inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Pd2.28(1)Zn10.37(1)Al0.35(1), a ternary γ-brass-type structure

aDepartment of Chemistry and Ames Laboratory, Iowa State University, Ames, IA 50011, USA
*Correspondence e-mail: srini@iastate.edu

(Received 18 December 2009; accepted 6 January 2010; online 13 January 2010)

Palladium zinc aluminium (2.28/10.37/0.35), Pd2.28(1)Zn10.37(1)Al0.35(1), represents the upper limit of Al substitution into the parent cubic γ-brass Pd2+xZn11−x. The structure can be described in terms of a 26-atom cluster consisting of an inner tetra­hedron (IT), an outer tetra­hedron (OT), an octa­hedron (OH) and a cubocta­hedron (CO), with the substituted Al atoms partially occupying the IT (.3m) and CO (..m) sites.

Related literature

For related literature, see: Arnberg & Westman (1972[Arnberg, L. & Westman, S. (1972). Acta Chem. Scand. 26, 513-517.]); Edström & Westman (1969[Edström, V.-A. & Westman, S. (1969). Acta Chem. Scand. 23, 279-285.]); Gross et al. (2001[Gross, N., Kotzyba, G., Künnen, B. & Jeitschko, W. (2001). Z. Anorg. Allg. Chem. 627, 155-163.]); Gourdon & Miller (2006[Gourdon, O. & Miller, G. J. (2006). Chem. Mater. 18, 1848-1856.]); Harbrecht et al. (2002[Harbrecht, B., Thimmaiah, S., Armbrüster, M., Pietzonka, C. & Lee, S. (2002). Z. Anorg. Allg. Chem. 628, 2744-2749.]); Thimmaiah & Miller (2010[Thimmaiah, S. & Miller, G. J. (2010). Chem. Eur. J. Accepted.]). For standardization of crystal structures, see: Gelato & Parthé (1987[Gelato, L. M. & Parthé, E. (1987). J. Appl. Cryst. 20, 139-143.]).

Experimental

Crystal data
  • Pd2.28Zn10.37Al0.35

  • Mr = 929.56

  • Cubic, [I \overline 43m ]

  • a = 9.1079 (11) Å

  • V = 755.54 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 37.46 mm−1

  • T = 293 K

  • 0.12 × 0.06 × 0.03 mm

Data collection
  • Stoe IPDS-II diffractometer

  • Absorption correction: numerical (X-SHAPE and X-RED; Stoe & Cie, 2005[Stoe & Cie (2005). X-SHAPE and X-RED. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.054, Tmax = 0.465

  • 11243 measured reflections

  • 339 independent reflections

  • 337 reflections with I > 2σ(I)

  • Rint = 0.069

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.068

  • S = 1.02

  • 339 reflections

  • 22 parameters

  • Δρmax = 1.05 e Å−3

  • Δρmin = −1.19 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.])

  • Flack parameter: 0.04 (4)

Data collection: X-AREA (Stoe & Cie, 2009[Stoe & Cie (2009). X-AREA. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2009[Brandenburg, K. (2009). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Various M2Zn11 phases [M = Rh (Gross et al., 2001), Pd (Gourdon & Miller, 2006), Ir (Arnberg & Westman, 1972), Pt (Harbrecht et al., 2002)] adopt the γ-brass type structure (Pearson code cI52). To study the influence of valence electron concentration (vec) on γ-brass type phases, we attempted replacing Zn by Al in the parent Pd2 + xZn11 - x phase (Gourdon & Miller, 2006). Initially obtained as a side product, Pd2.28 (1)Zn10.37 (1)Al0.35 (1) represents the upper limit of Al substitution in the Pd2 + xZn11 - x phase. Further substitution of Al leads to 2×2×2 superstructures of γ-brass with lattice parameters ranging from 18.0700 (3) to 18.1600 (2) Å (Pearson code cF400–cF416) (Thimmaiah & Miller, 2010).

In terms of the 26-atom clusters (in bcc arrangement) commonly used to describe the structure of γ-brass, the inner tetrahedron (IT) and cuboctahedron (CO) are occupied by mixtures of Zn and Al atoms, the outer tetrahedron (OT) is fully occupied by Pd atoms, and the octahedron (OH) is occupied by a mixture of Zn and Pd atoms (Fig. 1a). Similar mixing of Zn and Pd atoms on the OH sites is observed in binary Pd2 + xZn11 - x (Gourdon & Miller, 2006; Edström & Westman, 1969). An alternative description involves four interpenetrating icosahedra, which are constructed around each OT atom and encapsulate a tetrahedron formed by IT atoms (Fig. 1 b). The IT and OT sites are each surrounded by 12 nearest neighbours [at distances of 2.666 (1)–2.789 (2) Å and 2.624 (1)–2.794 (1) Å, respectively] forming distorted icosahedra. On the other hand, the coordination numbers are 13 around the OH site [2.591 (2)–2.945 (1) Å] and 11 around the CO site [2.612 (1)–2.945 (1) Å].

Related literature top

For related literature, see: Arnberg & Westman (1972); Edström & Westman (1969); Gross et al. (2001); Gourdon & Miller (2006); Harbrecht et al. (2002); Thimmaiah & Miller (2010). For standardization of crystal structures, see: Gelato & Parthé (1987).

Experimental top

The title compound was prepared from 0.5 - g mixtures of the elements (Pd foil, MPC, Ames Laboratory, 99.999%; Zn ingot, MPC, Ames Laboratory, 99.999%; Al tear drop, MPC, Ames Laboratory, 99.999%) loaded into cleaned Ta tubes, which were placed in evacuated (10-5 torr) and sealed silica tubes. The tubes were heated at 30 °C h-1 to 850 °C, kept there for 12 h, cooled to 550 °C over 12 h, equilibrated there for 3 d, and then cooled to room temperature by shutting off the furnace.

Refinement top

Refinement of a starting model (Gourdon & Miller, 2006) led to a mixture of 0.09 (3) Pd and 0.91 (3) Zn in the OH sites. However, the IT and CO sites, initially assumed to be fully occupied by Zn atoms, exhibited elevated isotropic displacement parameters. Modeling these sites with a mixture of Zn and Al resulted in the refined composition Pd2.28 (1)Zn10.37 (1)Al0.35 (1). Analysis of multiple crystals obtained from the same and other batches gave the same site occupancies. Within the limitation of the technique, semiquantitative energy-dispersive X-ray analysis corroborate this chemical composition. The structure was standardized by means of the program STRUCTURE TIDY (Gelato & Parthé, 1987). The highest peak and the deepest hole are located 1.26 Å and 1.18 Å, respectively, from Pd1.

Structure description top

Various M2Zn11 phases [M = Rh (Gross et al., 2001), Pd (Gourdon & Miller, 2006), Ir (Arnberg & Westman, 1972), Pt (Harbrecht et al., 2002)] adopt the γ-brass type structure (Pearson code cI52). To study the influence of valence electron concentration (vec) on γ-brass type phases, we attempted replacing Zn by Al in the parent Pd2 + xZn11 - x phase (Gourdon & Miller, 2006). Initially obtained as a side product, Pd2.28 (1)Zn10.37 (1)Al0.35 (1) represents the upper limit of Al substitution in the Pd2 + xZn11 - x phase. Further substitution of Al leads to 2×2×2 superstructures of γ-brass with lattice parameters ranging from 18.0700 (3) to 18.1600 (2) Å (Pearson code cF400–cF416) (Thimmaiah & Miller, 2010).

In terms of the 26-atom clusters (in bcc arrangement) commonly used to describe the structure of γ-brass, the inner tetrahedron (IT) and cuboctahedron (CO) are occupied by mixtures of Zn and Al atoms, the outer tetrahedron (OT) is fully occupied by Pd atoms, and the octahedron (OH) is occupied by a mixture of Zn and Pd atoms (Fig. 1a). Similar mixing of Zn and Pd atoms on the OH sites is observed in binary Pd2 + xZn11 - x (Gourdon & Miller, 2006; Edström & Westman, 1969). An alternative description involves four interpenetrating icosahedra, which are constructed around each OT atom and encapsulate a tetrahedron formed by IT atoms (Fig. 1 b). The IT and OT sites are each surrounded by 12 nearest neighbours [at distances of 2.666 (1)–2.789 (2) Å and 2.624 (1)–2.794 (1) Å, respectively] forming distorted icosahedra. On the other hand, the coordination numbers are 13 around the OH site [2.591 (2)–2.945 (1) Å] and 11 around the CO site [2.612 (1)–2.945 (1) Å].

For related literature, see: Arnberg & Westman (1972); Edström & Westman (1969); Gross et al. (2001); Gourdon & Miller (2006); Harbrecht et al. (2002); Thimmaiah & Miller (2010). For standardization of crystal structures, see: Gelato & Parthé (1987).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2009); cell refinement: X-AREA (Stoe & Cie, 2009); data reduction: X-AREA (Stoe & Cie, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Cubic γ-brass structure of Pd2.28 (1)Zn10.37 (1)Al0.35 (1) in terms of (a) 26-atom clusters in bcc arrangement, with different polyhedra emphasized, and (b) four interpenetrating Pd-centered icosahedra. The color scheme is shown and displacement ellipsoids are drawn at the 90% probability level.
palladium zinc aluminium (2.28/10.37/0.35) top
Crystal data top
Pd2.28Zn10.37Al0.35Melting point: not measured K
Mr = 929.56Mo Kα radiation, λ = 0.71073 Å
Cubic, I43mCell parameters from 2000 reflections
Hall symbol: I -4 2 3θ = 3.2–34.8°
a = 9.1079 (11) ŵ = 37.46 mm1
V = 755.54 (16) Å3T = 293 K
Z = 4Rectangular, silver
F(000) = 16810.12 × 0.06 × 0.03 mm
Dx = 8.172 Mg m3
Data collection top
Stoe/IPDS-II
diffractometer
339 independent reflections
Radiation source: fine-focus sealed tube337 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.069
φ and ω scansθmax = 34.8°, θmin = 3.2°
Absorption correction: numerical
(X-SHAPE and X-RED; Stoe & Cie, 2005)
h = 1414
Tmin = 0.054, Tmax = 0.465k = 1413
11243 measured reflectionsl = 1414
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0249P)2 + 32.9721P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.027(Δ/σ)max < 0.001
wR(F2) = 0.068Δρmax = 1.05 e Å3
S = 1.02Δρmin = 1.19 e Å3
339 reflectionsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
22 parametersExtinction coefficient: 0.00118 (16)
0 restraintsAbsolute structure: Flack (1983)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.04 (4)
Crystal data top
Pd2.28Zn10.37Al0.35Z = 4
Mr = 929.56Mo Kα radiation
Cubic, I43mµ = 37.46 mm1
a = 9.1079 (11) ÅT = 293 K
V = 755.54 (16) Å30.12 × 0.06 × 0.03 mm
Data collection top
Stoe/IPDS-II
diffractometer
339 independent reflections
Absorption correction: numerical
(X-SHAPE and X-RED; Stoe & Cie, 2005)
337 reflections with I > 2σ(I)
Tmin = 0.054, Tmax = 0.465Rint = 0.069
11243 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.027 w = 1/[σ2(Fo2) + (0.0249P)2 + 32.9721P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.068Δρmax = 1.05 e Å3
S = 1.02Δρmin = 1.19 e Å3
339 reflectionsAbsolute structure: Flack (1983)
22 parametersAbsolute structure parameter: 0.04 (4)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Pd10.32674 (6)0.32674 (6)0.32674 (6)0.0101 (3)
Zn10.10828 (12)0.10828 (12)0.10828 (12)0.0139 (5)0.924 (17)
Al10.10828 (12)0.10828 (12)0.10828 (12)0.0139 (5)0.076 (17)
Zn20.35776 (15)0.00000.00000.0135 (5)0.91 (3)
Pd20.35776 (15)0.00000.00000.0135 (5)0.09 (3)
Zn30.31076 (9)0.31076 (9)0.03932 (12)0.0162 (3)0.966 (13)
Al30.31076 (9)0.31076 (9)0.03932 (12)0.0162 (3)0.034 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd10.0101 (3)0.0101 (3)0.0101 (3)0.0007 (2)0.0007 (2)0.0007 (2)
Zn10.0139 (5)0.0139 (5)0.0139 (5)0.0029 (4)0.0029 (4)0.0029 (4)
Al10.0139 (5)0.0139 (5)0.0139 (5)0.0029 (4)0.0029 (4)0.0029 (4)
Zn20.0124 (7)0.0140 (6)0.0140 (6)0.0000.0000.0034 (5)
Pd20.0124 (7)0.0140 (6)0.0140 (6)0.0000.0000.0034 (5)
Zn30.0177 (4)0.0177 (4)0.0132 (5)0.0026 (3)0.0028 (2)0.0028 (2)
Al30.0177 (4)0.0177 (4)0.0132 (5)0.0026 (3)0.0028 (2)0.0028 (2)
Geometric parameters (Å, º) top
Pd1—Al3i2.6240 (11)Zn1—Zn32.6826 (17)
Pd1—Zn3i2.6240 (11)Zn2—Pd2vi2.591 (3)
Pd1—Al3ii2.6240 (11)Zn2—Zn2vi2.591 (3)
Pd1—Al3iii2.6240 (11)Zn2—Al3vii2.6115 (12)
Pd1—Zn3ii2.6240 (11)Zn2—Zn3vii2.6115 (12)
Pd1—Zn3iii2.6240 (11)Zn2—Al3viii2.6115 (12)
Pd1—Al3iv2.6259 (12)Zn2—Zn3viii2.6115 (12)
Pd1—Zn3iv2.6259 (12)Zn2—Zn1ix2.6662 (12)
Pd1—Al3v2.6259 (12)Zn2—Al1ix2.6662 (12)
Pd1—Zn3v2.6259 (12)Zn2—Pd1x2.7936 (9)
Pd1—Zn32.6259 (12)Zn2—Pd1xi2.7936 (9)
Zn1—Zn22.6662 (12)Zn3—Pd2i2.6115 (12)
Zn1—Pd2v2.6662 (12)Zn3—Zn2i2.6115 (12)
Zn1—Pd2iv2.6662 (12)Zn3—Pd1x2.6240 (11)
Zn1—Zn2v2.6662 (12)Zn3—Al3xii2.7245 (6)
Zn1—Zn2iv2.6662 (12)Zn3—Al3vii2.7245 (6)
Zn1—Al3v2.6826 (17)Zn3—Zn3xii2.7245 (6)
Zn1—Al3iv2.6826 (17)Zn3—Zn3vii2.7245 (6)
Zn1—Zn3v2.6826 (17)Zn3—Al3i2.7245 (6)
Zn1—Zn3iv2.6826 (17)Zn3—Al3ii2.7245 (6)
Al3i—Pd1—Zn3i0.00 (6)Al3vii—Zn2—Zn3vii0.00 (5)
Al3i—Pd1—Al3ii118.459 (14)Pd2vi—Zn2—Al3viii68.97 (4)
Zn3i—Pd1—Al3ii118.459 (14)Zn2vi—Zn2—Al3viii68.97 (4)
Al3i—Pd1—Al3iii118.459 (14)Al3vii—Zn2—Al3viii137.93 (7)
Zn3i—Pd1—Al3iii118.459 (14)Zn3vii—Zn2—Al3viii137.93 (7)
Al3ii—Pd1—Al3iii118.459 (14)Pd2vi—Zn2—Zn3viii68.97 (4)
Al3i—Pd1—Zn3ii118.459 (14)Zn2vi—Zn2—Zn3viii68.97 (4)
Zn3i—Pd1—Zn3ii118.459 (14)Al3vii—Zn2—Zn3viii137.93 (7)
Al3ii—Pd1—Zn3ii0.00 (6)Zn3vii—Zn2—Zn3viii137.93 (7)
Al3iii—Pd1—Zn3ii118.459 (14)Al3viii—Zn2—Zn3viii0.00 (3)
Al3i—Pd1—Zn3iii118.459 (14)Pd2vi—Zn2—Zn1148.46 (4)
Zn3i—Pd1—Zn3iii118.459 (14)Zn2vi—Zn2—Zn1148.46 (4)
Al3ii—Pd1—Zn3iii118.459 (14)Al3vii—Zn2—Zn1107.81 (3)
Al3iii—Pd1—Zn3iii0.00 (6)Zn3vii—Zn2—Zn1107.81 (3)
Zn3ii—Pd1—Zn3iii118.459 (14)Al3viii—Zn2—Zn1107.81 (3)
Al3i—Pd1—Al3iv62.53 (3)Zn3viii—Zn2—Zn1107.81 (3)
Zn3i—Pd1—Al3iv62.53 (3)Pd2vi—Zn2—Zn1ix148.46 (4)
Al3ii—Pd1—Al3iv133.05 (4)Zn2vi—Zn2—Zn1ix148.46 (4)
Al3iii—Pd1—Al3iv62.53 (3)Al3vii—Zn2—Zn1ix107.81 (3)
Zn3ii—Pd1—Al3iv133.05 (4)Zn3vii—Zn2—Zn1ix107.81 (3)
Zn3iii—Pd1—Al3iv62.53 (3)Al3viii—Zn2—Zn1ix107.81 (3)
Al3i—Pd1—Zn3iv62.53 (3)Zn3viii—Zn2—Zn1ix107.81 (3)
Zn3i—Pd1—Zn3iv62.53 (3)Zn1—Zn2—Zn1ix63.08 (9)
Al3ii—Pd1—Zn3iv133.05 (4)Pd2vi—Zn2—Al1ix148.46 (4)
Al3iii—Pd1—Zn3iv62.53 (3)Zn2vi—Zn2—Al1ix148.46 (4)
Zn3ii—Pd1—Zn3iv133.05 (4)Al3vii—Zn2—Al1ix107.81 (3)
Zn3iii—Pd1—Zn3iv62.53 (3)Zn3vii—Zn2—Al1ix107.81 (3)
Al3iv—Pd1—Zn3iv0.00 (7)Al3viii—Zn2—Al1ix107.81 (3)
Al3i—Pd1—Al3v133.05 (4)Zn3viii—Zn2—Al1ix107.81 (3)
Zn3i—Pd1—Al3v133.05 (4)Zn1—Zn2—Al1ix63.08 (9)
Al3ii—Pd1—Al3v62.53 (3)Zn1ix—Zn2—Al1ix0.00 (6)
Al3iii—Pd1—Al3v62.53 (3)Pd2vi—Zn2—Pd1x126.98 (3)
Zn3ii—Pd1—Al3v62.53 (3)Zn2vi—Zn2—Pd1x126.98 (3)
Zn3iii—Pd1—Al3v62.53 (3)Al3vii—Zn2—Pd1x58.01 (3)
Al3iv—Pd1—Al3v83.48 (4)Zn3vii—Zn2—Pd1x58.01 (3)
Zn3iv—Pd1—Al3v83.48 (4)Al3viii—Zn2—Pd1x164.05 (6)
Al3i—Pd1—Zn3v133.05 (4)Zn3viii—Zn2—Pd1x164.05 (6)
Zn3i—Pd1—Zn3v133.05 (4)Zn1—Zn2—Pd1x59.16 (3)
Al3ii—Pd1—Zn3v62.53 (3)Zn1ix—Zn2—Pd1x59.16 (3)
Al3iii—Pd1—Zn3v62.53 (3)Al1ix—Zn2—Pd1x59.16 (3)
Zn3ii—Pd1—Zn3v62.53 (3)Pd2vi—Zn2—Pd1xi126.98 (3)
Zn3iii—Pd1—Zn3v62.53 (3)Zn2vi—Zn2—Pd1xi126.98 (3)
Al3iv—Pd1—Zn3v83.48 (4)Al3vii—Zn2—Pd1xi164.05 (6)
Zn3iv—Pd1—Zn3v83.48 (4)Zn3vii—Zn2—Pd1xi164.05 (6)
Al3v—Pd1—Zn3v0.00 (7)Al3viii—Zn2—Pd1xi58.01 (3)
Al3i—Pd1—Zn362.53 (3)Zn3viii—Zn2—Pd1xi58.01 (3)
Zn3i—Pd1—Zn362.53 (3)Zn1—Zn2—Pd1xi59.16 (3)
Al3ii—Pd1—Zn362.53 (3)Zn1ix—Zn2—Pd1xi59.16 (3)
Al3iii—Pd1—Zn3133.05 (4)Al1ix—Zn2—Pd1xi59.16 (3)
Zn3ii—Pd1—Zn362.53 (3)Pd1x—Zn2—Pd1xi106.04 (6)
Zn3iii—Pd1—Zn3133.05 (4)Pd2i—Zn3—Zn2i0.00 (5)
Al3iv—Pd1—Zn383.48 (4)Pd2i—Zn3—Pd1x153.49 (6)
Zn3iv—Pd1—Zn383.48 (4)Zn2i—Zn3—Pd1x153.49 (6)
Al3v—Pd1—Zn383.48 (4)Pd2i—Zn3—Pd164.47 (4)
Zn3v—Pd1—Zn383.48 (4)Zn2i—Zn3—Pd164.47 (4)
Zn2—Zn1—Pd2v119.582 (10)Pd1x—Zn3—Pd1142.04 (5)
Zn2—Zn1—Pd2iv119.582 (10)Pd2i—Zn3—Zn1145.42 (6)
Pd2v—Zn1—Pd2iv119.582 (10)Zn2i—Zn3—Zn1145.42 (6)
Zn2—Zn1—Zn2v119.582 (10)Pd1x—Zn3—Zn161.09 (5)
Pd2v—Zn1—Zn2v0.0Pd1—Zn3—Zn180.96 (5)
Pd2iv—Zn1—Zn2v119.582 (10)Pd2i—Zn3—Al3xii102.22 (4)
Zn2—Zn1—Zn2iv119.582 (10)Zn2i—Zn3—Al3xii102.22 (4)
Pd2v—Zn1—Zn2iv119.582 (10)Pd1x—Zn3—Al3xii58.77 (4)
Pd2iv—Zn1—Zn2iv0.0Pd1—Zn3—Al3xii139.15 (3)
Zn2v—Zn1—Zn2iv119.582 (10)Zn1—Zn3—Al3xii104.13 (5)
Zn2—Zn1—Al3v65.28 (2)Pd2i—Zn3—Al3vii102.22 (4)
Pd2v—Zn1—Al3v65.28 (2)Zn2i—Zn3—Al3vii102.22 (4)
Pd2iv—Zn1—Al3v135.08 (8)Pd1x—Zn3—Al3vii58.77 (4)
Zn2v—Zn1—Al3v65.28 (2)Pd1—Zn3—Al3vii139.15 (3)
Zn2iv—Zn1—Al3v135.08 (8)Zn1—Zn3—Al3vii104.13 (5)
Zn2—Zn1—Al3iv135.08 (8)Al3xii—Zn3—Al3vii79.83 (8)
Pd2v—Zn1—Al3iv65.28 (2)Pd2i—Zn3—Zn3xii102.22 (4)
Pd2iv—Zn1—Al3iv65.28 (2)Zn2i—Zn3—Zn3xii102.22 (4)
Zn2v—Zn1—Al3iv65.28 (2)Pd1x—Zn3—Zn3xii58.77 (4)
Zn2iv—Zn1—Al3iv65.28 (2)Pd1—Zn3—Zn3xii139.15 (3)
Al3v—Zn1—Al3iv81.33 (6)Zn1—Zn3—Zn3xii104.13 (5)
Zn2—Zn1—Zn3v65.28 (2)Al3xii—Zn3—Zn3xii0.00 (6)
Pd2v—Zn1—Zn3v65.28 (2)Al3vii—Zn3—Zn3xii79.83 (8)
Pd2iv—Zn1—Zn3v135.08 (8)Pd2i—Zn3—Zn3vii102.22 (4)
Zn2v—Zn1—Zn3v65.28 (2)Zn2i—Zn3—Zn3vii102.22 (4)
Zn2iv—Zn1—Zn3v135.08 (8)Pd1x—Zn3—Zn3vii58.77 (4)
Al3v—Zn1—Zn3v0.00 (6)Pd1—Zn3—Zn3vii139.15 (3)
Al3iv—Zn1—Zn3v81.33 (6)Zn1—Zn3—Zn3vii104.13 (5)
Zn2—Zn1—Zn3iv135.08 (8)Al3xii—Zn3—Zn3vii79.83 (8)
Pd2v—Zn1—Zn3iv65.28 (2)Al3vii—Zn3—Zn3vii0.00 (4)
Pd2iv—Zn1—Zn3iv65.28 (2)Zn3xii—Zn3—Zn3vii79.83 (8)
Zn2v—Zn1—Zn3iv65.28 (2)Pd2i—Zn3—Al3i65.41 (4)
Zn2iv—Zn1—Zn3iv65.28 (2)Zn2i—Zn3—Al3i65.41 (4)
Al3v—Zn1—Zn3iv81.33 (6)Pd1x—Zn3—Al3i122.72 (4)
Al3iv—Zn1—Zn3iv0.00 (6)Pd1—Zn3—Al3i58.70 (3)
Zn3v—Zn1—Zn3iv81.33 (6)Zn1—Zn3—Al3i97.39 (5)
Zn2—Zn1—Zn365.28 (2)Al3xii—Zn3—Al3i80.50 (3)
Pd2v—Zn1—Zn3135.08 (8)Al3vii—Zn3—Al3i153.76 (7)
Pd2iv—Zn1—Zn365.28 (2)Zn3xii—Zn3—Al3i80.50 (3)
Zn2v—Zn1—Zn3135.08 (8)Zn3vii—Zn3—Al3i153.76 (7)
Zn2iv—Zn1—Zn365.28 (2)Pd2i—Zn3—Al3ii65.41 (4)
Al3v—Zn1—Zn381.33 (6)Zn2i—Zn3—Al3ii65.41 (4)
Al3iv—Zn1—Zn381.33 (6)Pd1x—Zn3—Al3ii122.72 (4)
Zn3v—Zn1—Zn381.33 (6)Pd1—Zn3—Al3ii58.70 (3)
Zn3iv—Zn1—Zn381.33 (6)Zn1—Zn3—Al3ii97.39 (5)
Pd2vi—Zn2—Zn2vi0.0Al3xii—Zn3—Al3ii153.76 (7)
Pd2vi—Zn2—Al3vii68.97 (4)Al3vii—Zn3—Al3ii80.50 (3)
Zn2vi—Zn2—Al3vii68.97 (4)Zn3xii—Zn3—Al3ii153.76 (7)
Pd2vi—Zn2—Zn3vii68.97 (4)Zn3vii—Zn3—Al3ii80.50 (3)
Zn2vi—Zn2—Zn3vii68.97 (4)Al3i—Zn3—Al3ii111.69 (7)
Symmetry codes: (i) y+1/2, z+1/2, x+1/2; (ii) z+1/2, x+1/2, y+1/2; (iii) x+1/2, y+1/2, z+1/2; (iv) z, x, y; (v) y, z, x; (vi) x+1, y, z; (vii) z+1/2, x+1/2, y1/2; (viii) z+1/2, x1/2, y+1/2; (ix) x, y, z; (x) x+1/2, y+1/2, z1/2; (xi) x+1/2, y1/2, z+1/2; (xii) y+1/2, z+1/2, x1/2.

Experimental details

Crystal data
Chemical formulaPd2.28Zn10.37Al0.35
Mr929.56
Crystal system, space groupCubic, I43m
Temperature (K)293
a (Å)9.1079 (11)
V3)755.54 (16)
Z4
Radiation typeMo Kα
µ (mm1)37.46
Crystal size (mm)0.12 × 0.06 × 0.03
Data collection
DiffractometerStoe/IPDS-II
Absorption correctionNumerical
(X-SHAPE and X-RED; Stoe & Cie, 2005)
Tmin, Tmax0.054, 0.465
No. of measured, independent and
observed [I > 2σ(I)] reflections
11243, 339, 337
Rint0.069
(sin θ/λ)max1)0.803
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.068, 1.02
No. of reflections339
No. of parameters22
w = 1/[σ2(Fo2) + (0.0249P)2 + 32.9721P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)1.05, 1.19
Absolute structureFlack (1983)
Absolute structure parameter0.04 (4)

Computer programs: X-AREA (Stoe & Cie, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2009), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This work was carried out at the Ames Laboratory, which is operated for the US Department of Energy by Iowa State University under contract No. DE-AC02-07CH11358. This work was supported by the Materials Sciences Division of the Office of Basic Energy Sciences of the US Department of Energy.

References

First citationArnberg, L. & Westman, S. (1972). Acta Chem. Scand. 26, 513–517.  CrossRef CAS Web of Science Google Scholar
First citationBrandenburg, K. (2009). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationEdström, V.-A. & Westman, S. (1969). Acta Chem. Scand. 23, 279–285.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGelato, L. M. & Parthé, E. (1987). J. Appl. Cryst. 20, 139–143.  CrossRef Web of Science IUCr Journals Google Scholar
First citationGourdon, O. & Miller, G. J. (2006). Chem. Mater. 18, 1848–1856.  Web of Science CrossRef CAS Google Scholar
First citationGross, N., Kotzyba, G., Künnen, B. & Jeitschko, W. (2001). Z. Anorg. Allg. Chem. 627, 155–163.  Web of Science CrossRef CAS Google Scholar
First citationHarbrecht, B., Thimmaiah, S., Armbrüster, M., Pietzonka, C. & Lee, S. (2002). Z. Anorg. Allg. Chem. 628, 2744–2749.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2005). X-SHAPE and X-RED. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationStoe & Cie (2009). X-AREA. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationThimmaiah, S. & Miller, G. J. (2010). Chem. Eur. J. Accepted.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds