organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,2′-(4-Amino-4H-1,2,4-triazole-3,5-di­yl)diphenol

aCollege of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
*Correspondence e-mail: whujfdong@yahoo.com.cn

(Received 5 November 2009; accepted 28 December 2009; online 9 January 2010)

The structure of the title compound, C14H12N4O2, was determined as part of a project on the coordination chemistry of 1,2,4-triazole derivatives. In the crystal structure, one of the two benzene rings is almost coplanar with the five-membered triazole ring (mean deviation = 0.019 Å), whereas the second benzene ring is rotated by 51.973 (2)°. The two N—C—N—N torsion angles [170.365 (2) and −170.942 (3)°] indicate that the amido group is slightly twisted away from the triazole plane. An intra­molecular O—H⋯N hydrogen bond occurs. In the crystal structure, inter­molecular N—H⋯O and O—H⋯N hydrogen bonding is found.

Related literature

For background information on tthe coordination chemistry of 1,2,4-triazole derivatives, see: Lavrenova et al. (1995[Lavrenova, L. G., Yudina, N. G., Ikorskii, V. N., Varnek, V. A., Oglezneva, I. M. & Larionov, S. V. (1995). Polyhedron, 14, 1333-1337.]).

[Scheme 1]

Experimental

Crystal data
  • C14H12N4O2

  • Mr = 268.28

  • Orthorhombic, P 21 21 21

  • a = 8.262 (2) Å

  • b = 9.384 (3) Å

  • c = 15.919 (4) Å

  • V = 1234.2 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 296 K

  • 0.10 × 0.10 × 0.08 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.980, Tmax = 0.992

  • 6343 measured reflections

  • 1276 independent reflections

  • 1143 reflections with I > 2σ(I)

  • Rint = 0.043

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.112

  • S = 1.10

  • 1276 reflections

  • 192 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4A⋯O1i 0.95 (5) 2.39 (6) 3.153 (4) 136 (4)
O1—H1⋯N1 0.82 1.87 2.598 (3) 148
O2—H2A⋯N2ii 0.82 1.91 2.705 (3) 162
Symmetry codes: (i) x+1, y, z; (ii) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Related literature top

Provide at least one background reference.

Experimental top

2-hydroxy-N-(2-hydroxybenzoyl)benzohydrazide and hydrazine monohydrate were purchased from Acros and used without further purification. 2-hydroxy-N-(2-hydroxybenzoyl)benzohydrazide (4.08 g, 0.15 mmol) and hydrazine monohydrate(7.27 ml, 0.15 mol) were transfered into a 50 ml round-bottom flask. The mixture was stirred and refluxed for 3 h. After cooling, the solution was poured into ice water and the resulting light pink precipitate was collected by filtration, and recrystallized from ethanol. colorless crystal, 1.812 g (46.6 %), 1H NMR (DMSO, 400 MHz, p.p.m.): 11.27 (s, 2H), 8.0 (q, 2H), 7.4 (m, 2H), 7.0 (q, 4H), 6.14 (s, 2H). m.p = 532.3–533.2 K. Anal. Calcd for C14H12O2N4: C, 62.69; H, 4.48; N, 20.90%, Found: C, 62.58; H, 4.42; N, 20.83 %. GC—MS(m/z): 268 (M+), 249, 221, 207, 117, 91, 77, 51, 32.

Refinement top

All C-H H atoms were placed in geometrically idealized positions (methyl H atoms allowed to rotate but not to tip) and constrained to ride on their parent atoms with C—H distances in the range of 0.93–0.98 Å, and with Uiso(H) = 1.2 U eq for aryl H atoms and 1.5 Ueq for the methyl H atoms. The O-H and N-H H atoms were located in difference map and were refined isotropic with varying coordinates. Because no strong anomalous scaterring atoms are present the absolute structure cannot be determined, Therefore, Friedel-opposites were merged in the refinement and the absolute structure was selected arbitrarily.

Structure description top

Provide at least one background reference.

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Crystal structure of the title compound showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
2,2'-(4-Amino-4H-1,2,4-triazole-3,5-diyl)diphenol top
Crystal data top
C14H12N4O2F(000) = 560
Mr = 268.28Dx = 1.444 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 2036 reflections
a = 8.262 (2) Åθ = 2.4–24.6°
b = 9.384 (3) ŵ = 0.10 mm1
c = 15.919 (4) ÅT = 296 K
V = 1234.2 (6) Å3Block, colorless
Z = 40.10 × 0.10 × 0.08 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
1276 independent reflections
Radiation source: fine-focus sealed tube1143 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
phi and ω scansθmax = 25.0°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 99
Tmin = 0.980, Tmax = 0.992k = 911
6343 measured reflectionsl = 1816
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.112 w = 1/[σ2(Fo2) + (0.0693P)2 + 0.078P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max = 0.005
1276 reflectionsΔρmax = 0.18 e Å3
192 parametersΔρmin = 0.17 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.011 (4)
Crystal data top
C14H12N4O2V = 1234.2 (6) Å3
Mr = 268.28Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 8.262 (2) ŵ = 0.10 mm1
b = 9.384 (3) ÅT = 296 K
c = 15.919 (4) Å0.10 × 0.10 × 0.08 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
1276 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1143 reflections with I > 2σ(I)
Tmin = 0.980, Tmax = 0.992Rint = 0.043
6343 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.112H atoms treated by a mixture of independent and constrained refinement
S = 1.10Δρmax = 0.18 e Å3
1276 reflectionsΔρmin = 0.17 e Å3
192 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5404 (4)0.5286 (4)0.49447 (17)0.0385 (7)
C20.4539 (4)0.4330 (4)0.54359 (19)0.0449 (8)
H20.34160.43860.54500.054*
C30.5310 (4)0.3309 (4)0.5899 (2)0.0457 (8)
H30.47110.26710.62200.055*
C40.6981 (4)0.3225 (4)0.5890 (2)0.0479 (8)
H40.75090.25360.62080.057*
C50.7861 (4)0.4166 (3)0.5408 (2)0.0442 (8)
H50.89850.41030.54060.053*
C60.7108 (4)0.5211 (3)0.49212 (17)0.0339 (7)
C70.7987 (4)0.6149 (3)0.43411 (18)0.0339 (7)
C80.9790 (3)0.7037 (3)0.34798 (17)0.0333 (7)
C91.1311 (3)0.7234 (3)0.30083 (17)0.0345 (7)
C101.1826 (4)0.8612 (3)0.2823 (2)0.0422 (8)
H101.12860.93880.30550.051*
C111.3126 (4)0.8838 (4)0.2298 (2)0.0521 (9)
H111.34820.97590.21860.062*
C121.3895 (4)0.7686 (4)0.1941 (2)0.0586 (10)
H121.47440.78370.15680.070*
C131.3427 (4)0.6316 (4)0.2127 (2)0.0482 (9)
H131.39810.55500.18940.058*
C141.2130 (4)0.6075 (3)0.26611 (18)0.0371 (7)
N10.7263 (3)0.7099 (3)0.38646 (15)0.0388 (6)
N20.8404 (3)0.7657 (3)0.33109 (15)0.0395 (6)
N30.9594 (3)0.6108 (3)0.41328 (15)0.0335 (6)
N41.0844 (3)0.5384 (4)0.45696 (19)0.0427 (7)
O10.4530 (3)0.6247 (3)0.44960 (15)0.0554 (7)
H10.51430.67340.42100.083*
O21.1615 (3)0.4745 (2)0.28606 (13)0.0458 (6)
H2A1.17850.42060.24650.069*
H4A1.167 (7)0.605 (5)0.471 (3)0.097 (16)*
H4B1.131 (5)0.486 (4)0.419 (2)0.059 (12)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0354 (17)0.0409 (17)0.0393 (15)0.0028 (14)0.0007 (13)0.0023 (14)
C20.0329 (17)0.052 (2)0.0500 (17)0.0040 (15)0.0028 (15)0.0022 (16)
C30.0440 (19)0.0430 (19)0.0500 (18)0.0045 (16)0.0092 (16)0.0025 (15)
C40.0438 (18)0.047 (2)0.0531 (18)0.0030 (16)0.0074 (15)0.0123 (16)
C50.0367 (17)0.0430 (19)0.0529 (18)0.0052 (15)0.0008 (14)0.0087 (16)
C60.0321 (16)0.0312 (16)0.0385 (15)0.0029 (13)0.0013 (12)0.0051 (13)
C70.0317 (15)0.0291 (16)0.0408 (15)0.0000 (14)0.0011 (12)0.0003 (13)
C80.0326 (15)0.0280 (15)0.0391 (14)0.0011 (13)0.0007 (12)0.0023 (13)
C90.0310 (15)0.0344 (17)0.0382 (15)0.0025 (13)0.0014 (12)0.0009 (13)
C100.0392 (17)0.0343 (17)0.0530 (18)0.0042 (14)0.0030 (15)0.0003 (15)
C110.0391 (17)0.046 (2)0.071 (2)0.0101 (18)0.0009 (17)0.0159 (18)
C120.0346 (18)0.074 (3)0.067 (2)0.0013 (19)0.0118 (16)0.013 (2)
C130.0326 (16)0.057 (2)0.0552 (19)0.0087 (16)0.0062 (15)0.0016 (18)
C140.0336 (15)0.0377 (17)0.0400 (15)0.0003 (14)0.0047 (13)0.0016 (14)
N10.0342 (13)0.0348 (15)0.0474 (13)0.0007 (12)0.0030 (11)0.0056 (12)
N20.0368 (14)0.0341 (14)0.0477 (14)0.0021 (11)0.0044 (11)0.0045 (12)
N30.0263 (12)0.0335 (13)0.0409 (12)0.0003 (11)0.0003 (10)0.0009 (11)
N40.0313 (15)0.0460 (17)0.0507 (17)0.0061 (13)0.0032 (12)0.0065 (15)
O10.0302 (12)0.0693 (18)0.0666 (15)0.0058 (12)0.0032 (11)0.0211 (14)
O20.0577 (15)0.0305 (12)0.0493 (12)0.0016 (11)0.0076 (11)0.0071 (10)
Geometric parameters (Å, º) top
C1—O11.358 (4)C9—C101.393 (4)
C1—C21.388 (4)C9—C141.395 (4)
C1—C61.410 (5)C10—C111.377 (5)
C2—C31.366 (5)C10—H100.9300
C2—H20.9300C11—C121.376 (5)
C3—C41.383 (5)C11—H110.9300
C3—H30.9300C12—C131.375 (5)
C4—C51.377 (5)C12—H120.9300
C4—H40.9300C13—C141.386 (4)
C5—C61.396 (4)C13—H130.9300
C5—H50.9300C14—O21.356 (4)
C6—C71.468 (4)N1—N21.393 (3)
C7—N11.314 (4)N3—N41.419 (3)
C7—N31.368 (4)N4—H4A0.95 (5)
C8—N21.312 (4)N4—H4B0.87 (4)
C8—N31.366 (4)O1—H10.8200
C8—C91.475 (4)O2—H2A0.8200
O1—C1—C2116.8 (3)C14—C9—C8121.2 (3)
O1—C1—C6123.4 (3)C11—C10—C9120.6 (3)
C2—C1—C6119.8 (3)C11—C10—H10119.7
C3—C2—C1121.1 (3)C9—C10—H10119.7
C3—C2—H2119.4C12—C11—C10119.3 (3)
C1—C2—H2119.4C12—C11—H11120.3
C2—C3—C4120.0 (3)C10—C11—H11120.3
C2—C3—H3120.0C13—C12—C11121.0 (3)
C4—C3—H3120.0C13—C12—H12119.5
C5—C4—C3119.8 (3)C11—C12—H12119.5
C5—C4—H4120.1C12—C13—C14120.1 (3)
C3—C4—H4120.1C12—C13—H13119.9
C4—C5—C6121.6 (3)C14—C13—H13119.9
C4—C5—H5119.2O2—C14—C13122.4 (3)
C6—C5—H5119.2O2—C14—C9118.2 (3)
C5—C6—C1117.7 (3)C13—C14—C9119.4 (3)
C5—C6—C7123.3 (3)C7—N1—N2108.2 (2)
C1—C6—C7118.7 (3)C8—N2—N1107.1 (2)
N1—C7—N3108.7 (2)C8—N3—C7106.4 (2)
N1—C7—C6123.0 (3)C8—N3—N4126.3 (2)
N3—C7—C6128.0 (3)C7—N3—N4126.9 (2)
N2—C8—N3109.6 (3)N3—N4—H4A109 (3)
N2—C8—C9125.7 (3)N3—N4—H4B105 (3)
N3—C8—C9124.6 (3)H4A—N4—H4B103 (4)
C10—C9—C14119.4 (3)C1—O1—H1109.5
C10—C9—C8119.0 (3)C14—O2—H2A109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4A···O1i0.95 (5)2.39 (6)3.153 (4)136 (4)
O1—H1···N10.821.872.598 (3)148
O2—H2A···N2ii0.821.912.705 (3)162
Symmetry codes: (i) x+1, y, z; (ii) x+2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC14H12N4O2
Mr268.28
Crystal system, space groupOrthorhombic, P212121
Temperature (K)296
a, b, c (Å)8.262 (2), 9.384 (3), 15.919 (4)
V3)1234.2 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.10 × 0.10 × 0.08
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.980, 0.992
No. of measured, independent and
observed [I > 2σ(I)] reflections
6343, 1276, 1143
Rint0.043
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.112, 1.10
No. of reflections1276
No. of parameters192
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.18, 0.17

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4A···O1i0.95 (5)2.39 (6)3.153 (4)136 (4)
O1—H1···N10.821.872.598 (3)147.7
O2—H2A···N2ii0.821.912.705 (3)161.8
Symmetry codes: (i) x+1, y, z; (ii) x+2, y1/2, z+1/2.
 

Acknowledgements

The authors thank the National Natural Science Foundation of China (grant No. 20573079) for financial support.

References

First citationBruker (1997). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLavrenova, L. G., Yudina, N. G., Ikorskii, V. N., Varnek, V. A., Oglezneva, I. M. & Larionov, S. V. (1995). Polyhedron, 14, 1333–1337.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds