inorganic compounds
Lithium samarium polyphosphate, LiSm(PO3)4
aDepartment of Physics and Chemistry, Henan Polytechnic University, Jiaozuo, Henan 454000, People's Republic of China, and bState Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, People's Republic of China
*Correspondence e-mail: iamzd@hpu.edu.cn
The mixed-metal rare-earth polyphosphate LiSm(PO3)4 consists of a three-dimensional framework in which zigzag [(PO3)n]n− chains with a periodicity of four PO4 tetrahedra are connected through Li+ and Sm3+ ions (both with 2. symmetry).
Related literature
For the structures, properties and applications of condensed alkaline metal–rare earth polyphosphates with the general formula MLn(PO3)4 (M = alkali metal, Ln = rare earth metal), see: Ferid et al. (1984); Ettis et al. (2003); Parreu et al. (2007); Zhu et al. (2007); Ben Zarkouna et al. (2007).
Experimental
Crystal data
|
Data collection: SMART (Bruker, 1997); cell SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL.
Supporting information
https://doi.org/10.1107/S1600536809055822/mg2086sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536809055822/mg2086Isup2.hkl
Finely ground reagents Li2CO3, Sm2O3, and NH4H2PO4 were mixed in a molar ratio of Li:Sm:P = 7:1:10, placed in a Pt crucible, and heated at 673 K for 4 h. The mixture was reground and heated at 1073 K for 20 h, cooled to 873 K at a rate of 4 K h-1, and then quenched to room temperature. A few yellow prism-shaped crystals of the title compound were obtained.
The highest peak and the deepest hole in the difference
are located 0.92 Å and 1.11 Å, respectively, from Sm1.Interest in alkali-metal rare-earth polyphosphates stems from their physical properties, such as high luminescence efficiency (Ettis et al., 2003; Parreu et al., 2007; Zhu et al., 2007). The compound LiSm(PO3)4 has been reported but only
parameters have been refined from powder X-ray diffraction data (Ferid et al., 1984). The single-crystal performed here confirms that it is isotypic with LiLn(PO3)4 (Ln = Y, La, Nd, Eu, Gd, Tb, Dy, Er, Yb) (Ben Zarkouna et al., 2007). The structure features two P sites (Fig. 1) centred within PO4 tetrahedra, which share common corners (O2 or O6) to form infinite zigzag chains (PO3)nn- that are aligned parallel to the b-direction and are linked together by four-coordinate Li+ and eight-coordinate Sm3+ ions (Fig. 2).For the structures, properties and applications of condensed alkaline metal–rare earth polyphosphates with the general formula MLn(PO3)4 (M = alkali metal, Ln = rare earth metal), see: Ferid et al. (1984); Ettis et al. (2003); Parreu et al. (2007); Zhu et al. (2007); Ben Zarkouna et al. (2007).
Data collection: SMART (Bruker, 1997); cell
SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).LiSm(PO3)4 | F(000) = 884 |
Mr = 473.17 | Dx = 3.477 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -C 2yc | Cell parameters from 487 reflections |
a = 16.379 (2) Å | θ = 2.1–23.0° |
b = 7.0499 (9) Å | µ = 7.27 mm−1 |
c = 9.6936 (12) Å | T = 298 K |
β = 126.138 (2)° | Prism, yellow |
V = 903.96 (19) Å3 | 0.20 × 0.15 × 0.05 mm |
Z = 4 |
Bruker SMART CCD area-detector diffractometer | 854 independent reflections |
Radiation source: fine-focus sealed tube | 843 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.023 |
φ and ω scans | θmax = 25.7°, θmin = 3.1° |
Absorption correction: multi-scan (SADABS; Bruker, 1997) | h = −20→19 |
Tmin = 0.439, Tmax = 1.000 | k = −8→8 |
2405 measured reflections | l = −10→11 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.019 | w = 1/[σ2(Fo2) + (0.0274P)2 + 6.0112P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.048 | (Δ/σ)max = 0.001 |
S = 1.09 | Δρmax = 1.02 e Å−3 |
854 reflections | Δρmin = −0.71 e Å−3 |
84 parameters | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.0069 (3) |
LiSm(PO3)4 | V = 903.96 (19) Å3 |
Mr = 473.17 | Z = 4 |
Monoclinic, C2/c | Mo Kα radiation |
a = 16.379 (2) Å | µ = 7.27 mm−1 |
b = 7.0499 (9) Å | T = 298 K |
c = 9.6936 (12) Å | 0.20 × 0.15 × 0.05 mm |
β = 126.138 (2)° |
Bruker SMART CCD area-detector diffractometer | 854 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 1997) | 843 reflections with I > 2σ(I) |
Tmin = 0.439, Tmax = 1.000 | Rint = 0.023 |
2405 measured reflections |
R[F2 > 2σ(F2)] = 0.019 | 84 parameters |
wR(F2) = 0.048 | 0 restraints |
S = 1.09 | Δρmax = 1.02 e Å−3 |
854 reflections | Δρmin = −0.71 e Å−3 |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Li1 | 0.5000 | 0.2975 (12) | 0.7500 | 0.014 (2) | |
Sm1 | 0.5000 | 0.20102 (3) | 0.2500 | 0.00541 (15) | |
P1 | 0.36163 (7) | 0.55515 (13) | 0.33744 (11) | 0.0057 (2) | |
P2 | 0.35188 (7) | 0.15529 (14) | 0.40335 (12) | 0.0056 (2) | |
O1 | 0.3857 (2) | 0.7182 (4) | 0.4524 (4) | 0.0117 (6) | |
O2 | 0.3410 (2) | 0.3787 (4) | 0.4149 (3) | 0.0094 (5) | |
O3 | 0.4267 (2) | 0.0930 (4) | 0.5830 (3) | 0.0104 (5) | |
O4 | 0.3705 (2) | 0.1147 (4) | 0.2737 (3) | 0.0104 (5) | |
O5 | 0.43430 (19) | 0.5038 (4) | 0.2978 (3) | 0.0094 (5) | |
O6 | 0.25564 (19) | 0.5836 (4) | 0.1557 (3) | 0.0091 (5) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Li1 | 0.018 (5) | 0.011 (5) | 0.016 (5) | 0.000 | 0.011 (5) | 0.000 |
Sm1 | 0.00650 (19) | 0.00499 (19) | 0.00591 (19) | 0.000 | 0.00431 (14) | 0.000 |
P1 | 0.0060 (4) | 0.0046 (4) | 0.0068 (5) | 0.0004 (3) | 0.0040 (4) | 0.0004 (3) |
P2 | 0.0059 (4) | 0.0053 (4) | 0.0062 (5) | −0.0005 (3) | 0.0040 (4) | 0.0004 (4) |
O1 | 0.0130 (14) | 0.0093 (14) | 0.0112 (15) | −0.0007 (10) | 0.0063 (13) | −0.0026 (10) |
O2 | 0.0167 (13) | 0.0052 (13) | 0.0133 (13) | 0.0000 (10) | 0.0126 (12) | 0.0009 (10) |
O3 | 0.0108 (13) | 0.0076 (12) | 0.0094 (13) | 0.0003 (10) | 0.0041 (11) | 0.0016 (10) |
O4 | 0.0127 (13) | 0.0110 (13) | 0.0126 (13) | −0.0019 (11) | 0.0102 (11) | −0.0026 (11) |
O5 | 0.0076 (12) | 0.0107 (13) | 0.0111 (13) | 0.0012 (10) | 0.0061 (11) | 0.0021 (10) |
O6 | 0.0083 (12) | 0.0125 (13) | 0.0073 (12) | 0.0027 (10) | 0.0049 (11) | 0.0012 (10) |
Li1—O3 | 1.962 (7) | Sm1—O5iv | 2.553 (3) |
Li1—O3i | 1.962 (7) | P1—O1 | 1.483 (3) |
Li1—O5ii | 1.980 (7) | P1—O5 | 1.495 (3) |
Li1—O5iii | 1.980 (7) | P1—O2 | 1.590 (3) |
Li1—P2 | 2.927 (3) | P1—O6 | 1.597 (3) |
Li1—P2i | 2.927 (3) | P1—Li1iii | 3.033 (3) |
Li1—P1ii | 3.033 (3) | P2—O4 | 1.485 (3) |
Li1—P1iii | 3.033 (3) | P2—O3 | 1.487 (3) |
Sm1—O4 | 2.345 (3) | P2—O6viii | 1.580 (3) |
Sm1—O4iv | 2.345 (3) | P2—O2 | 1.596 (3) |
Sm1—O1iii | 2.405 (3) | O1—Sm1iii | 2.405 (3) |
Sm1—O1v | 2.405 (3) | O3—Sm1vii | 2.463 (3) |
Sm1—O3vi | 2.463 (3) | O5—Li1iii | 1.980 (7) |
Sm1—O3vii | 2.463 (3) | O6—P2ix | 1.580 (3) |
Sm1—O5 | 2.553 (3) | ||
O3—Li1—O3i | 85.4 (4) | O3vi—Sm1—O3vii | 65.38 (12) |
O3—Li1—O5ii | 124.08 (11) | O4—Sm1—O5 | 72.34 (9) |
O3i—Li1—O5ii | 118.63 (11) | O4iv—Sm1—O5 | 137.49 (9) |
O3—Li1—O5iii | 118.63 (11) | O1iii—Sm1—O5 | 72.38 (9) |
O3i—Li1—O5iii | 124.08 (11) | O1v—Sm1—O5 | 84.63 (9) |
O5ii—Li1—O5iii | 90.0 (4) | O3vi—Sm1—O5 | 136.79 (8) |
O3—Li1—P2 | 27.29 (8) | O3vii—Sm1—O5 | 132.74 (9) |
O3i—Li1—P2 | 112.7 (3) | O4—Sm1—O5iv | 137.49 (9) |
O5ii—Li1—P2 | 108.29 (11) | O4iv—Sm1—O5iv | 72.34 (9) |
O5iii—Li1—P2 | 99.83 (10) | O1iii—Sm1—O5iv | 84.63 (9) |
O3—Li1—P2i | 112.7 (3) | O1v—Sm1—O5iv | 72.38 (9) |
O3i—Li1—P2i | 27.29 (8) | O3vi—Sm1—O5iv | 132.74 (9) |
O5ii—Li1—P2i | 99.83 (10) | O3vii—Sm1—O5iv | 136.79 (8) |
O5iii—Li1—P2i | 108.29 (11) | O5—Sm1—O5iv | 66.51 (12) |
P2—Li1—P2i | 139.9 (3) | O4—Sm1—Li1vii | 74.97 (7) |
O3—Li1—P1ii | 106.74 (11) | O4iv—Sm1—Li1vii | 74.97 (7) |
O3i—Li1—P1ii | 102.43 (10) | O1iii—Sm1—Li1vii | 103.71 (6) |
O5ii—Li1—P1ii | 25.02 (8) | O1v—Sm1—Li1vii | 103.71 (6) |
O5iii—Li1—P1ii | 114.9 (3) | O3vi—Sm1—Li1vii | 32.69 (6) |
P2—Li1—P1ii | 100.84 (3) | O3vii—Sm1—Li1vii | 32.69 (6) |
P2i—Li1—P1ii | 92.67 (3) | O5—Sm1—Li1vii | 146.74 (6) |
O3—Li1—P1iii | 102.43 (10) | O5iv—Sm1—Li1vii | 146.74 (6) |
O3i—Li1—P1iii | 106.74 (11) | O4—Sm1—Li1iii | 105.03 (7) |
O5ii—Li1—P1iii | 114.9 (3) | O4iv—Sm1—Li1iii | 105.03 (7) |
O5iii—Li1—P1iii | 25.02 (8) | O1iii—Sm1—Li1iii | 76.29 (6) |
P2—Li1—P1iii | 92.67 (3) | O1v—Sm1—Li1iii | 76.29 (6) |
P2i—Li1—P1iii | 100.84 (3) | O3vi—Sm1—Li1iii | 147.31 (6) |
P1ii—Li1—P1iii | 139.9 (3) | O3vii—Sm1—Li1iii | 147.31 (6) |
O3—Li1—Sm1vii | 42.70 (19) | O5—Sm1—Li1iii | 33.26 (6) |
O3i—Li1—Sm1vii | 42.70 (19) | O5iv—Sm1—Li1iii | 33.26 (6) |
O5ii—Li1—Sm1vii | 135.01 (19) | Li1vii—Sm1—Li1iii | 180.000 (1) |
O5iii—Li1—Sm1vii | 135.01 (19) | O1—P1—O5 | 118.76 (17) |
P2—Li1—Sm1vii | 69.97 (16) | O1—P1—O2 | 106.74 (15) |
P2i—Li1—Sm1vii | 69.97 (16) | O5—P1—O2 | 110.85 (15) |
P1ii—Li1—Sm1vii | 110.03 (16) | O1—P1—O6 | 111.48 (16) |
P1iii—Li1—Sm1vii | 110.03 (16) | O5—P1—O6 | 105.01 (14) |
O3—Li1—Sm1iii | 137.30 (19) | O2—P1—O6 | 102.92 (15) |
O3i—Li1—Sm1iii | 137.30 (19) | O1—P1—Li1iii | 91.88 (18) |
O5ii—Li1—Sm1iii | 44.99 (19) | O2—P1—Li1iii | 143.38 (18) |
O5iii—Li1—Sm1iii | 44.99 (19) | O6—P1—Li1iii | 98.86 (11) |
P2—Li1—Sm1iii | 110.03 (16) | O4—P2—O3 | 119.71 (16) |
P2i—Li1—Sm1iii | 110.03 (16) | O4—P2—O6viii | 111.89 (15) |
P1ii—Li1—Sm1iii | 69.97 (16) | O3—P2—O6viii | 107.63 (15) |
P1iii—Li1—Sm1iii | 69.97 (16) | O4—P2—O2 | 109.68 (15) |
Sm1vii—Li1—Sm1iii | 180.0 | O3—P2—O2 | 104.96 (15) |
O4—Sm1—O4iv | 149.93 (13) | O6viii—P2—O2 | 101.19 (15) |
O4—Sm1—O1iii | 93.04 (10) | O4—P2—Li1 | 126.36 (11) |
O4iv—Sm1—O1iii | 94.01 (10) | O6viii—P2—Li1 | 121.18 (11) |
O4—Sm1—O1v | 94.01 (10) | O2—P2—Li1 | 68.45 (19) |
O4iv—Sm1—O1v | 93.04 (10) | P1—O1—Sm1iii | 139.38 (17) |
O1iii—Sm1—O1v | 152.59 (13) | P1—O2—P2 | 132.45 (17) |
O4—Sm1—O3vi | 74.20 (9) | P2—O3—Li1 | 115.5 (2) |
O4iv—Sm1—O3vi | 80.54 (9) | P2—O3—Sm1vii | 139.82 (16) |
O1iii—Sm1—O3vi | 136.12 (9) | Li1—O3—Sm1vii | 104.6 (2) |
O1v—Sm1—O3vi | 71.22 (9) | P2—O4—Sm1 | 132.98 (16) |
O4—Sm1—O3vii | 80.54 (9) | P1—O5—Li1iii | 120.9 (2) |
O4iv—Sm1—O3vii | 74.20 (9) | P1—O5—Sm1 | 137.19 (16) |
O1iii—Sm1—O3vii | 71.22 (9) | Li1iii—O5—Sm1 | 101.8 (2) |
O1v—Sm1—O3vii | 136.12 (9) | P2ix—O6—P1 | 133.96 (18) |
Symmetry codes: (i) −x+1, y, −z+3/2; (ii) x, −y+1, z+1/2; (iii) −x+1, −y+1, −z+1; (iv) −x+1, y, −z+1/2; (v) x, −y+1, z−1/2; (vi) x, −y, z−1/2; (vii) −x+1, −y, −z+1; (viii) −x+1/2, y−1/2, −z+1/2; (ix) −x+1/2, y+1/2, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | LiSm(PO3)4 |
Mr | 473.17 |
Crystal system, space group | Monoclinic, C2/c |
Temperature (K) | 298 |
a, b, c (Å) | 16.379 (2), 7.0499 (9), 9.6936 (12) |
β (°) | 126.138 (2) |
V (Å3) | 903.96 (19) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 7.27 |
Crystal size (mm) | 0.20 × 0.15 × 0.05 |
Data collection | |
Diffractometer | Bruker SMART CCD area-detector |
Absorption correction | Multi-scan (SADABS; Bruker, 1997) |
Tmin, Tmax | 0.439, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 2405, 854, 843 |
Rint | 0.023 |
(sin θ/λ)max (Å−1) | 0.610 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.019, 0.048, 1.09 |
No. of reflections | 854 |
No. of parameters | 84 |
Δρmax, Δρmin (e Å−3) | 1.02, −0.71 |
Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009), SHELXTL (Sheldrick, 2008).
References
Ben Zarkouna, E., Horchani-Naifer, K., Férid, M. & Driss, A. (2007). Acta Cryst. E63, i1–i2. Web of Science CrossRef IUCr Journals Google Scholar
Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Ettis, H., Naïli, H. & Mhiri, T. (2003). Cryst. Growth Des. 3, 599–602. Web of Science CrossRef CAS Google Scholar
Ferid, M., Dogguy, M., Kbir-Ariguib, N. & Trabelsi, M. (1984). J. Solid State Chem. 53, 149–154. CrossRef CAS Web of Science Google Scholar
Parreu, I., Solé, R., Massons, J., Díaz, F. & Aguiló, M. (2007). Cryst. Growth Des. 7, 557–563. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zhu, J., Cheng, W.-D., Wu, D.-S., Zhang, H., Gong, Y.-J., Tong, H.-N. & Zhao, D. (2007). Eur. J. Inorg. Chem. pp. 285–290. Web of Science CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Interest in alkali-metal rare-earth polyphosphates stems from their physical properties, such as high luminescence efficiency (Ettis et al., 2003; Parreu et al., 2007; Zhu et al., 2007). The compound LiSm(PO3)4 has been reported but only unit cell parameters have been refined from powder X-ray diffraction data (Ferid et al., 1984). The single-crystal structure determination performed here confirms that it is isotypic with LiLn(PO3)4 (Ln = Y, La, Nd, Eu, Gd, Tb, Dy, Er, Yb) (Ben Zarkouna et al., 2007). The structure features two P sites (Fig. 1) centred within PO4 tetrahedra, which share common corners (O2 or O6) to form infinite zigzag chains (PO3)nn- that are aligned parallel to the b-direction and are linked together by four-coordinate Li+ and eight-coordinate Sm3+ ions (Fig. 2).