organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tri­cyclo­[3.3.1.03,7]nonane-3,7-diyl bis­­(methane­sulfonate)

aDepartment of Chemistry, University of Cyprus, 1678 Nicosia, Cyprus
*Correspondence e-mail: ioannou.savvas@ucy.ac.cy, emmanouil.manos@ucy.acy.cy

(Received 6 December 2009; accepted 11 January 2010; online 20 January 2010)

The crystal structure of the title compound, C11H18O6S2, was determined to investigate the effect of the eclipsed mesyl groups on the bond length of the vicinal quaternary C atoms. The two quaternary C atoms of the noradamantane skeleton and the two O atoms to which they are connected all located essentially in the same plane [maximum deviation 0.01 Å], resulting in an eclipsing conformation of the C—O bonds. The C—C bond of the quaternary C atoms is 1.597 (3) Å is considerably longer than the other C—C bonds of the mol­ecule.

Related literature

For reviews on noradamantene and analogous pyramidalized alkenes, see: Borden (1989[Borden, W. T. (1989). Chem. Rev. 89, 1095-1109.], 1996[Borden, W. T. (1996). Synlett, pp. 711-719.]); Vázquez & Camps (2005[Vázquez, S. & Camps, P. (2005). Tetrahedron, 61, 5147-5208.]). For the syntheses of mesylate esters of acyclic alcohols, see: Danheiser et al. (1988[Danheiser, R. L., Tsai, Y.-M. & Fink, D. M. (1988). Org. Synth. 66, 1-7.]); Marshall & Chobanian (2005[Marshall, J. A. & Chobanian, H. (2005). Org. Synth. 82, 43-54.]). For the synthesis of the precursor diol (tricyclo-[3.3.1.03,7]nonane-3,7-diol), an important inter­mediate in the synthetic route towards the generation of noradamantene, see: Zalikowski et al. (1980[Zalikowski, J. A., Gilbert, K. E. & Borden, W. T. (1980). J. Org. Chem. 45, 346-347.]); Bertz (1985[Bertz, S. H. (1985). J. Org. Chem. 50, 3585-3592.]). For the synthesis of the title compound, see: Ioannou & Nicolaides (2009[Ioannou, S. & Nicolaides, A. V. (2009). Tetrahedron Lett. 50, 6938-6940.]).

[Scheme 1]

Experimental

Crystal data
  • C11H18O6S2

  • Mr = 310.37

  • Monoclinic, P 21 /n

  • a = 8.8017 (2) Å

  • b = 10.3107 (2) Å

  • c = 14.4623 (3) Å

  • β = 92.092 (2)°

  • V = 1311.60 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.43 mm−1

  • T = 100 K

  • 0.18 × 0.06 × 0.04 mm

Data collection
  • Oxford Diffraction Xcalibur-3 diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton,England.]) Tmin = 0.919, Tmax = 1.000

  • 8431 measured reflections

  • 2308 independent reflections

  • 1791 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.073

  • S = 1.00

  • 2308 reflections

  • 172 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.34 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton,England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton,England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]); software used to prepare material for publication: WinGX.

Supporting information


Related literature top

For reviews on pyramidalized alkenes, see: Borden (1989, 199);6 Vázquez & Camps (2005). For the syntheses of mesylate esters of acyclic alcohols, see: Danheiser et al. (1988); Marshall & Chobanian(2005). For the synthesis of the precursor diol (tricyclo-[3.3.1.03,7]nonane-3,7-diol), an important intermediate in the synthetic route towards the generation of noradamantene, see: Zalikowski et al. (1980); Bertz (1985). For related literature on what subject?, see: Ioannou & Nicolaides (2009).

Experimental top

Synthesis of tricyclo-[3.3.1.03,7]nonane-3,7-diyl dimesylate (1). To a solution of tricyclo-[3.3.1.03,7]nonane-3,7-diol (1.00 g, 6.49 mmol) in pyridine (10 ml), mesyl chloride (CH3SO2Cl)(5.02 ml, 65 mmol) was added slowly with stirring at ambient temperature. The mixture was then heated at 120 oC for 5 h. After cooling, crushed ice (100 g) was added and the mixture extracted with CH2Cl2 (5 x 20 ml). The combined organic phase was washed with 2M HCl (2 x 40 ml), H2O (2 x 20 ml), saturated aqueous NaHCO3 (2 x 20 ml), and dried (Na2SO4). After filtration and removal of the solvent under reduced pressure, a brown solid (1.92 g, 96%) was isolated. Recrystallization from THF/hexane afforded pure 1 (1.71 g, 85%) as colorless crystals m.p. 127–128 oC. Elemental analysis (%): Calculated for C11H18O6S2: C,42.6; H, 5.8; O, 30.9; S, 20.7. Found: C, 42.3; H, 5.7; S,20.3. High-resolution Mass Spectrometry (TOF MS ES+): Calculated for C11H19O6S2 311.0623 found: 311.0629. νmax(KBr) 3449, 2943, 1464, 1414, 1341, 1190, 1169, 1101, 1018, 976, 955, 856, 824, 802, 760, 669, 615, 565, 515, 474 cm-1; δH(300 MHz, CDCl3) 3.10 (6H, –CH3, s), 2.50 (6H(4eq+2CH), d, J 6.9 Hz), 2.26 (4Hax,d, J 9.0 Hz), 1.51 (2Hbridge, s); δ13C (75.5 MHz, CDCl3) 91.30 (–CO), 47.42(–CH2),40.60 (–CH3), 34.98 (–CH), 32.28 (–CH2 bridge).

Refinement top

The H atoms were positioned with idealized geometry and refined using a riding model with Uiso(H) = 1.2 or 1.5 (methyl H atoms) of Ueq(C).

Structure description top

For reviews on pyramidalized alkenes, see: Borden (1989, 199);6 Vázquez & Camps (2005). For the syntheses of mesylate esters of acyclic alcohols, see: Danheiser et al. (1988); Marshall & Chobanian(2005). For the synthesis of the precursor diol (tricyclo-[3.3.1.03,7]nonane-3,7-diol), an important intermediate in the synthetic route towards the generation of noradamantene, see: Zalikowski et al. (1980); Bertz (1985). For related literature on what subject?, see: Ioannou & Nicolaides (2009).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell refinement: CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED (Oxford Diffraction, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: WinGX (Farrugia, 1999); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Structure of the title compound tricyclo-[3.3.1.03,7]nonane-3,7-diyldimesylate with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen atoms have been omitted for clarity.
Tricyclo[3.3.1.03,7]nonane-3,7-diyl bis(methanesulfonate) top
Crystal data top
C11H18O6S2F(000) = 656
Mr = 310.37Dx = 1.572 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4520 reflections
a = 8.8017 (2) Åθ = 3.0–30.2°
b = 10.3107 (2) ŵ = 0.43 mm1
c = 14.4623 (3) ÅT = 100 K
β = 92.092 (2)°Plate, colorless
V = 1311.60 (5) Å30.18 × 0.06 × 0.04 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur-3
diffractometer
2308 independent reflections
Radiation source: fine-focus sealed tube1791 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
Detector resolution: 16.0288 pixels mm-1θmax = 25.0°, θmin = 3.0°
ω scansh = 610
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2008)
k = 1212
Tmin = 0.919, Tmax = 1.000l = 1717
8431 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.073H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0414P)2]
where P = (Fo2 + 2Fc2)/3
2308 reflections(Δ/σ)max = 0.001
172 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
C11H18O6S2V = 1311.60 (5) Å3
Mr = 310.37Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.8017 (2) ŵ = 0.43 mm1
b = 10.3107 (2) ÅT = 100 K
c = 14.4623 (3) Å0.18 × 0.06 × 0.04 mm
β = 92.092 (2)°
Data collection top
Oxford Diffraction Xcalibur-3
diffractometer
2308 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2008)
1791 reflections with I > 2σ(I)
Tmin = 0.919, Tmax = 1.000Rint = 0.032
8431 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.073H-atom parameters constrained
S = 1.00Δρmax = 0.31 e Å3
2308 reflectionsΔρmin = 0.34 e Å3
172 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.15096 (6)0.16605 (5)0.14000 (3)0.01491 (14)
S20.58045 (5)0.26342 (5)0.01791 (4)0.01445 (14)
O10.24294 (14)0.17383 (12)0.04474 (9)0.0127 (3)
O20.00837 (15)0.17596 (14)0.12494 (10)0.0203 (4)
O30.20781 (16)0.05237 (15)0.18235 (10)0.0263 (4)
O40.46545 (14)0.19451 (13)0.08427 (9)0.0147 (3)
O50.50094 (15)0.33931 (14)0.05052 (10)0.0204 (3)
O60.69589 (15)0.32558 (14)0.07372 (10)0.0213 (4)
C10.1867 (2)0.23973 (19)0.03658 (13)0.0118 (4)
C20.0669 (2)0.16160 (19)0.08527 (13)0.0141 (5)
H2A0.08270.06900.07840.017*
H2B0.03510.18380.06290.017*
C30.0968 (2)0.2058 (2)0.18502 (14)0.0164 (5)
H30.03860.15530.22890.020*
C40.0647 (2)0.3523 (2)0.19196 (14)0.0179 (5)
H4A0.08960.38180.25440.021*
H4B0.04270.36810.17920.021*
C50.1586 (2)0.4297 (2)0.12291 (14)0.0157 (5)
H50.13970.52310.12710.019*
C60.3291 (2)0.39729 (18)0.13632 (15)0.0154 (5)
H6A0.39080.44620.09440.018*
H6B0.36570.41160.19960.018*
C70.3234 (2)0.25284 (19)0.11167 (14)0.0122 (4)
C80.2677 (2)0.17855 (19)0.19476 (14)0.0150 (4)
H8A0.31130.21230.25240.018*
H8B0.28960.08660.19040.018*
C90.1300 (2)0.37854 (18)0.02389 (14)0.0144 (4)
H9A0.02310.38140.00530.017*
H9B0.18860.42580.02060.017*
C100.2097 (2)0.3026 (2)0.20119 (15)0.0201 (5)
H10A0.17150.37950.17280.030*
H10B0.17110.29750.26400.030*
H10C0.31880.30570.20030.030*
C110.6535 (2)0.1234 (2)0.03142 (15)0.0215 (5)
H11A0.70660.07340.01550.032*
H11B0.72230.14690.07860.032*
H11C0.57160.07280.05830.032*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0177 (3)0.0144 (3)0.0126 (3)0.0015 (2)0.0004 (2)0.0005 (2)
S20.0119 (2)0.0140 (3)0.0175 (3)0.0014 (2)0.0012 (2)0.0022 (2)
O10.0132 (7)0.0129 (7)0.0119 (7)0.0017 (6)0.0005 (6)0.0006 (6)
O20.0142 (7)0.0285 (9)0.0179 (8)0.0048 (6)0.0022 (6)0.0026 (7)
O30.0400 (9)0.0201 (9)0.0186 (9)0.0031 (7)0.0002 (7)0.0068 (7)
O40.0105 (7)0.0148 (8)0.0189 (8)0.0027 (5)0.0025 (6)0.0048 (6)
O50.0169 (7)0.0199 (8)0.0242 (8)0.0022 (6)0.0016 (6)0.0095 (7)
O60.0167 (7)0.0224 (8)0.0247 (9)0.0059 (6)0.0014 (6)0.0005 (7)
C10.0141 (9)0.0114 (10)0.0098 (10)0.0018 (8)0.0004 (8)0.0024 (8)
C20.0112 (10)0.0135 (11)0.0177 (11)0.0001 (8)0.0015 (8)0.0008 (9)
C30.0149 (10)0.0177 (11)0.0167 (11)0.0009 (9)0.0035 (9)0.0029 (9)
C40.0187 (10)0.0205 (12)0.0144 (11)0.0037 (9)0.0013 (9)0.0051 (9)
C50.0182 (10)0.0114 (11)0.0173 (11)0.0027 (9)0.0025 (9)0.0015 (9)
C60.0174 (10)0.0136 (11)0.0151 (11)0.0028 (8)0.0019 (8)0.0010 (9)
C70.0086 (9)0.0127 (11)0.0154 (11)0.0027 (8)0.0006 (8)0.0000 (8)
C80.0182 (10)0.0144 (11)0.0125 (11)0.0003 (9)0.0004 (8)0.0016 (9)
C90.0157 (10)0.0107 (10)0.0165 (11)0.0028 (8)0.0022 (8)0.0010 (9)
C100.0234 (11)0.0223 (12)0.0146 (11)0.0026 (9)0.0015 (9)0.0054 (9)
C110.0222 (11)0.0187 (11)0.0242 (12)0.0004 (9)0.0068 (10)0.0008 (10)
Geometric parameters (Å, º) top
S1—O31.4219 (15)C4—H4A0.9700
S1—O21.4307 (14)C4—H4B0.9700
S1—O11.5742 (14)C5—C91.538 (3)
S1—C101.751 (2)C5—C61.542 (3)
S2—O51.4251 (15)C5—H50.9800
S2—O61.4264 (14)C6—C71.532 (3)
S2—O41.5878 (13)C6—H6A0.9700
S2—C111.744 (2)C6—H6B0.9700
O1—C11.460 (2)C7—C81.521 (3)
O4—C71.456 (2)C8—H8A0.9700
C1—C21.520 (3)C8—H8B0.9700
C1—C91.525 (3)C9—H9A0.9700
C1—C71.597 (3)C9—H9B0.9700
C2—C31.526 (3)C10—H10A0.9600
C2—H2A0.9700C10—H10B0.9600
C2—H2B0.9700C10—H10C0.9600
C3—C81.532 (3)C11—H11A0.9600
C3—C41.541 (3)C11—H11B0.9600
C3—H30.9800C11—H11C0.9600
C4—C51.542 (3)
O3—S1—O2119.13 (9)C4—C5—C6110.43 (16)
O3—S1—O1103.95 (8)C9—C5—H5111.8
O2—S1—O1109.80 (8)C4—C5—H5111.8
O3—S1—C10109.27 (10)C6—C5—H5111.8
O2—S1—C10109.20 (9)C7—C6—C599.07 (14)
O1—S1—C10104.44 (9)C7—C6—H6A112.0
O5—S2—O6117.89 (9)C5—C6—H6A112.0
O5—S2—O4110.96 (8)C7—C6—H6B112.0
O6—S2—O4108.40 (8)C5—C6—H6B112.0
O5—S2—C11110.46 (10)H6A—C6—H6B109.6
O6—S2—C11109.76 (10)O4—C7—C8108.17 (15)
O4—S2—C1197.43 (9)O4—C7—C6116.36 (15)
C1—O1—S1123.37 (11)C8—C7—C6108.33 (16)
C7—O4—S2123.55 (12)O4—C7—C1114.40 (15)
O1—C1—C2112.81 (15)C8—C7—C1103.79 (14)
O1—C1—C9117.32 (16)C6—C7—C1104.95 (15)
C2—C1—C9108.87 (15)C7—C8—C3100.29 (15)
O1—C1—C7108.56 (14)C7—C8—H8A111.7
C2—C1—C7104.36 (15)C3—C8—H8A111.7
C9—C1—C7103.75 (15)C7—C8—H8B111.7
C1—C2—C3100.43 (15)C3—C8—H8B111.7
C1—C2—H2A111.7H8A—C8—H8B109.5
C3—C2—H2A111.7C1—C9—C599.66 (15)
C1—C2—H2B111.7C1—C9—H9A111.8
C3—C2—H2B111.7C5—C9—H9A111.8
H2A—C2—H2B109.5C1—C9—H9B111.8
C2—C3—C899.61 (15)C5—C9—H9B111.8
C2—C3—C4109.18 (17)H9A—C9—H9B109.6
C8—C3—C4110.84 (16)S1—C10—H10A109.5
C2—C3—H3112.2S1—C10—H10B109.5
C8—C3—H3112.2H10A—C10—H10B109.5
C4—C3—H3112.2S1—C10—H10C109.5
C3—C4—C5111.15 (16)H10A—C10—H10C109.5
C3—C4—H4A109.4H10B—C10—H10C109.5
C5—C4—H4A109.4S2—C11—H11A109.5
C3—C4—H4B109.4S2—C11—H11B109.5
C5—C4—H4B109.4H11A—C11—H11B109.5
H4A—C4—H4B108.0S2—C11—H11C109.5
C9—C5—C4110.63 (16)H11A—C11—H11C109.5
C9—C5—C699.70 (16)H11B—C11—H11C109.5

Experimental details

Crystal data
Chemical formulaC11H18O6S2
Mr310.37
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)8.8017 (2), 10.3107 (2), 14.4623 (3)
β (°) 92.092 (2)
V3)1311.60 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.43
Crystal size (mm)0.18 × 0.06 × 0.04
Data collection
DiffractometerOxford Diffraction Xcalibur-3
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2008)
Tmin, Tmax0.919, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
8431, 2308, 1791
Rint0.032
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.073, 1.00
No. of reflections2308
No. of parameters172
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.34

Computer programs: CrysAlis CCD (Oxford Diffraction, 2008), CrysAlis RED (Oxford Diffraction, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), WinGX (Farrugia, 1999).

 

Acknowledgements

Financial support from the Research Promotion Foundation of Cyprus and the European Union via grant ΠENEK/ENIΣX/0308/01 and the University of Cyprus via a SRP grant is gratefully acknowledged. The A. G. Leventis Foundation is gratefully acknowledged for a generous donation which enabled the purchase of the NMR spectrometer at the University of Cyprus.

References

First citationBertz, S. H. (1985). J. Org. Chem. 50, 3585–3592.  CrossRef CAS Web of Science Google Scholar
First citationBorden, W. T. (1989). Chem. Rev. 89, 1095–1109.  CrossRef CAS Web of Science Google Scholar
First citationBorden, W. T. (1996). Synlett, pp. 711–719.  CrossRef Google Scholar
First citationDanheiser, R. L., Tsai, Y.-M. & Fink, D. M. (1988). Org. Synth. 66, 1–7.  CAS Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationIoannou, S. & Nicolaides, A. V. (2009). Tetrahedron Lett. 50, 6938–6940.  Web of Science CrossRef CAS Google Scholar
First citationMarshall, J. A. & Chobanian, H. (2005). Org. Synth. 82, 43-54.  CAS Google Scholar
First citationOxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton,England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVázquez, S. & Camps, P. (2005). Tetrahedron, 61, 5147–5208.  Google Scholar
First citationZalikowski, J. A., Gilbert, K. E. & Borden, W. T. (1980). J. Org. Chem. 45, 346–347.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds