organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[3-(Iodo­acetamido)prop­yl]tri­phenyl­phospho­nium tetra­phenyl­borate

aDepartment of Chemistry, University of Otago, PO Box 56, Dunedin, New Zealand
*Correspondence e-mail: cevans@chemistry.otago.ac.nz

(Received 7 January 2010; accepted 12 January 2010; online 16 January 2010)

The title compound, C23H24INOP+·C24H20B, was prepared by treatment of 3-amino­propyl triphenyl­phospho­nium bromide hydrogen bromide with p-nitro­phenyl iodo­acetate at 203 K. The asymmetric unit contains a single cation and anion, which are linked in the crystal by inter­molecular N—H⋯π and inversion-related R22(14) C—H⋯O inter­actions, which combine to form chains of cations and anions along the c axis.

Related literature

For the development and applications of mitochondrially targeted bio-active compounds, see Murphy & Smith (2007[Murphy, M. P. & Smith, R. A. (2007). Annu. Rev. Pharmacol. Toxicol. 47, 629-656.]); Porteous et al. (2010[Porteous, C. M., Evans, C., Ledgerwood, E., Menon, D. K., Aigbirhio, F., Smith, R. A. J. & Murphy, M. P. (2010). Biochem. Pharmacol. Submitted.]). For the use of iodo­acetamides in labelling cysteine residues, see Baty et al. (2002[Baty, J. W., Hampton, M. B. & Winterbourn, C. C. (2002). Proteomics, 2, 1261-1266.]); Kim et al. (2000[Kim, J. R., Yoon, H. W., Kwon, K. S., Lee, S. R. & Rhee, S. G. (2000). Anal. Biochem. 283, 214-221.]); Ying et al. (2007[Ying, J., Clavreul, N., Sethuraman, M., Adachi, T. & Cohen, R. A. (2007). Free Radic. Biol. Med. 43, 1099-108.]). For the synthesis of amino­alkyl triphenyl­phospho­nium salts, see McAllister et al. (1980[McAllister, P. R., Dotson, M. J., Grim, S. O. & Hillman, G. R. (1980). J. Med. Chem. 23, 862-865.]). For the synthesis of iodo­acetamides, see Trujillo et al. (1991[Trujillo, J. G., Ceballos, G., Yañez, R. & Joseph-Nathan, P. (1991). Synth. Commun. 21, 683-691.]). For related structures see Czerwinski (1986[Czerwinski, E. W. (1986). Acta Cryst. C42, 236-239.]); Dubourg et al. (1986[Dubourg, A., De Castro Dantas, T. N., Klaébé, A. & Declercq, J.-P. (1986). Acta Cryst. C42, 112-114.]); Kerrigan et al.(1996[Kerrigan, J. E., Powers, J. C. & VanDerveer, D. (1996). Acta Cryst. C52, 451-453.]); Lo et al.(2002[Lo, K. K.-W., Lau, J. S.-Y., Ng, D. C.-M. & Zhu, N. (2002). J. Chem. Soc. Dalton Trans. pp. 1753-1756.]). For a review of hydrogen bonding networks, see Bernstein et al.(1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C23H24INOP+·C24H20B

  • Mr = 807.51

  • Monoclinic, P 21 /n

  • a = 14.552 (3) Å

  • b = 12.108 (2) Å

  • c = 21.966 (4) Å

  • β = 99.49 (3)°

  • V = 3817.3 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.92 mm−1

  • T = 89 K

  • 0.22 × 0.20 × 0.2 0mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.661, Tmax = 0.832

  • 38267 measured reflections

  • 9958 independent reflections

  • 7291 reflections with I > 2σ(I)

  • Rint = 0.049

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.103

  • S = 1.11

  • 9958 reflections

  • 469 parameters

  • H-atom parameters constrained

  • Δρmax = 0.74 e Å−3

  • Δρmin = −0.99 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C61—C66 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯Cgi 0.86 2.56 3.382 (2) 160
C1—H1B⋯O1ii 0.97 2.48 3.270 (3) 139
Symmetry codes: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) -x+1, -y, -z+1.

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT (Bruker, 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]), enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). publCIF. In preparation.]).

Supporting information


Comment top

One aspect of our research into mitochondrially targeted bio-active agents (Murphy and Smith, 2007) involves synthesis of a series of targeted iodoacetamides from aminoalkyl-triphenylphosphonium salts (Porteous et al., 2010). The use of iodoacetamides in labelling of cysteine residues in proteins and peptides is well established (Ying et al., 2007) allowing attachment of key markers such as fluorescein (Baty et al., 2002) or biotin (Kim et al., 2000). Given the widespread use of the iodoacetamide functionality it is surprising that there appears to be no structural data available for non-aryl iodoacetamides.

The title compound crystallizes with one cation and anion in the asymmetric unit (Fig. 1). The bond distances within the iodoacetamide functionality [C(5)—I(1) 2.172 (3) Å, N(1)—C(4) 1.344 (3)Å and C(4)—O(1) 1.233 (3) Å] are equivalent to those reported for 4-chloro-7-(iodoacetyl)amino-3-methoxy isocoumarin [2.139 (9) Å, 1.363 (13)Å and 1.209 (14) Å; Kerrigan et al., 1996] and N-(ferrocenyl)iodoacetamide [2.152 (5) Å, 1.348 (6)Å and 1.234 (5) Å; Lo et al., 2002] indicating that the presence of the triphenylphosphonium cation has a negligible effect. The C(1)—P(1) [1.810 (3) Å] and C(3)—N(1) [1.462 (3) Å] distances mirror those observed for both dimethylamino-3-propyl triphenylphosphonium chloride [1.802 (3)Å and 1.496 (9) Å; Dubourg et al., 1986] and 2-aminoethyltriphenylphosphonium bromide hydrogen bromide [1.796 (5)Å and 1.512 (6) Å; Czerwinski, 1986].

The crystal packing is dominated by intermolecular N—H···π and C—H···O interactions (Fig. 2). The H(1)···CT and N(1)···CT distances [2.56Å and 3.382 (3) Å, where CT is the centroid of an adjacent C61—C66 ring on the tetraphenylborate anion] are indicative of a H-bonding interaction. In addition, there are inversion related C(1)—H(1B)···O(1) interactions [H(1B)···O(1) 2.48 Å, C(1)···O(1) 3.270 (3) Å] forming R22 (14) ring motifs (Bernstein et al., 1995). The combination of these two types of interactions form chains of cations and anions as viewed along the c axis.

Related literature top

For the development and applications of mitochondrially targeted bio-active compounds, see Murphy & Smith (2007); Porteous et al. (2010). For the use of iodoacetamides in labelling cysteine residues, see Baty et al. (2002); Kim et al. (2000); Ying et al. (2007). For the synthesis of aminoalkyl triphenylphosphonium salts, see McAllister et al. (1980). For the synthesis of iodoacetamides, see Trujillo et al. (1991). For related structures see Czerwinski (1986); Dubourg et al. (1986); Kerrigan et al.(1996); Lo et al.(2002). For a review of hydrogen bonding networks, see Bernstein et al.(1995).

Experimental top

The title compound was prepared from 3-aminopropyl triphenylphosphonium bromide hydrogen bromide (prepared using methods similar to McAllister et al., 1980) using a modified literature procedure (Trujillo et al., 1991). Triethylamine (0.43 mmol) was added to a dichloromethane solution (20 mL) of 3-aminopropyl triphenylphosphonium bromide hydrogen bromide (0.43 mmol), the solution cooled to -70°C and solid p-nitrophenyl iodoacetate (0.43 mmol) added in one portion. The solution was stirred at -70°C for 20 minutes and the solvent removed under vacuum. The solid residue was dissolved in acetone (5 mL), excess sodium tetraphenylborate (1 mmol) added and the solution stirred for 2 h at room temperature. Solvent was removed under vacuum, the compound redissolved in dichloromethane (2 mL) and precipitated by addition to diethylther (20 mL). Crystals were prepared by vapour diffusion of diethylether into an ethanolic solution of the compound at room temperature.

Refinement top

All H-atoms were positioned geometrically and refined using a riding model with d(C—H) = 0.93 Å, Uiso=1.2Ueq (C) for aromatic and 0.97 Å, Uiso = 1.2Ueq (C) for CH2 and 0.86 Å, Uiso = 1.2Ueq (N) for the NH atom.

Structure description top

One aspect of our research into mitochondrially targeted bio-active agents (Murphy and Smith, 2007) involves synthesis of a series of targeted iodoacetamides from aminoalkyl-triphenylphosphonium salts (Porteous et al., 2010). The use of iodoacetamides in labelling of cysteine residues in proteins and peptides is well established (Ying et al., 2007) allowing attachment of key markers such as fluorescein (Baty et al., 2002) or biotin (Kim et al., 2000). Given the widespread use of the iodoacetamide functionality it is surprising that there appears to be no structural data available for non-aryl iodoacetamides.

The title compound crystallizes with one cation and anion in the asymmetric unit (Fig. 1). The bond distances within the iodoacetamide functionality [C(5)—I(1) 2.172 (3) Å, N(1)—C(4) 1.344 (3)Å and C(4)—O(1) 1.233 (3) Å] are equivalent to those reported for 4-chloro-7-(iodoacetyl)amino-3-methoxy isocoumarin [2.139 (9) Å, 1.363 (13)Å and 1.209 (14) Å; Kerrigan et al., 1996] and N-(ferrocenyl)iodoacetamide [2.152 (5) Å, 1.348 (6)Å and 1.234 (5) Å; Lo et al., 2002] indicating that the presence of the triphenylphosphonium cation has a negligible effect. The C(1)—P(1) [1.810 (3) Å] and C(3)—N(1) [1.462 (3) Å] distances mirror those observed for both dimethylamino-3-propyl triphenylphosphonium chloride [1.802 (3)Å and 1.496 (9) Å; Dubourg et al., 1986] and 2-aminoethyltriphenylphosphonium bromide hydrogen bromide [1.796 (5)Å and 1.512 (6) Å; Czerwinski, 1986].

The crystal packing is dominated by intermolecular N—H···π and C—H···O interactions (Fig. 2). The H(1)···CT and N(1)···CT distances [2.56Å and 3.382 (3) Å, where CT is the centroid of an adjacent C61—C66 ring on the tetraphenylborate anion] are indicative of a H-bonding interaction. In addition, there are inversion related C(1)—H(1B)···O(1) interactions [H(1B)···O(1) 2.48 Å, C(1)···O(1) 3.270 (3) Å] forming R22 (14) ring motifs (Bernstein et al., 1995). The combination of these two types of interactions form chains of cations and anions as viewed along the c axis.

For the development and applications of mitochondrially targeted bio-active compounds, see Murphy & Smith (2007); Porteous et al. (2010). For the use of iodoacetamides in labelling cysteine residues, see Baty et al. (2002); Kim et al. (2000); Ying et al. (2007). For the synthesis of aminoalkyl triphenylphosphonium salts, see McAllister et al. (1980). For the synthesis of iodoacetamides, see Trujillo et al. (1991). For related structures see Czerwinski (1986); Dubourg et al. (1986); Kerrigan et al.(1996); Lo et al.(2002). For a review of hydrogen bonding networks, see Bernstein et al.(1995).

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: APEX2 and SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 1999), enCIFer (Allen et al., 2004) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. View of the two ions in the asymmetric unit showing the atom-labelling scheme. Ellipsoids are drawn at the 50% probability level with H atoms represented by circles of arbitrary size.
[Figure 2] Fig. 2. View along the c axis indicating the N···π and C—H···O R22(14) hydrogen bonding network in the crystal. Hydrogen bonds and the N—H···π interactions are drawn as dotted lines. Black spheres represent the centroids of the C61—C66 rings.
[3-(Iodoacetamido)propyl]triphenylphosphonium tetraphenylborate top
Crystal data top
C23H24INOP+·C24H20BF(000) = 1656
Mr = 807.51Dx = 1.405 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 6317 reflections
a = 14.552 (3) Åθ = 2.5–28.7°
b = 12.108 (2) ŵ = 0.92 mm1
c = 21.966 (4) ÅT = 89 K
β = 99.49 (3)°Prism, colourless
V = 3817.3 (13) Å30.22 × 0.2 × 0.2 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
9958 independent reflections
Radiation source: fine-focus sealed tube7291 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.049
φ and ω scansθmax = 29.1°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
h = 1319
Tmin = 0.661, Tmax = 0.832k = 1616
38267 measured reflectionsl = 2929
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.103H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0467P)2]
where P = (Fo2 + 2Fc2)/3
9958 reflections(Δ/σ)max = 0.002
469 parametersΔρmax = 0.74 e Å3
0 restraintsΔρmin = 0.99 e Å3
Crystal data top
C23H24INOP+·C24H20BV = 3817.3 (13) Å3
Mr = 807.51Z = 4
Monoclinic, P21/nMo Kα radiation
a = 14.552 (3) ŵ = 0.92 mm1
b = 12.108 (2) ÅT = 89 K
c = 21.966 (4) Å0.22 × 0.2 × 0.2 mm
β = 99.49 (3)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
9958 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
7291 reflections with I > 2σ(I)
Tmin = 0.661, Tmax = 0.832Rint = 0.049
38267 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.103H-atom parameters constrained
S = 1.11Δρmax = 0.74 e Å3
9958 reflectionsΔρmin = 0.99 e Å3
469 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.64225 (17)0.08981 (19)0.51219 (11)0.0171 (5)
H1A0.62310.1580.52970.02*
H1B0.58650.05490.49020.02*
C20.68361 (17)0.01362 (19)0.56566 (11)0.0182 (5)
H2A0.69590.05840.54940.022*
H2B0.74240.04390.58610.022*
C30.61750 (18)0.00073 (19)0.61254 (11)0.0204 (5)
H3A0.56280.03990.59360.025*
H3B0.64820.04230.64730.025*
C40.51294 (18)0.1611 (2)0.60641 (11)0.0204 (5)
C50.49861 (18)0.2755 (2)0.63068 (12)0.0240 (6)
H5A0.5210.27830.67480.029*
H5B0.43280.29370.62350.029*
C110.73474 (16)0.00477 (19)0.41211 (11)0.0160 (5)
C120.78439 (18)0.08572 (19)0.44061 (12)0.0203 (5)
H120.81780.07920.48040.024*
C130.78336 (18)0.1849 (2)0.40913 (13)0.0262 (6)
H130.8150.24570.42810.031*
C140.73523 (18)0.1936 (2)0.34938 (13)0.0269 (6)
H140.73420.26080.32870.032*
C150.6888 (2)0.1039 (2)0.32005 (13)0.0258 (6)
H150.65850.10980.27950.031*
C160.68773 (18)0.0041 (2)0.35196 (11)0.0204 (5)
H160.65550.05630.33290.024*
C210.65711 (17)0.22816 (18)0.40569 (10)0.0166 (5)
C220.56359 (17)0.25297 (19)0.40603 (11)0.0178 (5)
H220.53150.21790.43380.021*
C230.51862 (18)0.3302 (2)0.36477 (12)0.0221 (6)
H230.45620.34660.36480.026*
C240.5667 (2)0.3832 (2)0.32344 (12)0.0239 (6)
H240.53610.43440.29570.029*
C250.6600 (2)0.3600 (2)0.32343 (12)0.0259 (6)
H250.69210.39620.2960.031*
C260.70566 (18)0.2824 (2)0.36446 (11)0.0221 (6)
H260.76820.26670.36450.027*
C310.82434 (17)0.18234 (19)0.49480 (10)0.0153 (5)
C320.90545 (17)0.1740 (2)0.46827 (11)0.0187 (5)
H320.9060.13110.43320.022*
C330.98484 (18)0.2306 (2)0.49516 (11)0.0224 (6)
H331.03880.2270.47770.027*
C340.98368 (18)0.2925 (2)0.54801 (12)0.0221 (6)
H341.03720.330.56580.027*
C350.90392 (17)0.29959 (19)0.57498 (11)0.0189 (5)
H350.90450.34080.61080.023*
C360.82383 (18)0.24521 (18)0.54849 (10)0.0167 (5)
H360.770.25020.5660.02*
N10.58821 (15)0.10650 (16)0.63510 (9)0.0203 (5)
H10.62020.13470.66780.024*
O10.46005 (13)0.12292 (14)0.56173 (8)0.0247 (4)
P10.71663 (4)0.12487 (5)0.45667 (3)0.01393 (14)
I10.574759 (12)0.392989 (13)0.583303 (8)0.02472 (7)
C410.96560 (17)0.56909 (19)0.67978 (10)0.0158 (5)
C420.95432 (17)0.48566 (19)0.72216 (10)0.0158 (5)
H420.90330.48910.74260.019*
C431.01627 (18)0.39780 (19)0.73499 (11)0.0189 (5)
H431.00560.34390.76320.023*
C441.09355 (19)0.3903 (2)0.70599 (12)0.0217 (6)
H441.13470.33140.71430.026*
C451.10912 (18)0.4726 (2)0.66406 (11)0.0215 (6)
H451.16130.46960.64470.026*
C461.04555 (17)0.5590 (2)0.65170 (11)0.0177 (5)
H461.05640.61280.62350.021*
C510.82725 (17)0.64150 (19)0.59114 (11)0.0161 (5)
C520.85473 (18)0.5664 (2)0.54902 (11)0.0189 (5)
H520.91470.53740.55720.023*
C530.7963 (2)0.5332 (2)0.49554 (12)0.0258 (6)
H530.8170.48180.46940.031*
C540.7073 (2)0.5763 (2)0.48112 (12)0.0265 (6)
H540.66760.55330.44580.032*
C550.67821 (19)0.6545 (2)0.52008 (12)0.0269 (6)
H550.61930.68580.51030.032*
C560.73713 (18)0.6860 (2)0.57372 (11)0.0220 (6)
H560.71630.73860.59910.026*
C610.81277 (16)0.67687 (19)0.70793 (10)0.0153 (5)
C620.74884 (17)0.58898 (19)0.71142 (11)0.0176 (5)
H620.75190.52760.68640.021*
C630.68308 (18)0.58957 (19)0.74946 (11)0.0190 (5)
H630.64480.52840.75070.023*
C640.67309 (18)0.6812 (2)0.78639 (11)0.0199 (5)
H640.62810.68230.81190.024*
C650.73185 (17)0.7703 (2)0.78403 (11)0.0195 (5)
H650.72580.83280.80770.023*
C660.80049 (17)0.76719 (19)0.74611 (11)0.0177 (5)
H660.83980.82780.74620.021*
C710.94558 (16)0.78910 (19)0.66057 (10)0.0152 (5)
C721.03056 (18)0.8086 (2)0.69976 (11)0.0200 (5)
H721.05650.75190.72560.024*
C731.07757 (19)0.9091 (2)0.70155 (12)0.0233 (6)
H731.13420.91780.72770.028*
C741.04013 (19)0.9965 (2)0.66442 (11)0.0220 (6)
H741.0711.06390.66560.026*
C750.95639 (18)0.9812 (2)0.62579 (11)0.0214 (5)
H750.93061.03860.60050.026*
C760.91000 (18)0.87998 (18)0.62445 (11)0.0179 (5)
H760.8530.87240.59850.021*
B10.8892 (2)0.6704 (2)0.66017 (12)0.0159 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0157 (12)0.0186 (13)0.0157 (12)0.0002 (9)0.0007 (10)0.0002 (9)
C20.0203 (13)0.0175 (12)0.0160 (12)0.0005 (10)0.0004 (10)0.0020 (10)
C30.0259 (14)0.0173 (13)0.0174 (12)0.0036 (10)0.0016 (11)0.0040 (10)
C40.0197 (13)0.0252 (14)0.0178 (12)0.0049 (10)0.0078 (11)0.0010 (11)
C50.0222 (14)0.0271 (14)0.0238 (14)0.0007 (11)0.0069 (11)0.0051 (11)
C110.0156 (12)0.0179 (12)0.0149 (11)0.0014 (9)0.0038 (10)0.0006 (9)
C120.0192 (13)0.0203 (13)0.0202 (13)0.0029 (10)0.0006 (11)0.0004 (10)
C130.0201 (14)0.0210 (14)0.0378 (16)0.0034 (10)0.0055 (12)0.0010 (12)
C140.0235 (14)0.0225 (14)0.0372 (16)0.0044 (11)0.0125 (13)0.0142 (12)
C150.0246 (15)0.0299 (15)0.0218 (14)0.0054 (11)0.0006 (12)0.0099 (11)
C160.0211 (13)0.0207 (13)0.0182 (12)0.0026 (10)0.0004 (11)0.0011 (10)
C210.0187 (13)0.0134 (12)0.0158 (12)0.0001 (9)0.0027 (10)0.0008 (9)
C220.0204 (13)0.0149 (12)0.0170 (12)0.0002 (9)0.0001 (10)0.0002 (10)
C230.0183 (13)0.0213 (14)0.0241 (13)0.0047 (10)0.0035 (11)0.0001 (11)
C240.0295 (15)0.0178 (13)0.0223 (14)0.0035 (10)0.0014 (12)0.0050 (10)
C250.0284 (15)0.0243 (14)0.0246 (14)0.0009 (11)0.0031 (12)0.0097 (11)
C260.0187 (13)0.0259 (14)0.0215 (13)0.0001 (11)0.0026 (11)0.0054 (11)
C310.0172 (12)0.0144 (12)0.0129 (11)0.0015 (9)0.0019 (10)0.0008 (9)
C320.0196 (13)0.0219 (13)0.0139 (12)0.0003 (10)0.0007 (10)0.0034 (10)
C330.0170 (13)0.0292 (15)0.0208 (13)0.0016 (11)0.0022 (11)0.0036 (11)
C340.0192 (13)0.0223 (13)0.0229 (13)0.0034 (10)0.0026 (11)0.0032 (11)
C350.0256 (14)0.0168 (13)0.0134 (12)0.0015 (10)0.0005 (11)0.0028 (9)
C360.0211 (13)0.0142 (12)0.0146 (11)0.0015 (9)0.0021 (10)0.0001 (9)
N10.0238 (12)0.0224 (11)0.0138 (10)0.0016 (9)0.0007 (9)0.0022 (8)
O10.0191 (10)0.0288 (10)0.0253 (10)0.0038 (7)0.0005 (8)0.0048 (8)
P10.0146 (3)0.0143 (3)0.0118 (3)0.0008 (2)0.0009 (2)0.0000 (2)
I10.02367 (10)0.01857 (10)0.03027 (11)0.00050 (7)0.00038 (8)0.00280 (7)
C410.0184 (12)0.0158 (12)0.0110 (11)0.0013 (9)0.0041 (10)0.0040 (9)
C420.0163 (12)0.0184 (12)0.0120 (11)0.0009 (9)0.0001 (10)0.0028 (9)
C430.0236 (14)0.0172 (13)0.0150 (12)0.0009 (10)0.0007 (11)0.0006 (10)
C440.0246 (14)0.0191 (13)0.0188 (13)0.0078 (10)0.0042 (11)0.0028 (10)
C450.0177 (13)0.0284 (14)0.0176 (12)0.0043 (11)0.0007 (11)0.0063 (11)
C460.0197 (13)0.0193 (12)0.0133 (12)0.0004 (10)0.0000 (10)0.0003 (10)
C510.0213 (13)0.0109 (11)0.0158 (12)0.0017 (9)0.0019 (10)0.0024 (9)
C520.0200 (13)0.0173 (12)0.0187 (13)0.0000 (10)0.0014 (11)0.0025 (10)
C530.0397 (17)0.0193 (14)0.0163 (13)0.0018 (11)0.0014 (12)0.0023 (10)
C540.0310 (16)0.0281 (15)0.0166 (13)0.0054 (12)0.0074 (12)0.0011 (11)
C550.0217 (14)0.0336 (16)0.0223 (14)0.0021 (12)0.0057 (12)0.0061 (12)
C560.0248 (14)0.0206 (13)0.0192 (13)0.0013 (10)0.0004 (11)0.0005 (10)
C610.0144 (12)0.0152 (12)0.0146 (11)0.0036 (9)0.0028 (10)0.0021 (9)
C620.0177 (12)0.0133 (12)0.0199 (13)0.0025 (9)0.0027 (10)0.0013 (9)
C630.0192 (13)0.0152 (13)0.0220 (13)0.0022 (9)0.0014 (11)0.0013 (10)
C640.0183 (13)0.0242 (14)0.0172 (12)0.0032 (10)0.0031 (10)0.0036 (10)
C650.0260 (14)0.0156 (13)0.0168 (12)0.0031 (10)0.0029 (11)0.0036 (10)
C660.0186 (13)0.0150 (12)0.0182 (12)0.0014 (9)0.0008 (10)0.0012 (10)
C710.0178 (12)0.0159 (12)0.0119 (11)0.0013 (9)0.0028 (10)0.0020 (9)
C720.0237 (14)0.0184 (13)0.0161 (12)0.0002 (10)0.0019 (11)0.0006 (10)
C730.0238 (14)0.0235 (14)0.0213 (14)0.0034 (10)0.0003 (12)0.0073 (11)
C740.0285 (15)0.0153 (13)0.0243 (14)0.0033 (10)0.0103 (12)0.0033 (10)
C750.0278 (15)0.0164 (13)0.0204 (13)0.0044 (10)0.0051 (11)0.0044 (10)
C760.0176 (13)0.0172 (13)0.0185 (12)0.0040 (9)0.0018 (10)0.0002 (10)
B10.0187 (14)0.0131 (13)0.0141 (13)0.0007 (10)0.0027 (11)0.0010 (10)
Geometric parameters (Å, º) top
C1—C21.536 (3)C36—H360.93
C1—P11.810 (3)N1—H10.86
C1—H1A0.97C41—C421.402 (3)
C1—H1B0.97C41—C461.409 (3)
C2—C31.529 (3)C41—B11.664 (4)
C2—H2A0.97C42—C431.393 (3)
C2—H2B0.97C42—H420.93
C3—N11.462 (3)C43—C441.384 (4)
C3—H3A0.97C43—H430.93
C3—H3B0.97C44—C451.400 (4)
C4—O11.233 (3)C44—H440.93
C4—N11.344 (3)C45—C461.394 (3)
C4—C51.511 (3)C45—H450.93
C5—I12.172 (3)C46—H460.93
C5—H5A0.97C51—C521.402 (4)
C5—H5B0.97C51—C561.411 (3)
C11—C161.388 (3)C51—B11.668 (3)
C11—C121.402 (3)C52—C531.391 (3)
C11—P11.796 (2)C52—H520.93
C12—C131.384 (3)C53—C541.383 (4)
C12—H120.93C53—H530.93
C13—C141.386 (4)C54—C551.389 (4)
C13—H130.93C54—H540.93
C14—C151.382 (4)C55—C561.391 (3)
C14—H140.93C55—H550.93
C15—C161.398 (3)C56—H560.93
C15—H150.93C61—C661.407 (3)
C16—H160.93C61—C621.424 (3)
C21—C221.395 (3)C61—B11.652 (4)
C21—C261.401 (3)C62—C631.370 (4)
C21—P11.802 (2)C62—H620.93
C22—C231.389 (3)C63—C641.396 (3)
C22—H220.93C63—H630.93
C23—C241.391 (4)C64—C651.383 (3)
C23—H230.93C64—H640.93
C24—C251.387 (4)C65—C661.403 (3)
C24—H240.93C65—H650.93
C25—C261.392 (3)C66—H660.93
C25—H250.93C71—C761.405 (3)
C26—H260.93C71—C721.405 (3)
C31—C321.404 (3)C71—B11.654 (4)
C31—C361.405 (3)C72—C731.394 (3)
C31—P11.791 (2)C72—H720.93
C32—C331.389 (3)C73—C741.391 (4)
C32—H320.93C73—H730.93
C33—C341.384 (3)C74—C751.378 (4)
C33—H330.93C74—H740.93
C34—C351.390 (4)C75—C761.397 (3)
C34—H340.93C75—H750.93
C35—C361.381 (3)C76—H760.93
C35—H350.93
C2—C1—P1116.98 (17)C31—P1—C11111.93 (11)
C2—C1—H1A108.1C31—P1—C21108.34 (11)
P1—C1—H1A108.1C11—P1—C21108.77 (11)
C2—C1—H1B108.1C31—P1—C1110.52 (11)
P1—C1—H1B108.1C11—P1—C1109.58 (11)
H1A—C1—H1B107.3C21—P1—C1107.58 (11)
C3—C2—C1111.4 (2)C42—C41—C46115.1 (2)
C3—C2—H2A109.3C42—C41—B1123.8 (2)
C1—C2—H2A109.3C46—C41—B1121.0 (2)
C3—C2—H2B109.3C43—C42—C41122.8 (2)
C1—C2—H2B109.3C43—C42—H42118.6
H2A—C2—H2B108C41—C42—H42118.6
N1—C3—C2112.95 (19)C44—C43—C42120.3 (2)
N1—C3—H3A109C44—C43—H43119.8
C2—C3—H3A109C42—C43—H43119.8
N1—C3—H3B109C43—C44—C45119.2 (2)
C2—C3—H3B109C43—C44—H44120.4
H3A—C3—H3B107.8C45—C44—H44120.4
O1—C4—N1122.9 (2)C46—C45—C44119.2 (2)
O1—C4—C5121.3 (2)C46—C45—H45120.4
N1—C4—C5115.8 (2)C44—C45—H45120.4
C4—C5—I1108.70 (16)C45—C46—C41123.3 (2)
C4—C5—H5A110C45—C46—H46118.3
I1—C5—H5A110C41—C46—H46118.3
C4—C5—H5B110C52—C51—C56115.0 (2)
I1—C5—H5B110C52—C51—B1124.5 (2)
H5A—C5—H5B108.3C56—C51—B1120.3 (2)
C16—C11—C12120.1 (2)C53—C52—C51122.9 (2)
C16—C11—P1119.20 (19)C53—C52—H52118.5
C12—C11—P1120.03 (18)C51—C52—H52118.5
C13—C12—C11119.5 (2)C54—C53—C52120.2 (2)
C13—C12—H12120.2C54—C53—H53119.9
C11—C12—H12120.2C52—C53—H53119.9
C12—C13—C14120.1 (2)C53—C54—C55119.1 (2)
C12—C13—H13120C53—C54—H54120.5
C14—C13—H13120C55—C54—H54120.5
C15—C14—C13120.9 (2)C54—C55—C56120.1 (3)
C15—C14—H14119.5C54—C55—H55120
C13—C14—H14119.5C56—C55—H55120
C14—C15—C16119.4 (2)C55—C56—C51122.7 (2)
C14—C15—H15120.3C55—C56—H56118.7
C16—C15—H15120.3C51—C56—H56118.7
C11—C16—C15120.0 (2)C66—C61—C62113.6 (2)
C11—C16—H16120C66—C61—B1125.5 (2)
C15—C16—H16120C62—C61—B1120.9 (2)
C22—C21—C26119.9 (2)C63—C62—C61123.9 (2)
C22—C21—P1121.02 (18)C63—C62—H62118.1
C26—C21—P1119.03 (19)C61—C62—H62118.1
C23—C22—C21119.8 (2)C62—C63—C64120.6 (2)
C23—C22—H22120.1C62—C63—H63119.7
C21—C22—H22120.1C64—C63—H63119.7
C22—C23—C24120.2 (2)C65—C64—C63118.3 (2)
C22—C23—H23119.9C65—C64—H64120.9
C24—C23—H23119.9C63—C64—H64120.9
C25—C24—C23120.3 (2)C64—C65—C66120.4 (2)
C25—C24—H24119.8C64—C65—H65119.8
C23—C24—H24119.8C66—C65—H65119.8
C24—C25—C26119.9 (3)C65—C66—C61123.2 (2)
C24—C25—H25120C65—C66—H66118.4
C26—C25—H25120C61—C66—H66118.4
C25—C26—C21119.8 (2)C76—C71—C72114.8 (2)
C25—C26—H26120.1C76—C71—B1122.8 (2)
C21—C26—H26120.1C72—C71—B1122.3 (2)
C32—C31—C36120.6 (2)C73—C72—C71122.8 (2)
C32—C31—P1120.57 (18)C73—C72—H72118.6
C36—C31—P1118.53 (19)C71—C72—H72118.6
C33—C32—C31119.0 (2)C74—C73—C72120.3 (2)
C33—C32—H32120.5C74—C73—H73119.8
C31—C32—H32120.5C72—C73—H73119.8
C34—C33—C32120.0 (3)C75—C74—C73118.7 (2)
C34—C33—H33120C75—C74—H74120.7
C32—C33—H33120C73—C74—H74120.7
C33—C34—C35121.1 (2)C74—C75—C76120.4 (2)
C33—C34—H34119.4C74—C75—H75119.8
C35—C34—H34119.4C76—C75—H75119.8
C36—C35—C34119.8 (2)C75—C76—C71122.9 (2)
C36—C35—H35120.1C75—C76—H76118.5
C34—C35—H35120.1C71—C76—H76118.5
C35—C36—C31119.4 (2)C61—B1—C71109.94 (19)
C35—C36—H36120.3C61—B1—C41111.19 (19)
C31—C36—H36120.3C71—B1—C41109.2 (2)
C4—N1—C3122.2 (2)C61—B1—C51105.54 (19)
C4—N1—H1118.9C71—B1—C51112.36 (19)
C3—N1—H1118.9C41—B1—C51108.55 (19)
P1—C1—C2—C3173.97 (16)C41—C42—C43—C440.6 (4)
C1—C2—C3—N153.6 (3)C42—C43—C44—C450.6 (4)
O1—C4—C5—I189.9 (3)C43—C44—C45—C461.1 (4)
N1—C4—C5—I187.8 (2)C44—C45—C46—C410.5 (4)
C16—C11—C12—C132.3 (4)C42—C41—C46—C450.6 (3)
P1—C11—C12—C13168.1 (2)B1—C41—C46—C45176.5 (2)
C11—C12—C13—C141.4 (4)C56—C51—C52—C533.3 (4)
C12—C13—C14—C150.8 (4)B1—C51—C52—C53171.2 (2)
C13—C14—C15—C162.2 (4)C51—C52—C53—C541.5 (4)
C12—C11—C16—C150.9 (4)C52—C53—C54—C551.2 (4)
P1—C11—C16—C15169.6 (2)C53—C54—C55—C561.9 (4)
C14—C15—C16—C111.4 (4)C54—C55—C56—C510.1 (4)
C26—C21—C22—C231.0 (3)C52—C51—C56—C552.6 (4)
P1—C21—C22—C23177.79 (18)B1—C51—C56—C55172.1 (2)
C21—C22—C23—C240.4 (4)C66—C61—C62—C631.9 (3)
C22—C23—C24—C250.5 (4)B1—C61—C62—C63179.2 (2)
C23—C24—C25—C260.7 (4)C61—C62—C63—C642.3 (4)
C24—C25—C26—C210.0 (4)C62—C63—C64—C650.7 (4)
C22—C21—C26—C250.8 (4)C63—C64—C65—C661.0 (4)
P1—C21—C26—C25178.01 (19)C64—C65—C66—C611.4 (4)
C36—C31—C32—C331.3 (3)C62—C61—C66—C650.0 (3)
P1—C31—C32—C33172.33 (19)B1—C61—C66—C65177.3 (2)
C31—C32—C33—C341.2 (4)C76—C71—C72—C731.8 (4)
C32—C33—C34—C350.2 (4)B1—C71—C72—C73178.4 (2)
C33—C34—C35—C360.8 (4)C71—C72—C73—C741.2 (4)
C34—C35—C36—C310.7 (3)C72—C73—C74—C750.4 (4)
C32—C31—C36—C350.4 (3)C73—C74—C75—C760.4 (4)
P1—C31—C36—C35173.39 (17)C74—C75—C76—C711.2 (4)
O1—C4—N1—C34.9 (4)C72—C71—C76—C751.8 (4)
C5—C4—N1—C3172.7 (2)B1—C71—C76—C75178.4 (2)
C2—C3—N1—C488.6 (3)C66—C61—B1—C713.3 (3)
C32—C31—P1—C1131.1 (2)C62—C61—B1—C71173.7 (2)
C36—C31—P1—C11155.11 (18)C66—C61—B1—C41117.8 (2)
C32—C31—P1—C2188.8 (2)C62—C61—B1—C4165.2 (3)
C36—C31—P1—C2185.0 (2)C66—C61—B1—C51124.7 (2)
C32—C31—P1—C1153.57 (19)C62—C61—B1—C5152.3 (3)
C36—C31—P1—C132.7 (2)C76—C71—B1—C6183.7 (3)
C16—C11—P1—C31132.7 (2)C72—C71—B1—C6192.7 (3)
C12—C11—P1—C3156.9 (2)C76—C71—B1—C41154.0 (2)
C16—C11—P1—C2113.0 (2)C72—C71—B1—C4129.6 (3)
C12—C11—P1—C21176.6 (2)C76—C71—B1—C5133.5 (3)
C16—C11—P1—C1104.4 (2)C72—C71—B1—C51150.1 (2)
C12—C11—P1—C166.1 (2)C42—C41—B1—C6113.2 (3)
C22—C21—P1—C31130.73 (19)C46—C41—B1—C61169.9 (2)
C26—C21—P1—C3150.4 (2)C42—C41—B1—C71134.7 (2)
C22—C21—P1—C11107.4 (2)C46—C41—B1—C7148.4 (3)
C26—C21—P1—C1171.4 (2)C42—C41—B1—C51102.5 (2)
C22—C21—P1—C111.2 (2)C46—C41—B1—C5174.4 (3)
C26—C21—P1—C1169.94 (19)C52—C51—B1—C61138.3 (2)
C2—C1—P1—C3154.4 (2)C56—C51—B1—C6135.9 (3)
C2—C1—P1—C1169.4 (2)C52—C51—B1—C71101.9 (3)
C2—C1—P1—C21172.53 (17)C56—C51—B1—C7183.9 (3)
C46—C41—C42—C431.2 (3)C52—C51—B1—C4119.1 (3)
B1—C41—C42—C43175.9 (2)C56—C51—B1—C41155.2 (2)
Hydrogen-bond geometry (Å, º) top
CT01 is the centroid of the C61—C66 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1···CT01i0.862.563.382 (2)160
C1—H1B···O1ii0.972.483.270 (3)139
Symmetry codes: (i) x+3/2, y1/2, z+3/2; (ii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC23H24INOP+·C24H20B
Mr807.51
Crystal system, space groupMonoclinic, P21/n
Temperature (K)89
a, b, c (Å)14.552 (3), 12.108 (2), 21.966 (4)
β (°) 99.49 (3)
V3)3817.3 (13)
Z4
Radiation typeMo Kα
µ (mm1)0.92
Crystal size (mm)0.22 × 0.2 × 0.2
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2006)
Tmin, Tmax0.661, 0.832
No. of measured, independent and
observed [I > 2σ(I)] reflections
38267, 9958, 7291
Rint0.049
(sin θ/λ)max1)0.683
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.103, 1.11
No. of reflections9958
No. of parameters469
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.74, 0.99

Computer programs: APEX2 (Bruker, 2006), APEX2 and SAINT (Bruker, 2006), SAINT (Bruker, 2006), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006), WinGX (Farrugia, 1999), enCIFer (Allen et al., 2004) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
CT01 is the centroid of the C61—C66 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1···CT01i0.862.563.382 (2)160.4
C1—H1B···O1ii0.972.483.270 (3)138.6
Symmetry codes: (i) x+3/2, y1/2, z+3/2; (ii) x+1, y, z+1.
 

Acknowledgements

The author thanks Professor Robin Smith for access to materials and research facilities, and the BBSRC for financial support (contract No. BB/D020786/1).

References

First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBaty, J. W., Hampton, M. B. & Winterbourn, C. C. (2002). Proteomics, 2, 1261–1266.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCzerwinski, E. W. (1986). Acta Cryst. C42, 236–239.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDubourg, A., De Castro Dantas, T. N., Klaébé, A. & Declercq, J.-P. (1986). Acta Cryst. C42, 112–114.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationKerrigan, J. E., Powers, J. C. & VanDerveer, D. (1996). Acta Cryst. C52, 451–453.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKim, J. R., Yoon, H. W., Kwon, K. S., Lee, S. R. & Rhee, S. G. (2000). Anal. Biochem. 283, 214–221.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLo, K. K.-W., Lau, J. S.-Y., Ng, D. C.-M. & Zhu, N. (2002). J. Chem. Soc. Dalton Trans. pp. 1753–1756.  Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMcAllister, P. R., Dotson, M. J., Grim, S. O. & Hillman, G. R. (1980). J. Med. Chem. 23, 862–865.  CrossRef CAS PubMed Web of Science Google Scholar
First citationMurphy, M. P. & Smith, R. A. (2007). Annu. Rev. Pharmacol. Toxicol. 47, 629–656.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPorteous, C. M., Evans, C., Ledgerwood, E., Menon, D. K., Aigbirhio, F., Smith, R. A. J. & Murphy, M. P. (2010). Biochem. Pharmacol. Submitted.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTrujillo, J. G., Ceballos, G., Yañez, R. & Joseph-Nathan, P. (1991). Synth. Commun. 21, 683–691.  CrossRef CAS Web of Science Google Scholar
First citationWestrip, S. P. (2010). publCIF. In preparation.  Google Scholar
First citationYing, J., Clavreul, N., Sethuraman, M., Adachi, T. & Cohen, R. A. (2007). Free Radic. Biol. Med. 43, 1099–108.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds