organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-Fluoro-2-methyl-3-phenyl­sulfonyl-1-benzo­furan

aDepartment of Chemistry, Dongeui University, San 24 Kaya-dong Busanjin-gu, Busan 614-714, Republic of Korea, and bDepartment of Chemistry, Pukyong National University, 599-1 Daeyeon 3-dong, Nam-gu, Busan 608-737, Republic of Korea
*Correspondence e-mail: uklee@pknu.ac.kr

(Received 30 November 2009; accepted 22 December 2009; online 9 January 2010)

There are two symmetry-independent mol­ecules, A and B, in the asymmetric unit of the title compound, C15H11FO3S. The crystal studied was an inversion twin with a 0.21 (12):0.79 (12) domain ratio. In the crystal structure, the two independent mol­ecules are related by a pseudo-inversion center. The dihedral angles formed by the phenyl ring and the plane of the benzofuran fragment are 80.2 (1)° in mol­ecule A and 80.7 (1)° in mol­ecule B. In the crystal structure, the A and B mol­ecules are linked by aromatic ππ inter­actions between the furan and benzene rings of neighbouring benzofuran systems; the centroid–centroid distances are 3.671 (7) and 3.715 (7) Å. In addition, the crystal structure also exhibits two weak non-classical inter­molecular C—H⋯O hydrogen bonds.

Related literature

For the crystal structures of similar 5-halo-2-methyl-3-phenyl­sulfonyl-1-benzofuran derivatives, see: Choi et al. (2008a[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2008a). Acta Cryst. E64, o793.],b[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2008b). Acta Cryst. E64, o930.],c[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2008c). Acta Cryst. E64, o1190.]). For natural products with benzofuran ring systems, see: Akgul & Anil (2003[Akgul, Y. Y. & Anil, H. (2003). Phytochemistry, 63, 939-943.]); Soekamto et al. (2003[Soekamto, N. H., Achmad, S. A., Ghisalberti, E. L., Hakim, E. H. & Syah, Y. M. (2003). Phytochemistry, 64, 831-834.]). For the biological activity of benzofuran compounds, see: Aslam et al. (2006[Aslam, S. N., Stevenson, P. C., Phythian, S. J., Veitch, N. C. & Hall, D. R. (2006). Tetrahedron, 62, 4214-4226.]); Galal et al. (2009[Galal, S. A., Abd El-All, A. S., Abdallah, M. M. & El-Diwani, H. I. (2009). Bioorg. Med. Chem. Lett. 19, 2420-2428.]).

[Scheme 1]

Experimental

Crystal data
  • C15H11FO3S

  • Mr = 290.30

  • Monoclinic, P 21

  • a = 7.377 (2) Å

  • b = 19.831 (4) Å

  • c = 9.025 (2) Å

  • β = 101.367 (3)°

  • V = 1294.4 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 173 K

  • 0.40 × 0.20 × 0.05 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.930, Tmax = 0.990

  • 6055 measured reflections

  • 3996 independent reflections

  • 3154 reflections with I > 2σ(I)

  • Rint = 0.062

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.115

  • S = 1.07

  • 3996 reflections

  • 362 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.35 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1642 Friedel pairs

  • Flack parameter: 0.21 (12)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O6i 0.93 2.60 3.494 (6) 162
C26—H26⋯O2ii 0.93 2.55 3.479 (7) 174
Symmetry codes: (i) x, y, z-1; (ii) x, y, z+1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Molecules involving benzofuran skeleton have attracted considerable interest in the view of their presence in natural products (Akgul & Anil, 2003; Soekamto et al., 2003) and their biological activity (Aslam et al., 2006; Galal et al., 2009). As a part of our continuing studies of the effect of side chain substituents on the solid state structures of 5-halo-2-methyl-3-phenylsulfonyl-1-benzofuran analogues (Choi et al., 2008a, b, c), we report the crystal structure of the title compound (Fig. 1). The crystal studied was an inversion twin with a 0.21 (12):0.79 (12) domain ratio. It crystallized in the monoclinic space group P21, with two symmetry-independent molecules, A and B, in the asymmetric unit.

The benzofuran unit is essentially planar, with a mean deviation of 0.011 (4) Å for A molecule and 0.007 (4) Å for B molecule, respectively, from the least-squares plane defined by the nine constituent atoms. In the title compound, the dihedral angles formed by the phenyl ring and the plane of the benzofuran fragment are 80.2 (1)° in molecule A and 80.7 (1)° in molecule B, respectively. In the crystal packing (Fig. 2), the A and B molecules are linked by two different aromatic ππ interactions; the first between the furan ring (Cg1) and an adjacent benzene ring (Cg4) [distance = 3.671 (7) Å], the second between the furan ring (Cg3) and an adjacent benzene ring (Cg2) [distance = 3.715 (7) Å], (Cg1, Cg2, Cg3, and Cg4 are the centroids of the C1/C2/C7/O1/C8 furan ring, the C2–C7 benzene ring, the C16/C17/C22/O4/C23 furan ring, and the C17–C22 benzene ring, respectively). The molecular packing (Fig. 2) is further stabilized by two non-classical intermolecular C—H···O hydrogen bonds; the first between the benzene H atom and the oxygen of the SO unit, with a C3—H3···O6i, the second between the phenyl H atom and the oxygen of the SO unit, with a C26—H26···O2ii, respectively (Table 1).

Related literature top

For the crystal structures of similar 5-halo-2-methyl-3-phenylsulfonyl-1-benzofuran derivatives, see: Choi et al. (2008a,b,c). For natural products with benzofuran ring systems, see: Akgul & Anil (2003); Soekamto et al. (2003). For the biological activity of benzofuran compounds, see: Aslam et al. (2006); Galal et al. (2009).

Experimental top

77% 3-Chloroperoxybenzoic acid (560 mg, 2.5 mmol) was added in small portions to a stirred solution of 5-fluoro-2-methyl-3-phenylsulfanyl-1-benzofuran (310 mg, 1.2 mmol) in dichloromethane (40 mL) at 273 K. After being stirred at room temperature for 5h, the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated in vacuum. The residue was purified by column chromatography (chloroform) to afford the title compound as a colorless solid [yield 75%, m.p. 397–398 K; Rf = 0.55 (chloroform)]. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound in benzene at room temperature.

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 Å for aromatic H atoms and 0.96 Å for methyl H atoms, and with Uiso(H) = 1.2Ueq(C) for aromatic H atoms and 1.5Ueq(C) for methyl H atoms. The reported Flack parameter was obtained by TWIN/BASF procedure in SHELXL (Sheldrick, 2008).

Structure description top

Molecules involving benzofuran skeleton have attracted considerable interest in the view of their presence in natural products (Akgul & Anil, 2003; Soekamto et al., 2003) and their biological activity (Aslam et al., 2006; Galal et al., 2009). As a part of our continuing studies of the effect of side chain substituents on the solid state structures of 5-halo-2-methyl-3-phenylsulfonyl-1-benzofuran analogues (Choi et al., 2008a, b, c), we report the crystal structure of the title compound (Fig. 1). The crystal studied was an inversion twin with a 0.21 (12):0.79 (12) domain ratio. It crystallized in the monoclinic space group P21, with two symmetry-independent molecules, A and B, in the asymmetric unit.

The benzofuran unit is essentially planar, with a mean deviation of 0.011 (4) Å for A molecule and 0.007 (4) Å for B molecule, respectively, from the least-squares plane defined by the nine constituent atoms. In the title compound, the dihedral angles formed by the phenyl ring and the plane of the benzofuran fragment are 80.2 (1)° in molecule A and 80.7 (1)° in molecule B, respectively. In the crystal packing (Fig. 2), the A and B molecules are linked by two different aromatic ππ interactions; the first between the furan ring (Cg1) and an adjacent benzene ring (Cg4) [distance = 3.671 (7) Å], the second between the furan ring (Cg3) and an adjacent benzene ring (Cg2) [distance = 3.715 (7) Å], (Cg1, Cg2, Cg3, and Cg4 are the centroids of the C1/C2/C7/O1/C8 furan ring, the C2–C7 benzene ring, the C16/C17/C22/O4/C23 furan ring, and the C17–C22 benzene ring, respectively). The molecular packing (Fig. 2) is further stabilized by two non-classical intermolecular C—H···O hydrogen bonds; the first between the benzene H atom and the oxygen of the SO unit, with a C3—H3···O6i, the second between the phenyl H atom and the oxygen of the SO unit, with a C26—H26···O2ii, respectively (Table 1).

For the crystal structures of similar 5-halo-2-methyl-3-phenylsulfonyl-1-benzofuran derivatives, see: Choi et al. (2008a,b,c). For natural products with benzofuran ring systems, see: Akgul & Anil (2003); Soekamto et al. (2003). For the biological activity of benzofuran compounds, see: Aslam et al. (2006); Galal et al. (2009).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as a small spheres of arbitrary radius.
[Figure 2] Fig. 2. ππ and C—H···O interactions (dotted lines) in the crystal structure of the title compound. Cg denotes the ring centroid. [Symmetry codes: (i) x, y, z - 1; (ii) x, y, z + 1.]
5-Fluoro-2-methyl-3-phenylsulfonyl-1-benzofuran top
Crystal data top
C15H11FO3SF(000) = 600
Mr = 290.30Dx = 1.490 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: p 2ybCell parameters from 2528 reflections
a = 7.377 (2) Åθ = 2.3–25.7°
b = 19.831 (4) ŵ = 0.27 mm1
c = 9.025 (2) ÅT = 173 K
β = 101.367 (3)°Block, colourless
V = 1294.4 (5) Å30.40 × 0.20 × 0.05 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD
diffractometer
3996 independent reflections
Radiation source: Rotating Anode3154 reflections with I > 2σ(I)
HELIOS monochromatorRint = 0.062
Detector resolution: 10.0 pixels mm-1θmax = 25.0°, θmin = 2.1°
φ and ω scansh = 88
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
k = 1923
Tmin = 0.930, Tmax = 0.990l = 1010
6055 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049H-atom parameters constrained
wR(F2) = 0.115 w = 1/[σ2(Fo2) + (0.0406P)2 + 0.9464P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
3996 reflectionsΔρmax = 0.26 e Å3
362 parametersΔρmin = 0.35 e Å3
1 restraintAbsolute structure: Flack (1983), 1642 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.21 (12)
Crystal data top
C15H11FO3SV = 1294.4 (5) Å3
Mr = 290.30Z = 4
Monoclinic, P21Mo Kα radiation
a = 7.377 (2) ŵ = 0.27 mm1
b = 19.831 (4) ÅT = 173 K
c = 9.025 (2) Å0.40 × 0.20 × 0.05 mm
β = 101.367 (3)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
3996 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3154 reflections with I > 2σ(I)
Tmin = 0.930, Tmax = 0.990Rint = 0.062
6055 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.049H-atom parameters constrained
wR(F2) = 0.115Δρmax = 0.26 e Å3
S = 1.07Δρmin = 0.35 e Å3
3996 reflectionsAbsolute structure: Flack (1983), 1642 Friedel pairs
362 parametersAbsolute structure parameter: 0.21 (12)
1 restraint
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.40869 (16)0.34079 (7)0.07406 (13)0.0315 (3)
S20.29228 (16)0.56069 (6)0.66799 (14)0.0314 (3)
O10.6428 (5)0.40440 (18)0.4794 (4)0.0356 (9)
O20.2917 (5)0.38775 (19)0.0206 (4)0.0366 (10)
O30.3351 (5)0.27849 (19)0.1139 (4)0.0419 (10)
O40.0634 (5)0.5048 (2)0.2569 (4)0.0380 (10)
O50.3689 (5)0.62390 (18)0.6366 (4)0.0396 (9)
O60.4061 (5)0.51239 (18)0.7608 (4)0.0370 (9)
F10.5315 (5)0.62712 (18)0.1306 (4)0.0595 (10)
F20.1460 (5)0.27594 (17)0.5845 (4)0.0573 (10)
C10.5062 (6)0.3838 (3)0.2392 (5)0.0292 (12)
C20.5405 (6)0.4548 (3)0.2512 (5)0.0277 (12)
C30.5098 (7)0.5105 (3)0.1556 (6)0.0326 (13)
H30.45600.50630.05370.039*
C40.5630 (8)0.5711 (3)0.2194 (6)0.0409 (14)
C50.6451 (8)0.5809 (3)0.3707 (7)0.0438 (16)
H50.67730.62400.40720.053*
C60.6775 (7)0.5265 (3)0.4641 (7)0.0388 (14)
H60.73240.53110.56560.047*
C70.6260 (7)0.4647 (3)0.4027 (6)0.0323 (13)
C80.5701 (7)0.3559 (3)0.3777 (6)0.0321 (13)
C90.5796 (8)0.2868 (3)0.4372 (6)0.0403 (15)
H9A0.51290.28420.51830.048*
H9B0.70650.27470.47420.048*
H9C0.52570.25630.35820.048*
C100.5988 (7)0.3223 (3)0.0108 (6)0.0301 (13)
C110.6510 (7)0.3687 (3)0.1085 (6)0.0390 (14)
H110.58330.40800.13420.047*
C120.8080 (7)0.3549 (3)0.1675 (6)0.0412 (15)
H120.84700.38540.23300.049*
C130.9051 (8)0.2966 (4)0.1293 (7)0.0495 (17)
H131.01080.28810.16790.059*
C140.8482 (8)0.2507 (3)0.0353 (7)0.0452 (15)
H140.91390.21090.01190.054*
C150.6935 (7)0.2634 (3)0.0255 (6)0.0394 (14)
H150.65440.23230.08980.047*
C160.1980 (6)0.5209 (3)0.4988 (5)0.0275 (11)
C170.1588 (7)0.4501 (3)0.4804 (6)0.0300 (12)
C180.1820 (7)0.3933 (3)0.5702 (6)0.0341 (14)
H180.23550.39520.67250.041*
C190.1217 (7)0.3339 (3)0.5001 (7)0.0366 (14)
C200.0419 (8)0.3273 (3)0.3496 (7)0.0431 (15)
H200.00510.28520.30940.052*
C210.0171 (7)0.3837 (3)0.2591 (6)0.0409 (14)
H210.03570.38120.15680.049*
C220.0738 (7)0.4434 (3)0.3272 (6)0.0320 (13)
C230.1387 (7)0.5516 (3)0.3642 (6)0.0327 (13)
C240.1323 (8)0.6216 (3)0.3081 (7)0.0478 (16)
H24A0.00600.63450.27110.057*
H24B0.19990.62470.22780.057*
H24C0.18670.65110.38900.057*
C250.0987 (7)0.5777 (3)0.7488 (6)0.0293 (13)
C260.0476 (7)0.5332 (3)0.8495 (6)0.0375 (14)
H260.11570.49410.87760.045*
C270.1081 (8)0.5478 (3)0.9085 (7)0.0490 (17)
H270.14350.51870.97860.059*
C280.2091 (8)0.6040 (3)0.8651 (7)0.0461 (17)
H280.31290.61310.90570.055*
C290.1597 (8)0.6481 (3)0.7610 (7)0.0434 (15)
H290.23050.68630.73100.052*
C300.0042 (7)0.6347 (3)0.7022 (6)0.0385 (13)
H300.03070.66370.63190.046*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0254 (7)0.0406 (8)0.0272 (7)0.0029 (6)0.0021 (5)0.0014 (6)
S20.0266 (7)0.0380 (8)0.0283 (7)0.0013 (6)0.0019 (5)0.0018 (6)
O10.039 (2)0.041 (3)0.025 (2)0.0029 (17)0.0014 (16)0.0001 (18)
O20.029 (2)0.046 (3)0.032 (2)0.0034 (18)0.0032 (16)0.0049 (19)
O30.041 (2)0.047 (3)0.037 (2)0.0117 (18)0.0056 (18)0.0009 (19)
O40.040 (2)0.047 (3)0.027 (2)0.0071 (18)0.0053 (16)0.0018 (19)
O50.035 (2)0.039 (2)0.045 (2)0.0052 (18)0.0084 (17)0.0042 (19)
O60.030 (2)0.046 (2)0.033 (2)0.0040 (17)0.0001 (16)0.0034 (19)
F10.083 (3)0.043 (2)0.057 (2)0.0025 (19)0.0235 (19)0.0091 (18)
F20.083 (3)0.043 (2)0.047 (2)0.0026 (18)0.0171 (19)0.0020 (17)
C10.019 (3)0.041 (4)0.025 (3)0.002 (2)0.001 (2)0.001 (2)
C20.020 (3)0.043 (4)0.020 (3)0.001 (2)0.005 (2)0.004 (2)
C30.032 (3)0.041 (4)0.025 (3)0.002 (2)0.006 (2)0.001 (3)
C40.046 (3)0.037 (4)0.042 (3)0.004 (3)0.016 (3)0.005 (3)
C50.041 (3)0.046 (4)0.047 (4)0.006 (3)0.015 (3)0.012 (3)
C60.033 (3)0.053 (4)0.030 (3)0.004 (3)0.006 (2)0.014 (3)
C70.026 (3)0.046 (4)0.025 (3)0.002 (2)0.005 (2)0.002 (3)
C80.026 (3)0.038 (4)0.032 (3)0.004 (2)0.006 (2)0.001 (3)
C90.043 (4)0.047 (4)0.028 (3)0.003 (3)0.001 (3)0.006 (3)
C100.030 (3)0.043 (4)0.016 (2)0.002 (2)0.000 (2)0.004 (2)
C110.035 (3)0.053 (4)0.027 (3)0.004 (3)0.001 (2)0.002 (3)
C120.036 (3)0.071 (5)0.015 (3)0.009 (3)0.002 (2)0.001 (3)
C130.038 (4)0.074 (5)0.037 (4)0.004 (3)0.011 (3)0.010 (3)
C140.042 (3)0.054 (4)0.036 (3)0.012 (3)0.001 (3)0.010 (3)
C150.036 (3)0.044 (4)0.038 (3)0.002 (3)0.006 (3)0.011 (3)
C160.025 (3)0.034 (3)0.024 (3)0.003 (2)0.004 (2)0.003 (2)
C170.019 (3)0.040 (4)0.031 (3)0.003 (2)0.004 (2)0.001 (2)
C180.033 (3)0.041 (4)0.030 (3)0.001 (2)0.008 (2)0.000 (3)
C190.033 (3)0.035 (4)0.042 (3)0.000 (3)0.010 (3)0.005 (3)
C200.038 (3)0.050 (4)0.040 (3)0.009 (3)0.006 (3)0.012 (3)
C210.039 (3)0.057 (4)0.026 (3)0.000 (3)0.005 (2)0.011 (3)
C220.027 (3)0.045 (4)0.024 (3)0.002 (2)0.005 (2)0.001 (3)
C230.030 (3)0.039 (4)0.031 (3)0.001 (2)0.012 (2)0.000 (3)
C240.054 (4)0.051 (4)0.040 (4)0.015 (3)0.013 (3)0.007 (3)
C250.023 (3)0.039 (4)0.024 (3)0.002 (2)0.001 (2)0.007 (3)
C260.027 (3)0.054 (4)0.029 (3)0.003 (2)0.001 (2)0.003 (3)
C270.036 (3)0.081 (5)0.031 (3)0.004 (3)0.008 (3)0.004 (3)
C280.031 (3)0.077 (5)0.029 (3)0.004 (3)0.002 (3)0.023 (3)
C290.035 (3)0.043 (4)0.050 (4)0.009 (3)0.003 (3)0.011 (3)
C300.043 (3)0.034 (3)0.041 (3)0.000 (3)0.013 (3)0.001 (3)
Geometric parameters (Å, º) top
S1—O31.424 (4)C12—C131.368 (8)
S1—O21.432 (4)C12—H120.9300
S1—C11.744 (5)C13—C141.365 (8)
S1—C101.764 (6)C13—H130.9300
S2—O51.426 (4)C14—C151.383 (8)
S2—O61.430 (4)C14—H140.9300
S2—C161.738 (5)C15—H150.9300
S2—C251.759 (5)C16—C231.352 (7)
O1—C81.364 (6)C16—C171.437 (7)
O1—C71.375 (6)C17—C181.378 (7)
O4—C221.369 (6)C17—C221.408 (7)
O4—C231.377 (6)C18—C191.369 (8)
F1—C41.363 (6)C18—H180.9300
F2—C191.371 (7)C19—C201.377 (8)
C1—C81.364 (7)C20—C211.375 (8)
C1—C21.431 (7)C20—H200.9300
C2—C31.392 (7)C21—C221.361 (8)
C2—C71.402 (7)C21—H210.9300
C3—C41.357 (8)C23—C241.474 (7)
C3—H30.9300C24—H24A0.9600
C4—C51.393 (8)C24—H24B0.9600
C5—C61.361 (8)C24—H24C0.9600
C5—H50.9300C25—C261.372 (7)
C6—C71.368 (8)C25—C301.381 (7)
C6—H60.9300C26—C271.389 (8)
C8—C91.469 (8)C26—H260.9300
C9—H9A0.9600C27—C281.356 (8)
C9—H9B0.9600C27—H270.9300
C9—H9C0.9600C28—C291.383 (8)
C10—C151.368 (7)C28—H280.9300
C10—C111.380 (8)C29—C301.381 (8)
C11—C121.394 (8)C29—H290.9300
C11—H110.9300C30—H300.9300
O3—S1—O2120.0 (2)C12—C13—H13119.7
O3—S1—C1108.8 (2)C13—C14—C15120.3 (6)
O2—S1—C1106.9 (2)C13—C14—H14119.8
O3—S1—C10107.7 (2)C15—C14—H14119.8
O2—S1—C10108.3 (2)C10—C15—C14118.8 (6)
C1—S1—C10104.1 (2)C10—C15—H15120.6
O5—S2—O6119.7 (2)C14—C15—H15120.6
O5—S2—C16109.3 (2)C23—C16—C17108.3 (4)
O6—S2—C16107.3 (2)C23—C16—S2126.0 (4)
O5—S2—C25107.5 (2)C17—C16—S2125.6 (4)
O6—S2—C25108.4 (2)C18—C17—C22118.7 (5)
C16—S2—C25103.5 (2)C18—C17—C16137.1 (5)
C8—O1—C7106.9 (4)C22—C17—C16104.3 (4)
C22—O4—C23107.2 (4)C19—C18—C17116.1 (5)
C8—C1—C2107.8 (4)C19—C18—H18122.0
C8—C1—S1126.5 (4)C17—C18—H18122.0
C2—C1—S1125.7 (4)C18—C19—F2118.0 (5)
C3—C2—C7118.7 (5)C18—C19—C20125.1 (6)
C3—C2—C1136.7 (5)F2—C19—C20116.9 (5)
C7—C2—C1104.5 (4)C21—C20—C19119.3 (6)
C4—C3—C2116.2 (5)C21—C20—H20120.3
C4—C3—H3121.9C19—C20—H20120.3
C2—C3—H3121.9C22—C21—C20116.4 (5)
C3—C4—F1118.1 (5)C22—C21—H21121.8
C3—C4—C5125.0 (6)C20—C21—H21121.8
F1—C4—C5116.9 (6)C21—C22—O4125.5 (5)
C6—C5—C4119.1 (6)C21—C22—C17124.4 (5)
C6—C5—H5120.5O4—C22—C17110.1 (5)
C4—C5—H5120.5C16—C23—O4110.0 (4)
C5—C6—C7117.2 (5)C16—C23—C24135.6 (5)
C5—C6—H6121.4O4—C23—C24114.3 (5)
C7—C6—H6121.4C23—C24—H24A109.5
C6—C7—O1125.8 (5)C23—C24—H24B109.5
C6—C7—C2123.8 (5)H24A—C24—H24B109.5
O1—C7—C2110.4 (5)C23—C24—H24C109.5
C1—C8—O1110.5 (5)H24A—C24—H24C109.5
C1—C8—C9134.2 (5)H24B—C24—H24C109.5
O1—C8—C9115.3 (4)C26—C25—C30121.5 (5)
C8—C9—H9A109.5C26—C25—S2120.2 (4)
C8—C9—H9B109.5C30—C25—S2118.2 (4)
H9A—C9—H9B109.5C25—C26—C27118.4 (5)
C8—C9—H9C109.5C25—C26—H26120.8
H9A—C9—H9C109.5C27—C26—H26120.8
H9B—C9—H9C109.5C28—C27—C26120.6 (6)
C15—C10—C11121.9 (5)C28—C27—H27119.7
C15—C10—S1119.1 (4)C26—C27—H27119.7
C11—C10—S1119.0 (4)C27—C28—C29120.9 (6)
C10—C11—C12118.1 (6)C27—C28—H28119.6
C10—C11—H11120.9C29—C28—H28119.6
C12—C11—H11120.9C30—C29—C28119.3 (6)
C13—C12—C11120.1 (6)C30—C29—H29120.4
C13—C12—H12119.9C28—C29—H29120.4
C11—C12—H12119.9C25—C30—C29119.3 (5)
C14—C13—C12120.7 (6)C25—C30—H30120.4
C14—C13—H13119.7C29—C30—H30120.4
O3—S1—C1—C824.1 (5)O5—S2—C16—C2324.0 (5)
O2—S1—C1—C8155.0 (4)O6—S2—C16—C23155.2 (4)
C10—S1—C1—C890.6 (5)C25—S2—C16—C2390.3 (5)
O3—S1—C1—C2158.9 (4)O5—S2—C16—C17160.2 (4)
O2—S1—C1—C228.0 (5)O6—S2—C16—C1729.1 (5)
C10—S1—C1—C286.5 (5)C25—S2—C16—C1785.5 (4)
C8—C1—C2—C3179.6 (6)C23—C16—C17—C18179.4 (6)
S1—C1—C2—C32.8 (8)S2—C16—C17—C183.0 (8)
C8—C1—C2—C70.1 (5)C23—C16—C17—C220.1 (5)
S1—C1—C2—C7177.6 (4)S2—C16—C17—C22176.3 (4)
C7—C2—C3—C41.4 (7)C22—C17—C18—C191.1 (7)
C1—C2—C3—C4178.1 (5)C16—C17—C18—C19179.7 (5)
C2—C3—C4—F1178.5 (4)C17—C18—C19—F2178.5 (4)
C2—C3—C4—C50.3 (8)C17—C18—C19—C200.2 (8)
C3—C4—C5—C60.5 (9)C18—C19—C20—C210.5 (9)
F1—C4—C5—C6179.3 (5)F2—C19—C20—C21178.9 (5)
C4—C5—C6—C70.2 (8)C19—C20—C21—C220.4 (8)
C5—C6—C7—O1178.2 (5)C20—C21—C22—O4179.2 (5)
C5—C6—C7—C20.9 (8)C20—C21—C22—C171.7 (8)
C8—O1—C7—C6178.1 (5)C23—O4—C22—C21178.6 (5)
C8—O1—C7—C20.5 (5)C23—O4—C22—C170.9 (5)
C3—C2—C7—C61.8 (7)C18—C17—C22—C212.1 (8)
C1—C2—C7—C6177.9 (5)C16—C17—C22—C21178.4 (5)
C3—C2—C7—O1179.4 (4)C18—C17—C22—O4179.9 (4)
C1—C2—C7—O10.3 (5)C16—C17—C22—O40.6 (5)
C2—C1—C8—O10.4 (5)C17—C16—C23—O40.5 (5)
S1—C1—C8—O1177.9 (3)S2—C16—C23—O4176.8 (3)
C2—C1—C8—C9178.3 (5)C17—C16—C23—C24177.9 (5)
S1—C1—C8—C90.8 (8)S2—C16—C23—C241.5 (9)
C7—O1—C8—C10.6 (5)C22—O4—C23—C160.9 (5)
C7—O1—C8—C9178.4 (4)C22—O4—C23—C24177.9 (4)
O3—S1—C10—C1526.1 (5)O5—S2—C25—C26150.5 (4)
O2—S1—C10—C15157.2 (4)O6—S2—C25—C2619.8 (5)
C1—S1—C10—C1589.3 (5)C16—S2—C25—C2693.9 (4)
O3—S1—C10—C11155.8 (4)O5—S2—C25—C3032.8 (5)
O2—S1—C10—C1124.6 (5)O6—S2—C25—C30163.5 (4)
C1—S1—C10—C1188.8 (4)C16—S2—C25—C3082.8 (5)
C15—C10—C11—C121.8 (8)C30—C25—C26—C272.2 (8)
S1—C10—C11—C12176.3 (4)S2—C25—C26—C27178.8 (4)
C10—C11—C12—C130.5 (8)C25—C26—C27—C281.3 (8)
C11—C12—C13—C141.0 (9)C26—C27—C28—C290.1 (9)
C12—C13—C14—C151.4 (9)C27—C28—C29—C300.7 (9)
C11—C10—C15—C141.4 (8)C26—C25—C30—C291.6 (8)
S1—C10—C15—C14176.7 (4)S2—C25—C30—C29178.3 (4)
C13—C14—C15—C100.2 (8)C28—C29—C30—C250.1 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O6i0.932.603.494 (6)162
C26—H26···O2ii0.932.553.479 (7)174
Symmetry codes: (i) x, y, z1; (ii) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC15H11FO3S
Mr290.30
Crystal system, space groupMonoclinic, P21
Temperature (K)173
a, b, c (Å)7.377 (2), 19.831 (4), 9.025 (2)
β (°) 101.367 (3)
V3)1294.4 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.27
Crystal size (mm)0.40 × 0.20 × 0.05
Data collection
DiffractometerBruker SMART APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.930, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
6055, 3996, 3154
Rint0.062
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.115, 1.07
No. of reflections3996
No. of parameters362
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.35
Absolute structureFlack (1983), 1642 Friedel pairs
Absolute structure parameter0.21 (12)

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O6i0.932.603.494 (6)161.5
C26—H26···O2ii0.932.553.479 (7)174.4
Symmetry codes: (i) x, y, z1; (ii) x, y, z+1.
 

References

First citationAkgul, Y. Y. & Anil, H. (2003). Phytochemistry, 63, 939–943.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAslam, S. N., Stevenson, P. C., Phythian, S. J., Veitch, N. C. & Hall, D. R. (2006). Tetrahedron, 62, 4214–4226.  Web of Science CrossRef CAS Google Scholar
First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2008a). Acta Cryst. E64, o793.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2008b). Acta Cryst. E64, o930.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2008c). Acta Cryst. E64, o1190.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGalal, S. A., Abd El-All, A. S., Abdallah, M. M. & El-Diwani, H. I. (2009). Bioorg. Med. Chem. Lett. 19, 2420–2428.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSoekamto, N. H., Achmad, S. A., Ghisalberti, E. L., Hakim, E. H. & Syah, Y. M. (2003). Phytochemistry, 64, 831–834.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds