inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Lithium samarium polyphosphate, LiSm(PO3)4

aDepartment of Physics and Chemistry, Henan Polytechnic University, Jiaozuo, Henan 454000, People's Republic of China, and bState Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, People's Republic of China
*Correspondence e-mail: iamzd@hpu.edu.cn

(Received 19 October 2009; accepted 30 December 2009; online 9 January 2010)

The mixed-metal rare-earth polyphosphate LiSm(PO3)4 consists of a three-dimensional framework in which zigzag [(PO3)n]n chains with a periodicity of four PO4 tetrahedra are connected through Li+ and Sm3+ ions (both with 2. symmetry).

Related literature

For the structures, properties and applications of condensed alkaline metal–rare earth polyphosphates with the general formula MLn(PO3)4 (M = alkali metal, Ln = rare earth metal), see: Ferid et al. (1984[Ferid, M., Dogguy, M., Kbir-Ariguib, N. & Trabelsi, M. (1984). J. Solid State Chem. 53, 149-154.]); Ettis et al. (2003[Ettis, H., Naïli, H. & Mhiri, T. (2003). Cryst. Growth Des. 3, 599-602.]); Parreu et al. (2007[Parreu, I., Solé, R., Massons, J., Díaz, F. & Aguiló, M. (2007). Cryst. Growth Des. 7, 557-563.]); Zhu et al. (2007[Zhu, J., Cheng, W.-D., Wu, D.-S., Zhang, H., Gong, Y.-J., Tong, H.-N. & Zhao, D. (2007). Eur. J. Inorg. Chem. pp. 285-290.]); Ben Zarkouna et al. (2007[Ben Zarkouna, E., Horchani-Naifer, K., Férid, M. & Driss, A. (2007). Acta Cryst. E63, i1-i2.]).

Experimental

Crystal data
  • LiSm(PO3)4

  • Mr = 473.17

  • Monoclinic, C 2/c

  • a = 16.379 (2) Å

  • b = 7.0499 (9) Å

  • c = 9.6936 (12) Å

  • β = 126.138 (2)°

  • V = 903.96 (19) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 7.27 mm−1

  • T = 298 K

  • 0.20 × 0.15 × 0.05 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.439, Tmax = 1.000

  • 2405 measured reflections

  • 854 independent reflections

  • 843 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.019

  • wR(F2) = 0.048

  • S = 1.09

  • 854 reflections

  • 84 parameters

  • Δρmax = 1.02 e Å−3

  • Δρmin = −0.71 e Å−3

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Interest in alkali-metal rare-earth polyphosphates stems from their physical properties, such as high luminescence efficiency (Ettis et al., 2003; Parreu et al., 2007; Zhu et al., 2007). The compound LiSm(PO3)4 has been reported but only unit cell parameters have been refined from powder X-ray diffraction data (Ferid et al., 1984). The single-crystal structure determination performed here confirms that it is isotypic with LiLn(PO3)4 (Ln = Y, La, Nd, Eu, Gd, Tb, Dy, Er, Yb) (Ben Zarkouna et al., 2007). The structure features two P sites (Fig. 1) centred within PO4 tetrahedra, which share common corners (O2 or O6) to form infinite zigzag chains (PO3)nn- that are aligned parallel to the b-direction and are linked together by four-coordinate Li+ and eight-coordinate Sm3+ ions (Fig. 2).

Related literature top

For the structures, properties and applications of condensed alkaline metal–rare earth polyphosphates with the general formula MLn(PO3)4 (M = alkali metal, Ln = rare earth metal), see: Ferid et al. (1984); Ettis et al. (2003); Parreu et al. (2007); Zhu et al. (2007); Ben Zarkouna et al. (2007).

Experimental top

Finely ground reagents Li2CO3, Sm2O3, and NH4H2PO4 were mixed in a molar ratio of Li:Sm:P = 7:1:10, placed in a Pt crucible, and heated at 673 K for 4 h. The mixture was reground and heated at 1073 K for 20 h, cooled to 873 K at a rate of 4 K h-1, and then quenched to room temperature. A few yellow prism-shaped crystals of the title compound were obtained.

Refinement top

The highest peak and the deepest hole in the difference electron density map are located 0.92 Å and 1.11 Å, respectively, from Sm1.

Structure description top

Interest in alkali-metal rare-earth polyphosphates stems from their physical properties, such as high luminescence efficiency (Ettis et al., 2003; Parreu et al., 2007; Zhu et al., 2007). The compound LiSm(PO3)4 has been reported but only unit cell parameters have been refined from powder X-ray diffraction data (Ferid et al., 1984). The single-crystal structure determination performed here confirms that it is isotypic with LiLn(PO3)4 (Ln = Y, La, Nd, Eu, Gd, Tb, Dy, Er, Yb) (Ben Zarkouna et al., 2007). The structure features two P sites (Fig. 1) centred within PO4 tetrahedra, which share common corners (O2 or O6) to form infinite zigzag chains (PO3)nn- that are aligned parallel to the b-direction and are linked together by four-coordinate Li+ and eight-coordinate Sm3+ ions (Fig. 2).

For the structures, properties and applications of condensed alkaline metal–rare earth polyphosphates with the general formula MLn(PO3)4 (M = alkali metal, Ln = rare earth metal), see: Ferid et al. (1984); Ettis et al. (2003); Parreu et al. (2007); Zhu et al. (2007); Ben Zarkouna et al. (2007).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Part of the structure of LiSm(PO3)4 showing the labelling of all atoms. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Projection of the structure of LiSm(PO3)4 down the b axis.
lithium samarium polyphosphate top
Crystal data top
LiSm(PO3)4F(000) = 884
Mr = 473.17Dx = 3.477 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 487 reflections
a = 16.379 (2) Åθ = 2.1–23.0°
b = 7.0499 (9) ŵ = 7.27 mm1
c = 9.6936 (12) ÅT = 298 K
β = 126.138 (2)°Prism, yellow
V = 903.96 (19) Å30.20 × 0.15 × 0.05 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
854 independent reflections
Radiation source: fine-focus sealed tube843 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
φ and ω scansθmax = 25.7°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
h = 2019
Tmin = 0.439, Tmax = 1.000k = 88
2405 measured reflectionsl = 1011
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.019 w = 1/[σ2(Fo2) + (0.0274P)2 + 6.0112P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.048(Δ/σ)max = 0.001
S = 1.09Δρmax = 1.02 e Å3
854 reflectionsΔρmin = 0.71 e Å3
84 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0069 (3)
Crystal data top
LiSm(PO3)4V = 903.96 (19) Å3
Mr = 473.17Z = 4
Monoclinic, C2/cMo Kα radiation
a = 16.379 (2) ŵ = 7.27 mm1
b = 7.0499 (9) ÅT = 298 K
c = 9.6936 (12) Å0.20 × 0.15 × 0.05 mm
β = 126.138 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
854 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
843 reflections with I > 2σ(I)
Tmin = 0.439, Tmax = 1.000Rint = 0.023
2405 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.01984 parameters
wR(F2) = 0.0480 restraints
S = 1.09Δρmax = 1.02 e Å3
854 reflectionsΔρmin = 0.71 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Li10.50000.2975 (12)0.75000.014 (2)
Sm10.50000.20102 (3)0.25000.00541 (15)
P10.36163 (7)0.55515 (13)0.33744 (11)0.0057 (2)
P20.35188 (7)0.15529 (14)0.40335 (12)0.0056 (2)
O10.3857 (2)0.7182 (4)0.4524 (4)0.0117 (6)
O20.3410 (2)0.3787 (4)0.4149 (3)0.0094 (5)
O30.4267 (2)0.0930 (4)0.5830 (3)0.0104 (5)
O40.3705 (2)0.1147 (4)0.2737 (3)0.0104 (5)
O50.43430 (19)0.5038 (4)0.2978 (3)0.0094 (5)
O60.25564 (19)0.5836 (4)0.1557 (3)0.0091 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Li10.018 (5)0.011 (5)0.016 (5)0.0000.011 (5)0.000
Sm10.00650 (19)0.00499 (19)0.00591 (19)0.0000.00431 (14)0.000
P10.0060 (4)0.0046 (4)0.0068 (5)0.0004 (3)0.0040 (4)0.0004 (3)
P20.0059 (4)0.0053 (4)0.0062 (5)0.0005 (3)0.0040 (4)0.0004 (4)
O10.0130 (14)0.0093 (14)0.0112 (15)0.0007 (10)0.0063 (13)0.0026 (10)
O20.0167 (13)0.0052 (13)0.0133 (13)0.0000 (10)0.0126 (12)0.0009 (10)
O30.0108 (13)0.0076 (12)0.0094 (13)0.0003 (10)0.0041 (11)0.0016 (10)
O40.0127 (13)0.0110 (13)0.0126 (13)0.0019 (11)0.0102 (11)0.0026 (11)
O50.0076 (12)0.0107 (13)0.0111 (13)0.0012 (10)0.0061 (11)0.0021 (10)
O60.0083 (12)0.0125 (13)0.0073 (12)0.0027 (10)0.0049 (11)0.0012 (10)
Geometric parameters (Å, º) top
Li1—O31.962 (7)Sm1—O5iv2.553 (3)
Li1—O3i1.962 (7)P1—O11.483 (3)
Li1—O5ii1.980 (7)P1—O51.495 (3)
Li1—O5iii1.980 (7)P1—O21.590 (3)
Li1—P22.927 (3)P1—O61.597 (3)
Li1—P2i2.927 (3)P1—Li1iii3.033 (3)
Li1—P1ii3.033 (3)P2—O41.485 (3)
Li1—P1iii3.033 (3)P2—O31.487 (3)
Sm1—O42.345 (3)P2—O6viii1.580 (3)
Sm1—O4iv2.345 (3)P2—O21.596 (3)
Sm1—O1iii2.405 (3)O1—Sm1iii2.405 (3)
Sm1—O1v2.405 (3)O3—Sm1vii2.463 (3)
Sm1—O3vi2.463 (3)O5—Li1iii1.980 (7)
Sm1—O3vii2.463 (3)O6—P2ix1.580 (3)
Sm1—O52.553 (3)
O3—Li1—O3i85.4 (4)O3vi—Sm1—O3vii65.38 (12)
O3—Li1—O5ii124.08 (11)O4—Sm1—O572.34 (9)
O3i—Li1—O5ii118.63 (11)O4iv—Sm1—O5137.49 (9)
O3—Li1—O5iii118.63 (11)O1iii—Sm1—O572.38 (9)
O3i—Li1—O5iii124.08 (11)O1v—Sm1—O584.63 (9)
O5ii—Li1—O5iii90.0 (4)O3vi—Sm1—O5136.79 (8)
O3—Li1—P227.29 (8)O3vii—Sm1—O5132.74 (9)
O3i—Li1—P2112.7 (3)O4—Sm1—O5iv137.49 (9)
O5ii—Li1—P2108.29 (11)O4iv—Sm1—O5iv72.34 (9)
O5iii—Li1—P299.83 (10)O1iii—Sm1—O5iv84.63 (9)
O3—Li1—P2i112.7 (3)O1v—Sm1—O5iv72.38 (9)
O3i—Li1—P2i27.29 (8)O3vi—Sm1—O5iv132.74 (9)
O5ii—Li1—P2i99.83 (10)O3vii—Sm1—O5iv136.79 (8)
O5iii—Li1—P2i108.29 (11)O5—Sm1—O5iv66.51 (12)
P2—Li1—P2i139.9 (3)O4—Sm1—Li1vii74.97 (7)
O3—Li1—P1ii106.74 (11)O4iv—Sm1—Li1vii74.97 (7)
O3i—Li1—P1ii102.43 (10)O1iii—Sm1—Li1vii103.71 (6)
O5ii—Li1—P1ii25.02 (8)O1v—Sm1—Li1vii103.71 (6)
O5iii—Li1—P1ii114.9 (3)O3vi—Sm1—Li1vii32.69 (6)
P2—Li1—P1ii100.84 (3)O3vii—Sm1—Li1vii32.69 (6)
P2i—Li1—P1ii92.67 (3)O5—Sm1—Li1vii146.74 (6)
O3—Li1—P1iii102.43 (10)O5iv—Sm1—Li1vii146.74 (6)
O3i—Li1—P1iii106.74 (11)O4—Sm1—Li1iii105.03 (7)
O5ii—Li1—P1iii114.9 (3)O4iv—Sm1—Li1iii105.03 (7)
O5iii—Li1—P1iii25.02 (8)O1iii—Sm1—Li1iii76.29 (6)
P2—Li1—P1iii92.67 (3)O1v—Sm1—Li1iii76.29 (6)
P2i—Li1—P1iii100.84 (3)O3vi—Sm1—Li1iii147.31 (6)
P1ii—Li1—P1iii139.9 (3)O3vii—Sm1—Li1iii147.31 (6)
O3—Li1—Sm1vii42.70 (19)O5—Sm1—Li1iii33.26 (6)
O3i—Li1—Sm1vii42.70 (19)O5iv—Sm1—Li1iii33.26 (6)
O5ii—Li1—Sm1vii135.01 (19)Li1vii—Sm1—Li1iii180.000 (1)
O5iii—Li1—Sm1vii135.01 (19)O1—P1—O5118.76 (17)
P2—Li1—Sm1vii69.97 (16)O1—P1—O2106.74 (15)
P2i—Li1—Sm1vii69.97 (16)O5—P1—O2110.85 (15)
P1ii—Li1—Sm1vii110.03 (16)O1—P1—O6111.48 (16)
P1iii—Li1—Sm1vii110.03 (16)O5—P1—O6105.01 (14)
O3—Li1—Sm1iii137.30 (19)O2—P1—O6102.92 (15)
O3i—Li1—Sm1iii137.30 (19)O1—P1—Li1iii91.88 (18)
O5ii—Li1—Sm1iii44.99 (19)O2—P1—Li1iii143.38 (18)
O5iii—Li1—Sm1iii44.99 (19)O6—P1—Li1iii98.86 (11)
P2—Li1—Sm1iii110.03 (16)O4—P2—O3119.71 (16)
P2i—Li1—Sm1iii110.03 (16)O4—P2—O6viii111.89 (15)
P1ii—Li1—Sm1iii69.97 (16)O3—P2—O6viii107.63 (15)
P1iii—Li1—Sm1iii69.97 (16)O4—P2—O2109.68 (15)
Sm1vii—Li1—Sm1iii180.0O3—P2—O2104.96 (15)
O4—Sm1—O4iv149.93 (13)O6viii—P2—O2101.19 (15)
O4—Sm1—O1iii93.04 (10)O4—P2—Li1126.36 (11)
O4iv—Sm1—O1iii94.01 (10)O6viii—P2—Li1121.18 (11)
O4—Sm1—O1v94.01 (10)O2—P2—Li168.45 (19)
O4iv—Sm1—O1v93.04 (10)P1—O1—Sm1iii139.38 (17)
O1iii—Sm1—O1v152.59 (13)P1—O2—P2132.45 (17)
O4—Sm1—O3vi74.20 (9)P2—O3—Li1115.5 (2)
O4iv—Sm1—O3vi80.54 (9)P2—O3—Sm1vii139.82 (16)
O1iii—Sm1—O3vi136.12 (9)Li1—O3—Sm1vii104.6 (2)
O1v—Sm1—O3vi71.22 (9)P2—O4—Sm1132.98 (16)
O4—Sm1—O3vii80.54 (9)P1—O5—Li1iii120.9 (2)
O4iv—Sm1—O3vii74.20 (9)P1—O5—Sm1137.19 (16)
O1iii—Sm1—O3vii71.22 (9)Li1iii—O5—Sm1101.8 (2)
O1v—Sm1—O3vii136.12 (9)P2ix—O6—P1133.96 (18)
Symmetry codes: (i) x+1, y, z+3/2; (ii) x, y+1, z+1/2; (iii) x+1, y+1, z+1; (iv) x+1, y, z+1/2; (v) x, y+1, z1/2; (vi) x, y, z1/2; (vii) x+1, y, z+1; (viii) x+1/2, y1/2, z+1/2; (ix) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaLiSm(PO3)4
Mr473.17
Crystal system, space groupMonoclinic, C2/c
Temperature (K)298
a, b, c (Å)16.379 (2), 7.0499 (9), 9.6936 (12)
β (°) 126.138 (2)
V3)903.96 (19)
Z4
Radiation typeMo Kα
µ (mm1)7.27
Crystal size (mm)0.20 × 0.15 × 0.05
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 1997)
Tmin, Tmax0.439, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
2405, 854, 843
Rint0.023
(sin θ/λ)max1)0.610
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.019, 0.048, 1.09
No. of reflections854
No. of parameters84
Δρmax, Δρmin (e Å3)1.02, 0.71

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009), SHELXTL (Sheldrick, 2008).

 

References

First citationBen Zarkouna, E., Horchani-Naifer, K., Férid, M. & Driss, A. (2007). Acta Cryst. E63, i1–i2.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEttis, H., Naïli, H. & Mhiri, T. (2003). Cryst. Growth Des. 3, 599–602.  Web of Science CrossRef CAS Google Scholar
First citationFerid, M., Dogguy, M., Kbir-Ariguib, N. & Trabelsi, M. (1984). J. Solid State Chem. 53, 149–154.  CrossRef CAS Web of Science Google Scholar
First citationParreu, I., Solé, R., Massons, J., Díaz, F. & Aguiló, M. (2007). Cryst. Growth Des. 7, 557–563.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhu, J., Cheng, W.-D., Wu, D.-S., Zhang, H., Gong, Y.-J., Tong, H.-N. & Zhao, D. (2007). Eur. J. Inorg. Chem. pp. 285–290.  Web of Science CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds