metal-organic compounds
catena-Poly[[[aqua(5-nitrobenzene-1,2,3-tricarboxylato-κO1)copper(II)]-di-μ-aqua-[diaquasodium]-di-μ-aqua] tetrahydrate]
aDepartment of Chemistry, East China Normal University, Shanghai 200062, People's Republic of China, and bDepartment of Chemistry, Zhoukou Normal University, Zhoukou 466001, People's Republic of China
*Correspondence e-mail: chunxiangzhao@163.com
In the heteronuclear coordination polymer, {[CuNa(C9H2NO8)(H2O)7]·4H2O}n, the CuII atom is coordinated by six O atoms from five water molecules and one 5-nitrobenzene-1,2,3-tricarboxylate ligand in a slightly distorted octahedral geometry. The Na+ cation is surrounded by six water molecules in an irregular trigonal-prismatic geometry. The Cu and Na atoms are connected by water bridges, forming an infinite chain. O—H⋯O hydrogen bonds involving the coordinated and uncoordinated water molecules connect the chains into a three-dimensional network.
Related literature
For general background to the possible applications of metal coordination polymers as microporous hosts for absorption or as catalytic materials, see: Cheng et al. (2004); Yaghi & Li (1995).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2005); cell SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).
Supporting information
https://doi.org/10.1107/S1600536810000401/ng2712sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810000401/ng2712Isup2.hkl
5-Nitrobenzene-1,2,3-tricarboxylic acid (0.051 g, 0.2 mmol) was added to a solution of copper chloride (0.027 g, 0.2 mmol) (20 mL), the resulting mixture was treated with a solution of NaOH until the pH value come rise to be about 8.The mixture was then stirred continuously for 6 h, and the filtrate was kept in conical flask for about 30 days and blue block crystals were obtained from the solution, dried in vacuum. Yield: 67.6%. Crystal of the title compound suitable for single-crystal X-ray diffraction was selected directly from the sample as prepared.
All C-bound H atoms were placed in calculated positions, with C—H = 0.93Å for phenyl H, and refined as riding, with Uiso(H) =1.2Ueq (C) for phenyl H. The water H-atoms were placed in chemically sensible positions on the basis of hydrogen bonding but were not refined, with Uiso(H) = 1.5Ueq(O).
Recently, there has been much interest in the synthesis of metal coordination polymers, due to their possible application as microporous hosts for absorption or even as catalytic materials (Yaghi et al., 1995; Cheng et al.,2004). Herein, we report a new heteronuclear metal coordination polymer with the tricarboxylates, 5-Nitrobenzene-1,2,3-tricarboxylicacid (NBA) as the ligand, the copper (II) and sodium (I) as the metal ions.
As can be seen from the
in Fig.1, Cu and Na are connected via µ-O, O' coordination of water molecules, which structure is repeating unit along a axis, forming one-dimensional infinite chains, which chains along the a axis is built up through coordination between NBA, a part of water molecules and Cu(II), Na(I) (Fig.2). Through the forming of hydrogen bonds between chains and water molecules of the interchain, three-dimensional supermolecular structure is formed. The different chains are linked by an extensive hydrogen-bonding network (Table 1, Fig.3), through oxygen atoms of carboxylate and water molecule. Each of the water molecules has at least one hydrogen-bonding interaction, this leads to the formation of a stable three dimensional supramolecular structure.For general background to the possible applications of metal coordination polymers as microporous hosts for absorption or as catalytic materials, see: Cheng et al. (2004); Yaghi & Li (1995).
Data collection: APEX2 (Bruker, 2005); cell
SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. The molecular structure of (NBA) (thermal ellipsoids areshown at 30% probability levels). [Symmetry codes: (i) 1 + x, y, z; (ii) -1 + x, y, z] | |
Fig. 2. The molecular packing diagram along the a axis (the NBA and water molecules have been omitted for clarity) | |
Fig. 3. Three-dimensional supermolecular structure is built up through hydrogen bond |
[CuNa(C9H2NO8)(H2O)7]·4H2O | Z = 2 |
Mr = 536.82 | F(000) = 554 |
Triclinic, P1 | Dx = 1.722 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 6.6480 (13) Å | Cell parameters from 2416 reflections |
b = 13.124 (3) Å | θ = 2.9–27.7° |
c = 13.531 (3) Å | µ = 1.17 mm−1 |
α = 63.46 (3)° | T = 295 K |
β = 79.17 (4)° | Block, blue |
γ = 82.13 (3)° | 0.27 × 0.26 × 0.21 mm |
V = 1035.5 (4) Å3 |
Bruker APEXII area-detector diffractometer | 3719 independent reflections |
Radiation source: fine-focus sealed tube | 3113 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.021 |
φ and ω scan | θmax = 25.2°, θmin = 1.7° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2005) | h = −7→7 |
Tmin = 0.743, Tmax = 0.791 | k = −15→15 |
5466 measured reflections | l = −12→16 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.047 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.133 | H-atom parameters constrained |
S = 1.02 | w = 1/[σ2(Fo2) + (0.0826P)2 + 0.906P] where P = (Fo2 + 2Fc2)/3 |
3696 reflections | (Δ/σ)max = 0.001 |
280 parameters | Δρmax = 0.76 e Å−3 |
0 restraints | Δρmin = −0.76 e Å−3 |
[CuNa(C9H2NO8)(H2O)7]·4H2O | γ = 82.13 (3)° |
Mr = 536.82 | V = 1035.5 (4) Å3 |
Triclinic, P1 | Z = 2 |
a = 6.6480 (13) Å | Mo Kα radiation |
b = 13.124 (3) Å | µ = 1.17 mm−1 |
c = 13.531 (3) Å | T = 295 K |
α = 63.46 (3)° | 0.27 × 0.26 × 0.21 mm |
β = 79.17 (4)° |
Bruker APEXII area-detector diffractometer | 3719 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2005) | 3113 reflections with I > 2σ(I) |
Tmin = 0.743, Tmax = 0.791 | Rint = 0.021 |
5466 measured reflections |
R[F2 > 2σ(F2)] = 0.047 | 0 restraints |
wR(F2) = 0.133 | H-atom parameters constrained |
S = 1.02 | Δρmax = 0.76 e Å−3 |
3696 reflections | Δρmin = −0.76 e Å−3 |
280 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.45974 (6) | 1.11126 (4) | 0.67569 (3) | 0.02613 (17) | |
Na1 | 0.9245 (2) | 1.21836 (13) | 0.62390 (12) | 0.0355 (4) | |
N1 | 0.1276 (5) | 0.5042 (3) | 1.1324 (2) | 0.0300 (7) | |
C1 | 0.2949 (5) | 0.8902 (3) | 0.8445 (3) | 0.0233 (7) | |
C2 | 0.2868 (5) | 0.7638 (3) | 0.8775 (3) | 0.0224 (7) | |
C3 | 0.3519 (5) | 0.7198 (3) | 0.7989 (3) | 0.0209 (7) | |
C4 | 0.3514 (5) | 0.6022 (3) | 0.8333 (3) | 0.0219 (7) | |
C5 | 0.2859 (5) | 0.5315 (3) | 0.9441 (3) | 0.0238 (7) | |
H5 | 0.2926 | 0.4528 | 0.9687 | 0.029* | |
C6 | 0.2110 (5) | 0.5782 (3) | 1.0174 (3) | 0.0246 (7) | |
C7 | 0.2114 (5) | 0.6939 (3) | 0.9862 (3) | 0.0240 (7) | |
H7 | 0.1620 | 0.7239 | 1.0374 | 0.029* | |
C8 | 0.4157 (5) | 0.7967 (3) | 0.6777 (3) | 0.0217 (7) | |
C9 | 0.4168 (5) | 0.5492 (3) | 0.7518 (3) | 0.0255 (8) | |
O1 | 0.1623 (5) | 0.4011 (2) | 1.1654 (2) | 0.0438 (7) | |
O2 | 0.0221 (4) | 0.5489 (3) | 1.1883 (2) | 0.0424 (7) | |
O3 | 0.5154 (4) | 0.4541 (2) | 0.7880 (2) | 0.0350 (6) | |
O4 | 0.3646 (4) | 0.6026 (2) | 0.6569 (2) | 0.0322 (6) | |
O5 | 0.5992 (3) | 0.7895 (2) | 0.6373 (2) | 0.0279 (5) | |
O6 | 0.2773 (3) | 0.8631 (2) | 0.62482 (19) | 0.0253 (5) | |
O7 | 0.1643 (4) | 0.9349 (2) | 0.8958 (2) | 0.0378 (7) | |
O8 | 0.4354 (3) | 0.94091 (19) | 0.76839 (19) | 0.0239 (5) | |
O1W | 1.0173 (5) | 1.3157 (3) | 0.4326 (3) | 0.0583 (9) | |
H1W | 1.1316 | 1.3136 | 0.3943 | 0.087* | |
H2W | 0.9188 | 1.3422 | 0.3956 | 0.087* | |
O2W | 0.3871 (5) | 0.2405 (2) | 0.8712 (2) | 0.0480 (8) | |
H3W | 0.3277 | 0.2063 | 0.9367 | 0.072* | |
H4W | 0.4314 | 0.2983 | 0.8694 | 0.072* | |
O3W | 0.2499 (4) | 0.4492 (2) | 0.5859 (2) | 0.0413 (7) | |
H5W | 0.2851 | 0.4832 | 0.6193 | 0.062* | |
H6W | 0.2712 | 0.4938 | 0.5177 | 0.062* | |
O4W | 0.8268 (4) | 1.3977 (3) | 0.6357 (2) | 0.0457 (7) | |
H7W | 0.7512 | 1.3945 | 0.6941 | 0.069* | |
H8W | 0.9337 | 1.4228 | 0.6390 | 0.069* | |
O5W | 0.8772 (4) | 0.8670 (2) | 0.7141 (2) | 0.0342 (6) | |
H9W | 1.0052 | 0.8651 | 0.6965 | 0.051* | |
H10W | 0.8229 | 0.8171 | 0.7068 | 0.051* | |
O6W | 0.7667 (4) | 0.8945 (3) | 0.9121 (2) | 0.0416 (7) | |
H11W | 0.8793 | 0.9089 | 0.9212 | 0.062* | |
H12W | 0.7799 | 0.8737 | 0.8607 | 0.062* | |
O7W | 0.1910 (4) | 1.1559 (2) | 0.7608 (2) | 0.0322 (6) | |
H13W | 0.1805 | 1.0929 | 0.8175 | 0.048* | |
H14W | 0.2254 | 1.1929 | 0.7914 | 0.048* | |
O8W | 0.6440 (4) | 1.1187 (2) | 0.7809 (2) | 0.0304 (6) | |
H15W | 0.6707 | 1.0528 | 0.8295 | 0.046* | |
H16W | 0.5749 | 1.1599 | 0.8095 | 0.046* | |
O9W | 0.2728 (4) | 1.0955 (2) | 0.5785 (2) | 0.0277 (5) | |
H18W | 0.2966 | 1.1361 | 0.5094 | 0.041* | |
H17W | 0.2814 | 1.0266 | 0.5904 | 0.041* | |
O10W | 0.7342 (4) | 1.0795 (2) | 0.5925 (2) | 0.0275 (5) | |
H19W | 0.7623 | 1.0126 | 0.6388 | 0.041* | |
H20W | 0.7367 | 1.0866 | 0.5275 | 0.041* | |
O11W | 0.5012 (4) | 1.2786 (2) | 0.5697 (2) | 0.0329 (6) | |
H21W | 0.5259 | 1.3005 | 0.5003 | 0.049* | |
H22W | 0.4304 | 1.3288 | 0.5857 | 0.049* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0215 (3) | 0.0263 (3) | 0.0308 (3) | −0.00127 (17) | −0.00157 (18) | −0.0134 (2) |
Na1 | 0.0309 (8) | 0.0395 (9) | 0.0336 (8) | −0.0038 (7) | −0.0005 (6) | −0.0146 (7) |
N1 | 0.0234 (16) | 0.0362 (18) | 0.0270 (16) | −0.0065 (13) | −0.0033 (13) | −0.0094 (14) |
C1 | 0.0191 (17) | 0.0243 (17) | 0.0272 (18) | 0.0004 (14) | −0.0049 (14) | −0.0115 (15) |
C2 | 0.0163 (16) | 0.0238 (17) | 0.0279 (18) | −0.0009 (13) | −0.0026 (13) | −0.0121 (14) |
C3 | 0.0101 (15) | 0.0242 (17) | 0.0283 (18) | 0.0014 (12) | −0.0050 (13) | −0.0112 (14) |
C4 | 0.0138 (16) | 0.0239 (17) | 0.0284 (18) | 0.0013 (13) | −0.0054 (13) | −0.0114 (14) |
C5 | 0.0200 (17) | 0.0225 (17) | 0.0286 (18) | 0.0001 (13) | −0.0059 (14) | −0.0103 (14) |
C6 | 0.0156 (16) | 0.0294 (19) | 0.0251 (18) | −0.0001 (14) | −0.0051 (13) | −0.0081 (15) |
C7 | 0.0187 (17) | 0.0280 (18) | 0.0277 (18) | 0.0018 (14) | −0.0023 (14) | −0.0156 (15) |
C8 | 0.0182 (17) | 0.0216 (16) | 0.0286 (18) | −0.0023 (13) | −0.0015 (14) | −0.0141 (14) |
C9 | 0.0183 (17) | 0.0278 (18) | 0.032 (2) | −0.0085 (14) | 0.0041 (14) | −0.0158 (16) |
O1 | 0.0474 (18) | 0.0309 (16) | 0.0384 (16) | −0.0047 (13) | −0.0023 (13) | −0.0029 (12) |
O2 | 0.0423 (17) | 0.0481 (17) | 0.0325 (15) | −0.0075 (14) | 0.0089 (13) | −0.0178 (14) |
O3 | 0.0375 (15) | 0.0285 (14) | 0.0415 (15) | 0.0052 (12) | −0.0052 (12) | −0.0193 (12) |
O4 | 0.0358 (15) | 0.0358 (14) | 0.0275 (14) | −0.0040 (12) | −0.0032 (11) | −0.0161 (12) |
O5 | 0.0168 (12) | 0.0343 (14) | 0.0294 (13) | −0.0004 (10) | 0.0008 (10) | −0.0127 (11) |
O6 | 0.0199 (12) | 0.0275 (13) | 0.0253 (12) | 0.0016 (10) | −0.0047 (10) | −0.0090 (10) |
O7 | 0.0351 (15) | 0.0314 (14) | 0.0463 (16) | −0.0050 (12) | 0.0122 (12) | −0.0225 (13) |
O8 | 0.0199 (12) | 0.0218 (12) | 0.0275 (13) | −0.0024 (9) | 0.0004 (10) | −0.0095 (10) |
O1W | 0.0451 (18) | 0.070 (2) | 0.0423 (18) | 0.0258 (16) | −0.0035 (14) | −0.0179 (16) |
O2W | 0.066 (2) | 0.0372 (16) | 0.0431 (17) | −0.0126 (15) | 0.0103 (15) | −0.0239 (14) |
O3W | 0.0445 (17) | 0.0404 (16) | 0.0471 (17) | 0.0023 (13) | −0.0078 (13) | −0.0270 (14) |
O4W | 0.0373 (16) | 0.060 (2) | 0.0482 (17) | −0.0100 (14) | −0.0011 (13) | −0.0305 (16) |
O5W | 0.0208 (13) | 0.0348 (14) | 0.0501 (17) | 0.0011 (11) | −0.0051 (11) | −0.0219 (13) |
O6W | 0.0340 (15) | 0.0517 (18) | 0.0388 (16) | −0.0006 (13) | −0.0044 (12) | −0.0202 (14) |
O7W | 0.0282 (14) | 0.0322 (14) | 0.0372 (14) | −0.0002 (11) | 0.0014 (11) | −0.0187 (12) |
O8W | 0.0329 (14) | 0.0314 (14) | 0.0302 (14) | −0.0012 (11) | −0.0060 (11) | −0.0159 (11) |
O9W | 0.0288 (13) | 0.0267 (13) | 0.0274 (13) | −0.0017 (10) | −0.0054 (10) | −0.0111 (11) |
O10W | 0.0232 (12) | 0.0300 (13) | 0.0282 (13) | 0.0018 (10) | −0.0005 (10) | −0.0138 (11) |
O11W | 0.0394 (15) | 0.0237 (13) | 0.0310 (14) | −0.0019 (11) | 0.0016 (11) | −0.0104 (11) |
Cu1—O8 | 2.028 (2) | C8—O5 | 1.249 (4) |
Cu1—O11W | 2.040 (3) | C8—O6 | 1.260 (4) |
Cu1—O10W | 2.052 (2) | C9—O4 | 1.247 (4) |
Cu1—O9W | 2.061 (2) | C9—O3 | 1.256 (4) |
Cu1—O8W | 2.086 (2) | O1W—H1W | 0.8400 |
Cu1—O7W | 2.098 (3) | O1W—H2W | 0.8399 |
Na1—O1W | 2.318 (4) | O2W—H3W | 0.8400 |
Na1—O4W | 2.422 (3) | O2W—H4W | 0.8398 |
Na1—O8W | 2.529 (3) | O3W—H5W | 0.8401 |
Na1—O10W | 2.574 (3) | O3W—H6W | 0.8398 |
Na1—O7Wi | 2.593 (3) | O4W—H7W | 0.8401 |
Na1—O9Wi | 2.770 (3) | O4W—H8W | 0.8401 |
N1—O2 | 1.222 (4) | O5W—H9W | 0.8401 |
N1—O1 | 1.224 (4) | O5W—H10W | 0.8400 |
N1—C6 | 1.464 (5) | O6W—H11W | 0.8399 |
C1—O8 | 1.254 (4) | O6W—H12W | 0.8400 |
C1—O7 | 1.256 (4) | O7W—Na1ii | 2.593 (3) |
C1—C2 | 1.519 (5) | O7W—H13W | 0.8400 |
C2—C7 | 1.378 (5) | O7W—H14W | 0.8399 |
C2—C3 | 1.400 (5) | O8W—H15W | 0.8399 |
C3—C4 | 1.400 (5) | O8W—H16W | 0.8399 |
C3—C8 | 1.505 (5) | O9W—Na1ii | 2.769 (3) |
C4—C5 | 1.386 (5) | O9W—H18W | 0.8398 |
C4—C9 | 1.521 (5) | O9W—H17W | 0.8400 |
C5—C6 | 1.372 (5) | O10W—H19W | 0.8398 |
C5—H5 | 0.9300 | O10W—H20W | 0.8395 |
C6—C7 | 1.382 (5) | O11W—H21W | 0.8400 |
C7—H7 | 0.9300 | O11W—H22W | 0.8401 |
O8—Cu1—O11W | 174.07 (9) | C2—C3—C8 | 121.4 (3) |
O8—Cu1—O10W | 89.57 (10) | C5—C4—C3 | 119.6 (3) |
O11W—Cu1—O10W | 85.25 (11) | C5—C4—C9 | 118.6 (3) |
O8—Cu1—O9W | 85.27 (10) | C3—C4—C9 | 121.8 (3) |
O11W—Cu1—O9W | 92.50 (11) | C6—C5—C4 | 119.6 (3) |
O10W—Cu1—O9W | 97.07 (10) | C6—C5—H5 | 120.2 |
O8—Cu1—O8W | 91.76 (10) | C4—C5—H5 | 120.2 |
O11W—Cu1—O8W | 90.54 (11) | C5—C6—C7 | 122.0 (3) |
O10W—Cu1—O8W | 83.80 (10) | C5—C6—N1 | 119.5 (3) |
O9W—Cu1—O8W | 176.89 (10) | C7—C6—N1 | 118.5 (3) |
O8—Cu1—O7W | 94.30 (10) | C2—C7—C6 | 118.5 (3) |
O11W—Cu1—O7W | 91.04 (11) | C2—C7—H7 | 120.8 |
O10W—Cu1—O7W | 174.87 (10) | C6—C7—H7 | 120.8 |
O9W—Cu1—O7W | 86.61 (10) | O5—C8—O6 | 125.2 (3) |
O8W—Cu1—O7W | 92.71 (10) | O5—C8—C3 | 118.1 (3) |
O8—Cu1—Na1 | 118.29 (8) | O6—C8—C3 | 116.7 (3) |
O11W—Cu1—Na1 | 59.92 (9) | O4—C9—O3 | 126.4 (3) |
O10W—Cu1—Na1 | 49.22 (8) | O4—C9—C4 | 117.4 (3) |
O9W—Cu1—Na1 | 134.47 (8) | O3—C9—C4 | 116.2 (3) |
O8W—Cu1—Na1 | 48.05 (8) | C1—O8—Cu1 | 128.3 (2) |
O7W—Cu1—Na1 | 125.72 (8) | Na1—O1W—H1W | 128.5 |
O1W—Na1—O4W | 90.19 (12) | Na1—O1W—H2W | 115.0 |
O1W—Na1—O8W | 146.32 (13) | H1W—O1W—H2W | 114.4 |
O4W—Na1—O8W | 91.74 (11) | H3W—O2W—H4W | 104.9 |
O1W—Na1—O10W | 89.56 (13) | H5W—O3W—H6W | 105.6 |
O4W—Na1—O10W | 134.16 (11) | Na1—O4W—H7W | 116.6 |
O8W—Na1—O10W | 65.55 (9) | Na1—O4W—H8W | 107.4 |
O1W—Na1—O7Wi | 121.61 (12) | H7W—O4W—H8W | 101.9 |
O4W—Na1—O7Wi | 93.88 (11) | H9W—O5W—H10W | 112.6 |
O8W—Na1—O7Wi | 91.80 (9) | H11W—O6W—H12W | 112.2 |
O10W—Na1—O7Wi | 124.37 (10) | Cu1—O7W—Na1ii | 104.30 (11) |
O1W—Na1—O9Wi | 76.07 (10) | Cu1—O7W—H13W | 97.3 |
O4W—Na1—O9Wi | 139.84 (11) | Na1ii—O7W—H13W | 118.8 |
O8W—Na1—O9Wi | 120.44 (10) | Cu1—O7W—H14W | 107.2 |
O10W—Na1—O9Wi | 84.04 (8) | Na1ii—O7W—H14W | 127.7 |
O7Wi—Na1—O9Wi | 64.18 (8) | H13W—O7W—H14W | 97.3 |
O1W—Na1—O11W | 84.16 (11) | Cu1—O8W—Na1 | 94.13 (10) |
O4W—Na1—O11W | 74.72 (10) | Cu1—O8W—H15W | 110.2 |
O8W—Na1—O11W | 64.06 (9) | Na1—O8W—H15W | 118.7 |
O10W—Na1—O11W | 59.67 (8) | Cu1—O8W—H16W | 105.0 |
O7Wi—Na1—O11W | 152.36 (9) | Na1—O8W—H16W | 114.6 |
O9Wi—Na1—O11W | 138.74 (9) | H15W—O8W—H16W | 111.7 |
O1W—Na1—Cu1 | 109.05 (11) | Cu1—O9W—Na1ii | 99.58 (10) |
O4W—Na1—Cu1 | 101.24 (9) | Cu1—O9W—H18W | 116.8 |
O8W—Na1—Cu1 | 37.82 (6) | Na1ii—O9W—H18W | 97.8 |
O10W—Na1—Cu1 | 37.12 (6) | Cu1—O9W—H17W | 107.5 |
O7Wi—Na1—Cu1 | 126.89 (8) | Na1ii—O9W—H17W | 126.6 |
O9Wi—Na1—Cu1 | 118.89 (7) | H18W—O9W—H17W | 108.9 |
O11W—Na1—Cu1 | 36.68 (5) | Cu1—O10W—Na1 | 93.66 (10) |
O2—N1—O1 | 124.0 (3) | Cu1—O10W—H19W | 99.1 |
O2—N1—C6 | 118.0 (3) | Na1—O10W—H19W | 108.8 |
O1—N1—C6 | 117.9 (3) | Cu1—O10W—H20W | 118.2 |
O8—C1—O7 | 125.5 (3) | Na1—O10W—H20W | 119.7 |
O8—C1—C2 | 116.4 (3) | H19W—O10W—H20W | 114.0 |
O7—C1—C2 | 118.2 (3) | Cu1—O11W—H21W | 121.0 |
C7—C2—C3 | 120.9 (3) | Na1—O11W—H21W | 99.5 |
C7—C2—C1 | 118.4 (3) | Cu1—O11W—H22W | 118.5 |
C3—C2—C1 | 120.7 (3) | Na1—O11W—H22W | 118.7 |
C4—C3—C2 | 119.2 (3) | H21W—O11W—H22W | 111.2 |
C4—C3—C8 | 119.4 (3) |
Symmetry codes: (i) x+1, y, z; (ii) x−1, y, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H2W···O4iii | 0.84 | 2.06 | 2.883 (4) | 166 |
O1W—H1W···O5iv | 0.84 | 2.19 | 2.932 (4) | 148 |
O2W—H4W···O3 | 0.84 | 1.94 | 2.706 (4) | 151 |
O2W—H3W···O6Wv | 0.84 | 1.91 | 2.741 (4) | 169 |
O3W—H6W···O4Wiii | 0.84 | 2.09 | 2.863 (4) | 153 |
O3W—H5W···O4 | 0.84 | 2.01 | 2.825 (4) | 164 |
O4W—H8W···O3Wvi | 0.84 | 2.11 | 2.868 (4) | 149 |
O4W—H7W···O3vii | 0.84 | 2.12 | 2.902 (4) | 155 |
O5W—H10W···O1v | 0.84 | 2.60 | 3.174 (4) | 127 |
O5W—H10W···O5 | 0.84 | 2.05 | 2.778 (4) | 145 |
O5W—H9W···O6i | 0.84 | 1.89 | 2.711 (3) | 166 |
O6W—H12W···O5W | 0.84 | 2.00 | 2.810 (4) | 161 |
O6W—H11W···O7i | 0.84 | 1.91 | 2.716 (4) | 160 |
O7W—H14W···O2Wvii | 0.84 | 1.98 | 2.788 (4) | 160 |
O7W—H13W···O7 | 0.84 | 1.87 | 2.657 (4) | 156 |
O8W—H16W···O2Wvii | 0.84 | 1.85 | 2.679 (4) | 171 |
O8W—H15W···O6W | 0.84 | 1.95 | 2.774 (4) | 167 |
O9W—H18W···O5iii | 0.84 | 1.82 | 2.647 (4) | 168 |
O9W—H17W···O6 | 0.84 | 1.99 | 2.823 (3) | 175 |
O10W—H19W···O5W | 0.84 | 1.85 | 2.674 (4) | 166 |
O10W—H20W···O6iii | 0.84 | 1.88 | 2.704 (3) | 167 |
O11W—H22W···O3Wvii | 0.84 | 1.85 | 2.670 (4) | 165 |
O11W—H21W···O4iii | 0.84 | 1.98 | 2.776 (4) | 158 |
Symmetry codes: (i) x+1, y, z; (iii) −x+1, −y+2, −z+1; (iv) −x+2, −y+2, −z+1; (v) −x+1, −y+1, −z+2; (vi) x+1, y+1, z; (vii) x, y+1, z. |
Experimental details
Crystal data | |
Chemical formula | [CuNa(C9H2NO8)(H2O)7]·4H2O |
Mr | 536.82 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 295 |
a, b, c (Å) | 6.6480 (13), 13.124 (3), 13.531 (3) |
α, β, γ (°) | 63.46 (3), 79.17 (4), 82.13 (3) |
V (Å3) | 1035.5 (4) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 1.17 |
Crystal size (mm) | 0.27 × 0.26 × 0.21 |
Data collection | |
Diffractometer | Bruker APEXII area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 2005) |
Tmin, Tmax | 0.743, 0.791 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 5466, 3719, 3113 |
Rint | 0.021 |
(sin θ/λ)max (Å−1) | 0.599 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.047, 0.133, 1.02 |
No. of reflections | 3696 |
No. of parameters | 280 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.76, −0.76 |
Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2006), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H2W···O4i | 0.84 | 2.06 | 2.883 (4) | 165.9 |
O1W—H1W···O5ii | 0.84 | 2.19 | 2.932 (4) | 147.8 |
O2W—H4W···O3 | 0.84 | 1.94 | 2.706 (4) | 150.8 |
O2W—H3W···O6Wiii | 0.84 | 1.91 | 2.741 (4) | 168.9 |
O3W—H6W···O4Wi | 0.84 | 2.09 | 2.863 (4) | 152.7 |
O3W—H5W···O4 | 0.84 | 2.01 | 2.825 (4) | 163.7 |
O4W—H8W···O3Wiv | 0.84 | 2.11 | 2.868 (4) | 149.4 |
O4W—H7W···O3v | 0.84 | 2.12 | 2.902 (4) | 155.1 |
O5W—H10W···O1iii | 0.84 | 2.60 | 3.174 (4) | 126.6 |
O5W—H10W···O5 | 0.84 | 2.05 | 2.778 (4) | 144.5 |
O5W—H9W···O6vi | 0.84 | 1.89 | 2.711 (3) | 166.2 |
O6W—H12W···O5W | 0.84 | 2.00 | 2.810 (4) | 160.5 |
O6W—H11W···O7vi | 0.84 | 1.91 | 2.716 (4) | 160.2 |
O7W—H14W···O2Wv | 0.84 | 1.98 | 2.788 (4) | 160.2 |
O7W—H13W···O7 | 0.84 | 1.87 | 2.657 (4) | 156.1 |
O8W—H16W···O2Wv | 0.84 | 1.85 | 2.679 (4) | 170.9 |
O8W—H15W···O6W | 0.84 | 1.95 | 2.774 (4) | 166.5 |
O9W—H18W···O5i | 0.84 | 1.82 | 2.647 (4) | 168.3 |
O9W—H17W···O6 | 0.84 | 1.99 | 2.823 (3) | 175.1 |
O10W—H19W···O5W | 0.84 | 1.85 | 2.674 (4) | 166.1 |
O10W—H20W···O6i | 0.84 | 1.88 | 2.704 (3) | 167.0 |
O11W—H22W···O3Wv | 0.84 | 1.85 | 2.670 (4) | 164.9 |
O11W—H21W···O4i | 0.84 | 1.98 | 2.776 (4) | 157.6 |
Symmetry codes: (i) −x+1, −y+2, −z+1; (ii) −x+2, −y+2, −z+1; (iii) −x+1, −y+1, −z+2; (iv) x+1, y+1, z; (v) x, y+1, z; (vi) x+1, y, z. |
Acknowledgements
The authors gratefully acknowledge financial support by the Scientific Research Innovation Foundation for youth teachers of Zhoukou Normal University.
References
Bruker (2005). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cheng, D.-P., Khan, M.-A. & Houser, R. P. (2004). Cryst. Growth Des. 4, 599–604. Web of Science CSD CrossRef CAS Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2005). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yaghi, O. M. & Li, H. (1995). Nature (London), 378, 703–706. CSD CrossRef CAS Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Recently, there has been much interest in the synthesis of metal coordination polymers, due to their possible application as microporous hosts for absorption or even as catalytic materials (Yaghi et al., 1995; Cheng et al.,2004). Herein, we report a new heteronuclear metal coordination polymer with the tricarboxylates, 5-Nitrobenzene-1,2,3-tricarboxylicacid (NBA) as the ligand, the copper (II) and sodium (I) as the metal ions.
As can be seen from the crystal structure in Fig.1, Cu and Na are connected via µ-O, O' coordination of water molecules, which structure is repeating unit along a axis, forming one-dimensional infinite chains, which chains along the a axis is built up through coordination between NBA, a part of water molecules and Cu(II), Na(I) (Fig.2). Through the forming of hydrogen bonds between chains and water molecules of the interchain, three-dimensional supermolecular structure is formed. The different chains are linked by an extensive hydrogen-bonding network (Table 1, Fig.3), through oxygen atoms of carboxylate and water molecule. Each of the water molecules has at least one hydrogen-bonding interaction, this leads to the formation of a stable three dimensional supramolecular structure.