organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

cis-N-(2-Hy­droxy­cyclo­hexyl)-p-toluene­sulfonamide

aSchool of Chemistry, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban 4000, South Africa
*Correspondence e-mail: bala@ukzn.ac.za

(Received 26 November 2009; accepted 18 January 2010; online 27 January 2010)

There are two symmetry-independent mol­ecules in the asymmetric unit of the title compound, C13H19NO3S. The cyclo­hexane rings in the two mol­ecules adopt chair configurations. The hydr­oxy and amino groups on the cyclo­hexane ring assume axial and equatorial orientations, respectively, with respect to the plane of the ring. The crystal structure is stabilized by two inter­molecular N—H⋯O and O—H⋯O hydrogen bonds from the two symmetry-independent mol­ecules.

Related literature

For related structures of β-amino alcohols, see: Bergmeier (2000[Bergmeier, S. (2000). Tetrahedron, 56, 2561-2576.]); Krzemiński & Wojtczak (2005[Krzemiński, M. P. & Wojtczak, A. (2005). Tetrahedron Lett. 46, 8299-8302.]). For related structures of tosyl­amino compounds, see: Coote et al. (2008[Coote, S. C., O'Brien, P. & Whitwood, A. C. (2008). Org. Biomol. Chem. 6, 4299-4314.]); Liu et al. (2005[Liu, Z., Fan, Y., Li, R., Zhou, B. & Wu, L. (2005). Tetrahedron Lett. 46, 1023-1025.]); Chinnakali et al. (2007[Chinnakali, K., Poornachandran, M., Raghunathan, R. & Fun, H.-K. (2007). Acta Cryst. E63, o1030-o1031.]); Nan & Xing (2006[Nan, Z.-H. & Xing, J.-D. (2006). Acta Cryst. E62, o1978-o1979.]). For the synthesis of the title compound, see: Naiker et al. (2008[Naiker, T., Datye, A. & Friedrich, H. B. (2008). Appl. Catal. A, 350, 96-102.]).

[Scheme 1]

Experimental

Crystal data
  • C13H19NO3S

  • Mr = 269.35

  • Triclinic, [P \overline 1]

  • a = 6.3031 (1) Å

  • b = 12.8355 (2) Å

  • c = 17.5367 (3) Å

  • α = 106.645 (1)°

  • β = 93.971 (1)°

  • γ = 100.047 (1)°

  • V = 1327.75 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 173 K

  • 0.51 × 0.31 × 0.25 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • 18458 measured reflections

  • 6423 independent reflections

  • 4837 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.111

  • S = 1.07

  • 6423 reflections

  • 343 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.41 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O6i 0.83 (2) 2.00 (2) 2.8255 (17) 175.0 (18)
N2—H2N⋯O3ii 0.82 (2) 2.00 (2) 2.8155 (18) 173.1 (19)
O3—H3O⋯O5iii 0.83 (2) 1.93 (2) 2.7489 (15) 171 (2)
O6—H6O⋯O2iv 0.83 (2) 1.98 (2) 2.8001 (15) 169 (2)
Symmetry codes: (i) x-1, y-1, z; (ii) x+1, y+1, z; (iii) x, y-1, z; (iv) x, y+1, z.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Molecules containing a β-amino alcohol system have been used as precursors for the synthesis of chiral ligands, aziridine and biologically active compounds (Bergmeier, 2000; Krzemiński & Wojtczak, 2005). As a part of study on this family of compounds, we report the crystal structure of the title compound (l) (Fig. 1).

The geometry of the benzenesulfonamide unit in (I) agrees with that for related structures (Chinnakali et al. 2007; Nan & Xing, 2006). The cyclohexane rings in the two molecules adopt the chair configuration. The hydroxy and amino groups on the cyclohexane ring respectively assume axial and equatorial orientations with respect to the plane of the ring. The crystal packing (Fig. 2) is stabilized by intermolecular N—H···O and O—H···O hydrogen bonds from the two neighbouring symmetry-independent molecules (Table 1).

Related literature top

For related structures of β-amino alcohol, see: Bergmeier (2000); Krzemiński & Wojtczak (2005). For related structures of tosylamino compounds, see: Coote et al. (2008); Liu et al. (2005); Chinnakali et al. (2007); Nan & Xing (2006). For the synthesis of the title compound, see: Naiker et al. (2008).

Experimental top

The synthesis of the title compound was carried out using a modified literature method (Naiker et al. 2008) using a catalytic process. To a nitrogen saturated Schlenk tube, toluene (6 ml), water (172 µl) chloroamine-T (0.21 g, 0.956 mmol), cyclohexene (0.478 mmol) and catalyst (0.03 g) were added in that order. After the complete conversion of the starting material the catalyst was gravity filtered. The reaction mixture was washed with 15 ml of sodium sulfite (1 g in 15 ml of de-ionized water), followed by 15 ml of ethyl acetate. Then the aqueous layer was separated from the organic layer and washed further with 3 × 15 ml of ethyl acetate. The solvent was removed in vacuo, and the crude product was purified using preparative high pressure liquid chromatography to yield the title compound as a white solid. Single crystals suitable for X-ray diffraction were prepared by evaporation of a solution of the title compound in acetonitrile/water (1:1 v/v) at room temperature. (mp; 414–416 K) Spectroscopic analysis: 13C NMR (400 MHz, CDCl3, δ, p.p.m): = 19.76 (s, 1 C), 21.54 (s, 2 C), 27.98 (s, 1 C), 31.46(s, 1 C), 55.10 (s, 1 C), 68.76 (s, 1 C), 126.97 (s, 2 C), 129.74 (s, 2 C), 137.98(s, 1 C), 143.39 (s, 143.39).. MS m/z –[fragment]–(%): 291.8 (M + Na+) calculated = 291.8 for C13H19NO3SNa+.

FT–IR (cm-1): = 3414(m), (OH), 3137(m), (NH), 2938(w), 2849(w), 1598(m), (ar), 1059(m), (S=O).

Refinement top

All H-atoms were refined using a riding model, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) for aromatic, C—H = 0.97 Å and Uiso(H) = 1.2Ueq(C) for CH2, C—H = 0.96 Å and Uiso(H) = 1.5Ueq(C) for CH3, N—H = 0.86 Å and Uiso(H) = 1.2Ueq(N) for NH, and O—H = 0.82 Å and Uiso(H) = 1.5Ueq(O) for OH.

Structure description top

Molecules containing a β-amino alcohol system have been used as precursors for the synthesis of chiral ligands, aziridine and biologically active compounds (Bergmeier, 2000; Krzemiński & Wojtczak, 2005). As a part of study on this family of compounds, we report the crystal structure of the title compound (l) (Fig. 1).

The geometry of the benzenesulfonamide unit in (I) agrees with that for related structures (Chinnakali et al. 2007; Nan & Xing, 2006). The cyclohexane rings in the two molecules adopt the chair configuration. The hydroxy and amino groups on the cyclohexane ring respectively assume axial and equatorial orientations with respect to the plane of the ring. The crystal packing (Fig. 2) is stabilized by intermolecular N—H···O and O—H···O hydrogen bonds from the two neighbouring symmetry-independent molecules (Table 1).

For related structures of β-amino alcohol, see: Bergmeier (2000); Krzemiński & Wojtczak (2005). For related structures of tosylamino compounds, see: Coote et al. (2008); Liu et al. (2005); Chinnakali et al. (2007); Nan & Xing (2006). For the synthesis of the title compound, see: Naiker et al. (2008).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50 % probability level. H atoms are presented as a small spheres of arbitrary radius.
[Figure 2] Fig. 2. N—H···O and O—H···O hydrogen bonding interactions (dotted lines) in the crystal structure of the title compound. [Symmetry codes: (i) x - 1, y - 1, z; (ii) x + 1, y + 1, z; (iii) x, y - 1, z; (iv) x, y + 1, z; (v) x + 1, y + 1, z; (vi) x - 1, y - 1, z; (vii) x, y + 1, z; (viii) x, y - 1, z.]
cis-N-(2-Hydroxycyclohexyl)-p-toluenesulfonamide cis-2-Tosylaminocyclohexanol top
Crystal data top
C13H19NO3SZ = 4
Mr = 269.35F(000) = 576
Triclinic, P1Dx = 1.347 Mg m3
Hall symbol: -P 1Melting point = 414–416 K
a = 6.3031 (1) ÅMo Kα radiation, λ = 0.71073 Å
b = 12.8355 (2) ÅCell parameters from 6946 reflections
c = 17.5367 (3) Åθ = 2.4–28.3°
α = 106.645 (1)°µ = 0.24 mm1
β = 93.971 (1)°T = 173 K
γ = 100.047 (1)°Block, colourless
V = 1327.75 (4) Å30.51 × 0.31 × 0.25 mm
Data collection top
Bruker APEXII CCD
diffractometer
4837 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.033
Graphite monochromatorθmax = 28.0°, θmin = 1.2°
φ and ω scansh = 88
18458 measured reflectionsk = 1616
6423 independent reflectionsl = 2323
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: difference Fourier map
wR(F2) = 0.111H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0582P)2 + 0.0739P]
where P = (Fo2 + 2Fc2)/3
6423 reflections(Δ/σ)max < 0.001
343 parametersΔρmax = 0.40 e Å3
0 restraintsΔρmin = 0.41 e Å3
Crystal data top
C13H19NO3Sγ = 100.047 (1)°
Mr = 269.35V = 1327.75 (4) Å3
Triclinic, P1Z = 4
a = 6.3031 (1) ÅMo Kα radiation
b = 12.8355 (2) ŵ = 0.24 mm1
c = 17.5367 (3) ÅT = 173 K
α = 106.645 (1)°0.51 × 0.31 × 0.25 mm
β = 93.971 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
4837 reflections with I > 2σ(I)
18458 measured reflectionsRint = 0.033
6423 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.111H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.40 e Å3
6423 reflectionsΔρmin = 0.41 e Å3
343 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3149 (2)0.39725 (12)0.35318 (8)0.0230 (3)
H10.41550.46750.38600.028*
C20.4327 (2)0.30139 (12)0.34741 (9)0.0227 (3)
H20.57060.31560.32360.027*
C30.4842 (3)0.28788 (14)0.42986 (9)0.0303 (4)
H3A0.58960.35430.46390.036*
H3B0.55220.22250.42400.036*
C40.2795 (3)0.27272 (15)0.47095 (10)0.0344 (4)
H4A0.18000.20220.43990.041*
H4B0.31950.26840.52540.041*
C50.1644 (3)0.36911 (14)0.47692 (9)0.0337 (4)
H5A0.25830.43840.51270.040*
H5B0.02850.35570.50090.040*
C60.1107 (3)0.38351 (13)0.39456 (9)0.0266 (3)
H6A0.00340.31780.36070.032*
H6B0.04490.44970.40100.032*
C70.3445 (2)0.63056 (12)0.29981 (8)0.0212 (3)
C80.5061 (2)0.72537 (12)0.31511 (9)0.0238 (3)
H80.64210.72040.29560.029*
C90.4672 (3)0.82718 (12)0.35906 (9)0.0282 (3)
H90.57750.89200.36930.034*
C100.2692 (3)0.83612 (13)0.38840 (9)0.0290 (4)
C110.1103 (3)0.74045 (14)0.37164 (10)0.0310 (4)
H110.02570.74540.39110.037*
C120.1439 (3)0.63787 (13)0.32735 (9)0.0284 (3)
H120.03200.57350.31590.034*
C130.2270 (4)0.94682 (16)0.43611 (11)0.0459 (5)
H13A0.09000.95820.41300.069*
H13B0.34601.00610.43450.069*
H13C0.21730.94800.49190.069*
N10.2596 (2)0.40722 (10)0.27298 (8)0.0243 (3)
O10.30664 (19)0.48034 (9)0.15979 (6)0.0319 (3)
O20.62179 (17)0.50634 (9)0.26023 (7)0.0322 (3)
O30.29042 (18)0.20373 (9)0.29512 (6)0.0262 (2)
S10.39239 (6)0.50145 (3)0.24179 (2)0.02302 (10)
H1N0.134 (3)0.3817 (15)0.2496 (11)0.039 (5)*
H3O0.364 (3)0.1556 (18)0.2813 (12)0.050 (6)*
C140.7984 (3)1.13220 (12)0.14293 (9)0.0260 (3)
H140.69601.06210.11090.031*
C150.6821 (2)1.22875 (12)0.14932 (8)0.0221 (3)
H150.54351.21420.17260.026*
C160.6321 (3)1.24306 (13)0.06696 (9)0.0275 (3)
H16A0.56491.30870.07290.033*
H16B0.52671.17690.03250.033*
C170.8384 (3)1.25814 (14)0.02681 (9)0.0311 (4)
H17A0.80131.26570.02690.037*
H17B0.94051.32680.05940.037*
C180.9460 (3)1.15881 (15)0.01851 (10)0.0382 (4)
H18A1.08031.16990.00680.046*
H18B0.84681.09090.01670.046*
C191.0017 (3)1.14389 (14)0.10043 (10)0.0322 (4)
H19A1.11151.20880.13390.039*
H19B1.06471.07680.09340.039*
C200.7614 (2)0.89890 (11)0.20252 (8)0.0214 (3)
C210.5911 (3)0.82342 (12)0.15054 (9)0.0253 (3)
H210.45700.84450.14090.030*
C220.6186 (3)0.71642 (13)0.11252 (9)0.0290 (3)
H220.50210.66430.07690.035*
C230.8145 (3)0.68457 (12)0.12593 (9)0.0276 (3)
C240.9834 (3)0.76236 (13)0.17751 (9)0.0276 (3)
H241.11820.74180.18670.033*
C250.9594 (3)0.86956 (13)0.21587 (9)0.0260 (3)
H251.07670.92210.25080.031*
C260.8384 (3)0.56743 (14)0.08535 (11)0.0414 (4)
H26A0.72300.51510.09760.062*
H26B0.98020.55690.10480.062*
H26C0.82750.55410.02720.062*
N20.8567 (2)1.12308 (11)0.22299 (8)0.0285 (3)
O40.81390 (19)1.05591 (9)0.33850 (6)0.0326 (3)
O50.49416 (18)1.02921 (9)0.23866 (7)0.0345 (3)
O60.82296 (18)1.32622 (9)0.20231 (6)0.0246 (2)
S20.72262 (6)1.03181 (3)0.25663 (2)0.02444 (11)
H2N0.981 (3)1.1520 (16)0.2453 (11)0.040 (6)*
H6O0.751 (4)1.3754 (19)0.2141 (13)0.061 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0245 (8)0.0189 (7)0.0237 (7)0.0036 (6)0.0012 (6)0.0050 (6)
C20.0177 (7)0.0233 (7)0.0270 (8)0.0037 (6)0.0014 (6)0.0080 (6)
C30.0286 (9)0.0345 (9)0.0307 (8)0.0111 (7)0.0005 (7)0.0128 (7)
C40.0389 (10)0.0442 (10)0.0277 (8)0.0158 (8)0.0068 (7)0.0177 (7)
C50.0375 (10)0.0382 (9)0.0257 (8)0.0127 (8)0.0057 (7)0.0068 (7)
C60.0293 (9)0.0256 (8)0.0260 (8)0.0117 (7)0.0049 (6)0.0054 (6)
C70.0221 (8)0.0212 (7)0.0237 (7)0.0071 (6)0.0046 (6)0.0099 (6)
C80.0237 (8)0.0256 (8)0.0240 (7)0.0051 (6)0.0049 (6)0.0099 (6)
C90.0337 (9)0.0227 (8)0.0275 (8)0.0039 (7)0.0026 (7)0.0080 (6)
C100.0394 (10)0.0282 (8)0.0226 (8)0.0152 (7)0.0027 (7)0.0080 (6)
C110.0286 (9)0.0383 (9)0.0344 (9)0.0170 (7)0.0114 (7)0.0164 (7)
C120.0235 (8)0.0280 (8)0.0382 (9)0.0074 (6)0.0069 (7)0.0153 (7)
C130.0564 (13)0.0389 (10)0.0413 (11)0.0240 (9)0.0051 (9)0.0021 (8)
N10.0210 (7)0.0224 (6)0.0285 (7)0.0005 (5)0.0031 (5)0.0106 (5)
O10.0401 (7)0.0300 (6)0.0254 (6)0.0060 (5)0.0061 (5)0.0087 (5)
O20.0210 (6)0.0244 (6)0.0502 (7)0.0075 (5)0.0079 (5)0.0073 (5)
O30.0234 (6)0.0204 (5)0.0322 (6)0.0070 (5)0.0023 (5)0.0026 (4)
S10.0216 (2)0.01999 (19)0.0284 (2)0.00532 (14)0.00508 (15)0.00776 (15)
C140.0291 (8)0.0184 (7)0.0274 (8)0.0021 (6)0.0020 (6)0.0051 (6)
C150.0173 (7)0.0232 (7)0.0245 (7)0.0023 (6)0.0009 (6)0.0069 (6)
C160.0258 (8)0.0306 (8)0.0256 (8)0.0063 (7)0.0013 (6)0.0084 (6)
C170.0329 (9)0.0383 (9)0.0236 (8)0.0084 (7)0.0055 (6)0.0106 (7)
C180.0422 (11)0.0415 (10)0.0282 (9)0.0140 (8)0.0095 (8)0.0022 (7)
C190.0356 (10)0.0278 (8)0.0343 (9)0.0167 (7)0.0075 (7)0.0045 (7)
C200.0232 (8)0.0187 (7)0.0243 (7)0.0055 (6)0.0056 (6)0.0085 (6)
C210.0230 (8)0.0252 (8)0.0289 (8)0.0071 (6)0.0026 (6)0.0090 (6)
C220.0328 (9)0.0240 (8)0.0274 (8)0.0046 (7)0.0011 (7)0.0048 (6)
C230.0380 (9)0.0250 (8)0.0261 (8)0.0130 (7)0.0150 (7)0.0112 (6)
C240.0256 (8)0.0324 (8)0.0333 (8)0.0140 (7)0.0107 (6)0.0167 (7)
C250.0219 (8)0.0279 (8)0.0302 (8)0.0050 (6)0.0033 (6)0.0119 (6)
C260.0559 (13)0.0276 (9)0.0450 (11)0.0177 (8)0.0194 (9)0.0092 (8)
N20.0258 (8)0.0223 (7)0.0366 (8)0.0015 (6)0.0052 (6)0.0133 (6)
O40.0412 (7)0.0254 (6)0.0288 (6)0.0038 (5)0.0057 (5)0.0059 (5)
O50.0235 (6)0.0230 (6)0.0539 (8)0.0081 (5)0.0060 (5)0.0047 (5)
O60.0234 (6)0.0209 (5)0.0268 (6)0.0066 (5)0.0010 (4)0.0023 (4)
S20.0242 (2)0.01775 (18)0.0308 (2)0.00465 (15)0.00403 (15)0.00618 (15)
Geometric parameters (Å, º) top
C1—N11.472 (2)C14—N21.4690 (19)
C1—C21.528 (2)C14—C151.528 (2)
C1—C61.529 (2)C14—C191.532 (2)
C1—H11.0000C14—H141.0000
C2—O31.4325 (17)C15—O61.4316 (17)
C2—C31.525 (2)C15—C161.526 (2)
C2—H21.0000C15—H151.0000
C3—C41.531 (2)C16—C171.530 (2)
C3—H3A0.9900C16—H16A0.9900
C3—H3B0.9900C16—H16B0.9900
C4—C51.522 (2)C17—C181.522 (2)
C4—H4A0.9900C17—H17A0.9900
C4—H4B0.9900C17—H17B0.9900
C5—C61.530 (2)C18—C191.528 (2)
C5—H5A0.9900C18—H18A0.9900
C5—H5B0.9900C18—H18B0.9900
C6—H6A0.9900C19—H19A0.9900
C6—H6B0.9900C19—H19B0.9900
C7—C81.390 (2)C20—C211.385 (2)
C7—C121.393 (2)C20—C251.389 (2)
C7—S11.7674 (14)C20—S21.7665 (14)
C8—C91.387 (2)C21—C221.391 (2)
C8—H80.9500C21—H210.9500
C9—C101.393 (2)C22—C231.392 (2)
C9—H90.9500C22—H220.9500
C10—C111.386 (2)C23—C241.388 (2)
C10—C131.507 (2)C23—C261.507 (2)
C11—C121.384 (2)C24—C251.387 (2)
C11—H110.9500C24—H240.9500
C12—H120.9500C25—H250.9500
C13—H13A0.9800C26—H26A0.9800
C13—H13B0.9800C26—H26B0.9800
C13—H13C0.9800C26—H26C0.9800
N1—S11.5975 (13)N2—S21.5982 (13)
N1—H1N0.83 (2)N2—H2N0.82 (2)
O1—S11.4322 (11)O4—S21.4343 (12)
O2—S11.4461 (11)O5—S21.4452 (12)
O3—H3O0.83 (2)O6—H6O0.83 (2)
N1—C1—C2110.49 (11)N2—C14—C15110.28 (12)
N1—C1—C6110.35 (12)N2—C14—C19109.93 (13)
C2—C1—C6111.65 (12)C15—C14—C19112.15 (12)
N1—C1—H1108.1N2—C14—H14108.1
C2—C1—H1108.1C15—C14—H14108.1
C6—C1—H1108.1C19—C14—H14108.1
O3—C2—C3110.68 (12)O6—C15—C16110.75 (12)
O3—C2—C1106.45 (11)O6—C15—C14107.06 (11)
C3—C2—C1110.94 (12)C16—C15—C14110.71 (12)
O3—C2—H2109.6O6—C15—H15109.4
C3—C2—H2109.6C16—C15—H15109.4
C1—C2—H2109.6C14—C15—H15109.4
C2—C3—C4111.59 (13)C15—C16—C17111.19 (13)
C2—C3—H3A109.3C15—C16—H16A109.4
C4—C3—H3A109.3C17—C16—H16A109.4
C2—C3—H3B109.3C15—C16—H16B109.4
C4—C3—H3B109.3C17—C16—H16B109.4
H3A—C3—H3B108.0H16A—C16—H16B108.0
C5—C4—C3110.62 (14)C18—C17—C16110.11 (14)
C5—C4—H4A109.5C18—C17—H17A109.6
C3—C4—H4A109.5C16—C17—H17A109.6
C5—C4—H4B109.5C18—C17—H17B109.6
C3—C4—H4B109.5C16—C17—H17B109.6
H4A—C4—H4B108.1H17A—C17—H17B108.2
C4—C5—C6111.54 (13)C17—C18—C19110.83 (13)
C4—C5—H5A109.3C17—C18—H18A109.5
C6—C5—H5A109.3C19—C18—H18A109.5
C4—C5—H5B109.3C17—C18—H18B109.5
C6—C5—H5B109.3C19—C18—H18B109.5
H5A—C5—H5B108.0H18A—C18—H18B108.1
C1—C6—C5110.98 (13)C18—C19—C14110.71 (14)
C1—C6—H6A109.4C18—C19—H19A109.5
C5—C6—H6A109.4C14—C19—H19A109.5
C1—C6—H6B109.4C18—C19—H19B109.5
C5—C6—H6B109.4C14—C19—H19B109.5
H6A—C6—H6B108.0H19A—C19—H19B108.1
C8—C7—C12120.34 (14)C21—C20—C25120.81 (14)
C8—C7—S1119.33 (11)C21—C20—S2119.75 (11)
C12—C7—S1120.29 (11)C25—C20—S2119.36 (11)
C9—C8—C7119.46 (14)C20—C21—C22119.29 (14)
C9—C8—H8120.3C20—C21—H21120.4
C7—C8—H8120.3C22—C21—H21120.4
C8—C9—C10121.16 (15)C21—C22—C23120.93 (15)
C8—C9—H9119.4C21—C22—H22119.5
C10—C9—H9119.4C23—C22—H22119.5
C11—C10—C9118.17 (14)C24—C23—C22118.55 (14)
C11—C10—C13120.69 (16)C24—C23—C26121.60 (15)
C9—C10—C13121.13 (16)C22—C23—C26119.84 (16)
C12—C11—C10121.93 (15)C25—C24—C23121.41 (14)
C12—C11—H11119.0C25—C24—H24119.3
C10—C11—H11119.0C23—C24—H24119.3
C11—C12—C7118.92 (15)C24—C25—C20119.00 (14)
C11—C12—H12120.5C24—C25—H25120.5
C7—C12—H12120.5C20—C25—H25120.5
C10—C13—H13A109.5C23—C26—H26A109.5
C10—C13—H13B109.5C23—C26—H26B109.5
H13A—C13—H13B109.5H26A—C26—H26B109.5
C10—C13—H13C109.5C23—C26—H26C109.5
H13A—C13—H13C109.5H26A—C26—H26C109.5
H13B—C13—H13C109.5H26B—C26—H26C109.5
C1—N1—S1122.50 (10)C14—N2—S2122.76 (11)
C1—N1—H1N119.7 (13)C14—N2—H2N117.8 (13)
S1—N1—H1N113.8 (13)S2—N2—H2N116.7 (13)
C2—O3—H3O107.3 (15)C15—O6—H6O107.3 (16)
O1—S1—O2118.31 (7)O4—S2—O5119.25 (7)
O1—S1—N1107.26 (7)O4—S2—N2106.51 (7)
O2—S1—N1108.38 (7)O5—S2—N2107.95 (7)
O1—S1—C7109.32 (7)O4—S2—C20108.22 (7)
O2—S1—C7105.55 (7)O5—S2—C20105.34 (7)
N1—S1—C7107.60 (7)N2—S2—C20109.34 (7)
N1—C1—C2—O357.65 (14)N2—C14—C15—O656.00 (15)
C6—C1—C2—O365.57 (15)C19—C14—C15—O666.87 (15)
N1—C1—C2—C3178.14 (12)N2—C14—C15—C16176.81 (12)
C6—C1—C2—C354.92 (16)C19—C14—C15—C1653.94 (16)
O3—C2—C3—C462.41 (17)O6—C15—C16—C1762.91 (16)
C1—C2—C3—C455.53 (17)C14—C15—C16—C1755.68 (16)
C2—C3—C4—C556.05 (19)C15—C16—C17—C1858.13 (18)
C3—C4—C5—C655.88 (19)C16—C17—C18—C1958.33 (19)
N1—C1—C6—C5178.09 (12)C17—C18—C19—C1456.40 (19)
C2—C1—C6—C554.80 (16)N2—C14—C19—C18177.42 (13)
C4—C5—C6—C155.44 (18)C15—C14—C19—C1854.35 (17)
C12—C7—C8—C90.9 (2)C25—C20—C21—C221.2 (2)
S1—C7—C8—C9178.53 (11)S2—C20—C21—C22175.50 (11)
C7—C8—C9—C100.2 (2)C20—C21—C22—C230.1 (2)
C8—C9—C10—C110.8 (2)C21—C22—C23—C240.7 (2)
C8—C9—C10—C13179.95 (15)C21—C22—C23—C26178.69 (14)
C9—C10—C11—C120.2 (2)C22—C23—C24—C250.6 (2)
C13—C10—C11—C12179.39 (15)C26—C23—C24—C25178.82 (14)
C10—C11—C12—C70.9 (2)C23—C24—C25—C200.4 (2)
C8—C7—C12—C111.5 (2)C21—C20—C25—C241.3 (2)
S1—C7—C12—C11179.05 (12)S2—C20—C25—C24175.38 (11)
C2—C1—N1—S1103.58 (13)C15—C14—N2—S2102.29 (14)
C6—C1—N1—S1132.45 (12)C19—C14—N2—S2133.55 (12)
C1—N1—S1—O1175.08 (11)C14—N2—S2—O4174.30 (12)
C1—N1—S1—O246.28 (13)C14—N2—S2—O545.13 (14)
C1—N1—S1—C767.40 (13)C14—N2—S2—C2068.98 (14)
C8—C7—S1—O195.15 (13)C21—C20—S2—O4134.13 (12)
C12—C7—S1—O182.45 (13)C25—C20—S2—O442.57 (13)
C8—C7—S1—O233.11 (14)C21—C20—S2—O55.55 (14)
C12—C7—S1—O2149.29 (12)C25—C20—S2—O5171.15 (11)
C8—C7—S1—N1148.68 (12)C21—C20—S2—N2110.23 (12)
C12—C7—S1—N133.72 (14)C25—C20—S2—N273.07 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O6i0.83 (2)2.00 (2)2.8255 (17)175.0 (18)
N2—H2N···O3ii0.82 (2)2.00 (2)2.8155 (18)173.1 (19)
O3—H3O···O5iii0.83 (2)1.93 (2)2.7489 (15)171 (2)
O6—H6O···O2iv0.83 (2)1.98 (2)2.8001 (15)169 (2)
Symmetry codes: (i) x1, y1, z; (ii) x+1, y+1, z; (iii) x, y1, z; (iv) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC13H19NO3S
Mr269.35
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)6.3031 (1), 12.8355 (2), 17.5367 (3)
α, β, γ (°)106.645 (1), 93.971 (1), 100.047 (1)
V3)1327.75 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.51 × 0.31 × 0.25
Data collection
DiffractometerBruker APEXII CCD
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
18458, 6423, 4837
Rint0.033
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.111, 1.07
No. of reflections6423
No. of parameters343
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.40, 0.41

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O6i0.83 (2)2.00 (2)2.8255 (17)175.0 (18)
N2—H2N···O3ii0.82 (2)2.00 (2)2.8155 (18)173.1 (19)
O3—H3O···O5iii0.83 (2)1.93 (2)2.7489 (15)171 (2)
O6—H6O···O2iv0.83 (2)1.98 (2)2.8001 (15)169 (2)
Symmetry codes: (i) x1, y1, z; (ii) x+1, y+1, z; (iii) x, y1, z; (iv) x, y+1, z.
 

Acknowledgements

We wish to thank Dr Manuel Fernandes (University of the Witwatersrand) for the data collection, and the NRF, THRIP and the University of KwaZulu-Natal for financial support.

References

First citationBergmeier, S. (2000). Tetrahedron, 56, 2561–2576.  Web of Science CrossRef CAS Google Scholar
First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChinnakali, K., Poornachandran, M., Raghunathan, R. & Fun, H.-K. (2007). Acta Cryst. E63, o1030–o1031.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCoote, S. C., O'Brien, P. & Whitwood, A. C. (2008). Org. Biomol. Chem. 6, 4299–4314.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKrzemiński, M. P. & Wojtczak, A. (2005). Tetrahedron Lett. 46, 8299–8302.  Google Scholar
First citationLiu, Z., Fan, Y., Li, R., Zhou, B. & Wu, L. (2005). Tetrahedron Lett. 46, 1023–1025.  Web of Science CSD CrossRef CAS Google Scholar
First citationNaiker, T., Datye, A. & Friedrich, H. B. (2008). Appl. Catal. A, 350, 96–102.  Google Scholar
First citationNan, Z.-H. & Xing, J.-D. (2006). Acta Cryst. E62, o1978–o1979.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds