O1179.99 (12)
C2—C1—C10—C2076.95 (17)C9—C10—C20—O159.73 (16)
O2—C1—C10—C943.89 (17)C5—C10—C20—O156.00 (16)
C2—C1—C10—C9164.43 (14)C6—O3—C21—O48.8 (2)
O2—C1—C10—C574.52 (15)C6—O3—C21—C22169.57 (13)
C2—C1—C10—C546.02 (18)C15—O7—C23—O81.0 (2)
C11—C9—C10—C2071.31 (16)C15—O7—C23—C24179.03 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2O···O6i0.85 (3)1.96 (3)2.7811 (17)163 (3)
O5—H5O···O40.88 (3)2.19 (3)2.9373 (18)142 (2)
O6—H6O···O8ii0.94 (3)1.83 (3)2.7600 (17)170 (2)
Symmetry codes: (i) x+1/2, y+2, z+1/2; (ii) x1/2, y+3/2, z.

Experimental details

Crystal data
Chemical formulaC24H34O8
Mr450.51
Crystal system, space groupOrthorhombic, P212121
Temperature (K)93
a, b, c (Å)10.295 (2), 13.696 (3), 15.802 (3)
V3)2228.1 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.33 × 0.33 × 0.30
Data collection
DiffractometerRigaku SPIDER
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
18422, 2878, 2819
Rint0.034
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.073, 1.07
No. of reflections2878
No. of parameters306
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.21, 0.15

Computer programs: RAPID-AUTO (Rigaku, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2O···O6i0.85 (3)1.96 (3)2.7811 (17)163 (3)
O5—H5O···O40.88 (3)2.19 (3)2.9373 (18)142 (2)
O6—H6O···O8ii0.94 (3)1.83 (3)2.7600 (17)170 (2)
Symmetry codes: (i) x+1/2, y+2, z+1/2; (ii) x1/2, y+3/2, z.
 

Acknowledgements

This work was supported by the Henan Province Science and Technology Foundation of China (No. 611042600)

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHan, Q. B., Li, R. T. & Li, M. L. (2005). J. Asian Nat. Prod. Res. 7, 31–36.  Web of Science CrossRef PubMed CAS Google Scholar
First citationJung, B. S. & Shin, M. K. (1990). Encyclopedia of Illustrated Korean Natural Drugs. pp. 845–846. Seoul: Young Lim Sa.  Google Scholar
First citationLi, B. L. & Tian, X. H. (2001). Phytochemistry, 58, 543–546.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRigaku (2004). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, H. D., Xu, Y. L. & Jing, B. (2001). Diterpenoids from Isodon Species, pp. 4–17. Beijing: Science Press.  Google Scholar
First citationYan, F. L., Wang, C. M., Guo, L. Q., Zhang, J. X. & Bai, S. P. (2008). J. Chem. Res. 9, 522–524.  Web of Science CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds