organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N,N′-Di­cyclo­hexyl-N′′-(4-nitro­benzo­yl)phospho­ric tri­amide

aDepartment of Chemistry, Islamic Azad University–Zanjan Branch, PO Box 49195-467, Zanjan, Iran, bDepartment of Chemistry, Ferdowsi University of Mashhad, Mashhad 91779, Iran, and cDepartment of Physics, Faculty of Sciences, University of Novi Sad, Trg D. Obradovica 3, 21000 Novi Sad, Serbia
*Correspondence e-mail: fahimeh_sabbaghi@yahoo.com

(Received 4 January 2010; accepted 7 January 2010; online 13 January 2010)

The P atom in the title compound, C19H29N4O4P, exhibits a tetra­hedral coordination and the phosphoryl and carbonyl groups are anti to each other. Adjacent mol­ecules are linked by N—H⋯O hydrogen bonds to form a layer motif.

Related literature

For a phosphate compound containing the C(O)NHP(O) unit, see: Pourayoubi & Sabbaghi (2007[Pourayoubi, M. & Sabbaghi, F. (2007). Acta Cryst. E63, o4366.]). For phosphoric triamide, see: Pourayoubi & Sabbaghi (2009[Pourayoubi, M. & Sabbaghi, F. (2009). J. Chem. Crystallogr. 39, 874-880.]).

[Scheme 1]

Experimental

Crystal data
  • C19H29N4O4P

  • Mr = 408.43

  • Triclinic, [P \overline 1]

  • a = 10.4091 (7) Å

  • b = 10.8527 (9) Å

  • c = 11.1116 (10) Å

  • α = 99.764 (7)°

  • β = 110.881 (7)°

  • γ = 108.158 (7)°

  • V = 1057.25 (18) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.16 mm−1

  • T = 295 K

  • 0.52 × 0.31 × 0.29 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with a Sapphire3 (Gemini Mo) detector

  • 6746 measured reflections

  • 3713 independent reflections

  • 2915 reflections with I > 2σ(I)

  • Rint = 0.016

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.115

  • S = 1.11

  • 3713 reflections

  • 254 parameters

  • H-atom parameters constrained

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.37 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O4i 0.86 2.54 3.305 (2) 148
N2—H2⋯O2ii 0.86 2.25 3.0578 (18) 156
N3—H3⋯O1iii 0.86 1.97 2.8229 (18) 170
Symmetry codes: (i) -x+1, -y+1, -z-1; (ii) -x+2, -y+1, -z; (iii) -x+1, -y+1, -z.

Data collection: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Following our previous works about phosphorus compounds containing C(O)NHP(O) moiety such as P(O)[NHC(O)C6H4(4-NO2)][N(CH(CH3)2)(CH2C6H5)]2 (Pourayoubi & Sabbaghi, 2009) and [(C6H5CH2)(CH(CH3)2)NH2][CCl3C(O)NHP(O)(O)(OCH3)] (Pourayoubi & Sabbaghi, 2007), we report here on the synthesis and crystal structure of a new phosphaza-analogous of β-diketone, P(O)[NHC(O)C6H4(4-NO2)][NHC6H11]2. Single crystals of title compound were obtained from a solution of CH3CN and CH3OH after slow evaporation at room temperature. The phosphoryl and the carbonyl groups are anti and the phosphorus atom has a slightly distorted tetrahedral configuration (Fig. 1). The bond angles around the P atom are in the range of 101.89 (8)°-119.46 (8)°. The P—N3 bond length (1.6966 (14) Å) is longer than the P—N1 and P—N2 bond lengths (1.6174 (16) Å and 1.6233 (14) Å). In the crystal network of title compound, P(O)[NHC(O)C6H4(4-NO2)][NHC6H11]2, molecules are linked via PO···H—N (O1···N3 = 2.8229 (18) Å) and CO···H—N (O2···N2 = 3.0578 (18) Å) hydrogen bonds in the linear arrangement along a axis. Moreover, molecules are aggregated through the weak hydrogen bonds Onitro···H—N (O4···N1 = 3.305 (2) Å) parallel to the c axis and ππ stacking interactions between neighboring 4-NO2—C6H4—C(O)NH– moieties [centroid–centroid distance = 3.759 (1) Å], Fig. 2.

Related literature top

For related literature, see: Pourayoubi & Sabbaghi (2007, 2009); Altomare et al. (1993).

Experimental top

The reaction of phosphorus pentachloride (4.165 g, 20 mmol) and 4-nitrobenzamide (3.323 g, 20 mmol) in dry CCl4 (70 ml) at 353 K (3 h) and then the treatment of formic acid (0.921 g, 20 mmol) at room temperature leads to 4-NO2—C6H4C(O)NHP(O)Cl2. The solid (4-NO2—C6H4C(O)NHP(O)Cl2) was washed with dry CCl4. To a solution of (0.708 g, 2.5 mmol) 4-NO2—C6H4C(O)NHP(O)Cl2 in CH3CN (40 ml), a solution of cyclohexylamine (0.992 g, 10 mmol) in CH3CN (10 ml) was added dropwise at 273 K. After 6 h of stirring, the solvent was evaporated in vacuum. The solid was washed with distilled water. Single crystals were obtained from a solution of the title compound in CH3CN and CH3OH after slow evaporation at room temperature. IR (KBr, cm-1): 3056, 2922, 2870, 2770, 2689, 2641, 2589, 2489, 2412, 2169, 2007, 1954, 1678, 1602, 1515, 1446, 1344, 1230, 1039, 963, 860, 736, 702.

Refinement top

H atoms were placed in the calculated positions and included in the refinement in a riding-model approximation with C—H = 0.93–0.98 Å, N—H = 0.86Å and Uiso(H) = 1.2Ueq(C,N).

Structure description top

Following our previous works about phosphorus compounds containing C(O)NHP(O) moiety such as P(O)[NHC(O)C6H4(4-NO2)][N(CH(CH3)2)(CH2C6H5)]2 (Pourayoubi & Sabbaghi, 2009) and [(C6H5CH2)(CH(CH3)2)NH2][CCl3C(O)NHP(O)(O)(OCH3)] (Pourayoubi & Sabbaghi, 2007), we report here on the synthesis and crystal structure of a new phosphaza-analogous of β-diketone, P(O)[NHC(O)C6H4(4-NO2)][NHC6H11]2. Single crystals of title compound were obtained from a solution of CH3CN and CH3OH after slow evaporation at room temperature. The phosphoryl and the carbonyl groups are anti and the phosphorus atom has a slightly distorted tetrahedral configuration (Fig. 1). The bond angles around the P atom are in the range of 101.89 (8)°-119.46 (8)°. The P—N3 bond length (1.6966 (14) Å) is longer than the P—N1 and P—N2 bond lengths (1.6174 (16) Å and 1.6233 (14) Å). In the crystal network of title compound, P(O)[NHC(O)C6H4(4-NO2)][NHC6H11]2, molecules are linked via PO···H—N (O1···N3 = 2.8229 (18) Å) and CO···H—N (O2···N2 = 3.0578 (18) Å) hydrogen bonds in the linear arrangement along a axis. Moreover, molecules are aggregated through the weak hydrogen bonds Onitro···H—N (O4···N1 = 3.305 (2) Å) parallel to the c axis and ππ stacking interactions between neighboring 4-NO2—C6H4—C(O)NH– moieties [centroid–centroid distance = 3.759 (1) Å], Fig. 2.

For related literature, see: Pourayoubi & Sabbaghi (2007, 2009); Altomare et al. (1993).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, indicating the atom labeling scheme. Displacement ellipsoids are drawn at the 50% probability level, the H atoms were omitted for clarity.
[Figure 2] Fig. 2. Part of the crystal structure with hydrogen bonds shown as dashed lines and the centroid of phenyl rings as ball representation.
N,N'-Dicyclohexyl-N''-(4-nitrobenzoyl)phosphoric triamide top
Crystal data top
C19H29N4O4PZ = 2
Mr = 408.43F(000) = 436
Triclinic, P1Dx = 1.283 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.4091 (7) ÅCell parameters from 4113 reflections
b = 10.8527 (9) Åθ = 3.3–29.2°
c = 11.1116 (10) ŵ = 0.16 mm1
α = 99.764 (7)°T = 295 K
β = 110.881 (7)°Prism, colorles
γ = 108.158 (7)°0.52 × 0.31 × 0.29 mm
V = 1057.25 (18) Å3
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire3 (Gemini Mo) detector
2915 reflections with I > 2σ(I)
Radiation source: Enhance (Mo) X-ray SourceRint = 0.016
Graphite monochromatorθmax = 25.0°, θmin = 3.3°
Detector resolution: 16.3280 pixels mm-1h = 1212
ω scansk = 1211
6746 measured reflectionsl = 1113
3713 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.115 w = 1/[σ2(Fo2) + (0.068P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max = 0.001
3713 reflectionsΔρmax = 0.38 e Å3
254 parametersΔρmin = 0.37 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.015 (3)
Crystal data top
C19H29N4O4Pγ = 108.158 (7)°
Mr = 408.43V = 1057.25 (18) Å3
Triclinic, P1Z = 2
a = 10.4091 (7) ÅMo Kα radiation
b = 10.8527 (9) ŵ = 0.16 mm1
c = 11.1116 (10) ÅT = 295 K
α = 99.764 (7)°0.52 × 0.31 × 0.29 mm
β = 110.881 (7)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire3 (Gemini Mo) detector
2915 reflections with I > 2σ(I)
6746 measured reflectionsRint = 0.016
3713 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.115H-atom parameters constrained
S = 1.11Δρmax = 0.38 e Å3
3713 reflectionsΔρmin = 0.37 e Å3
254 parameters
Special details top

Experimental. #__ type_ start__ end____ width___ exp.time_ 1 omega -7.00 53.00 1.0000 3.6500 omega____ theta____ kappa____ phi______ frames - 21.1985 77.0000 150.0000 60

#__ type_ start__ end____ width___ exp.time_ 2 omega -4.00 91.00 1.0000 3.6500 omega____ theta____ kappa____ phi______ frames - 21.1985 77.0000 30.0000 95

#__ type_ start__ end____ width___ exp.time_ 3 omega -51.00 47.00 1.0000 3.6500 omega____ theta____ kappa____ phi______ frames - 21.1985 - 37.0000 240.0000 98

#__ type_ start__ end____ width___ exp.time_ 4 omega -51.00 34.00 1.0000 3.6500 omega____ theta____ kappa____ phi______ frames - 21.1985 - 37.0000 150.0000 85

#__ type_ start__ end____ width___ exp.time_ 5 omega -6.00 33.00 1.0000 3.6500 omega____ theta____ kappa____ phi______ frames - 21.1985 77.0000 270.0000 39

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P0.69819 (5)0.43097 (5)0.04401 (5)0.03153 (17)
O10.59696 (13)0.43337 (14)0.10845 (13)0.0427 (3)
O20.86256 (14)0.52969 (15)0.11240 (13)0.0494 (4)
O30.6421 (2)0.7685 (2)0.64611 (17)0.0824 (6)
O40.4469 (2)0.7627 (2)0.62270 (19)0.0973 (7)
N10.67651 (16)0.28654 (15)0.04742 (16)0.0416 (4)
H10.61030.25830.13050.050*
N20.87293 (15)0.49971 (15)0.15558 (14)0.0337 (4)
H20.93360.46610.14310.040*
N30.66090 (15)0.51363 (15)0.07230 (14)0.0329 (4)
H30.58440.53450.08980.039*
N40.5646 (2)0.74999 (18)0.58613 (18)0.0558 (5)
C110.7533 (2)0.19656 (18)0.00942 (18)0.0385 (4)
H110.86160.25000.02630.046*
C120.7254 (3)0.1419 (2)0.0981 (2)0.0670 (7)
H12A0.61810.09400.06750.080*
H12B0.76350.21720.17990.080*
C130.8027 (4)0.0438 (3)0.1304 (3)0.0905 (10)
H13A0.91080.09450.17200.109*
H13B0.77650.00440.19490.109*
C140.7562 (3)0.0698 (2)0.0036 (3)0.0779 (8)
H14A0.81180.12620.02630.093*
H14B0.65000.12710.03240.093*
C150.7858 (3)0.0128 (3)0.1009 (3)0.0711 (7)
H15A0.75130.08700.18250.085*
H15B0.89310.03770.06780.085*
C160.7059 (3)0.0814 (2)0.1346 (2)0.0537 (6)
H16A0.72900.11890.20120.064*
H16B0.59810.02920.17390.064*
C210.9318 (2)0.61724 (18)0.27734 (18)0.0372 (4)
H210.85430.60580.31010.045*
C220.9661 (3)0.7503 (2)0.2469 (2)0.0772 (8)
H22A0.87380.74970.18230.093*
H22B1.03440.75860.20510.093*
C231.0354 (4)0.8726 (3)0.3722 (3)0.0995 (10)
H23A1.06170.95570.34790.119*
H23B0.96250.87080.40780.119*
C241.1732 (3)0.8739 (3)0.4796 (3)0.0952 (11)
H24A1.21180.95050.56050.114*
H24B1.25030.88530.44770.114*
C251.1371 (3)0.7418 (3)0.5140 (2)0.0760 (8)
H25A1.06720.73500.55400.091*
H25B1.22840.74260.58030.091*
C261.0679 (2)0.6172 (2)0.3871 (2)0.0556 (6)
H26A1.14220.61820.35330.067*
H26B1.03950.53420.41100.067*
C300.74698 (18)0.54829 (18)0.13909 (17)0.0333 (4)
C310.69513 (18)0.60806 (17)0.25097 (17)0.0314 (4)
C320.79254 (19)0.65206 (19)0.30874 (19)0.0399 (5)
H320.88650.64870.27390.048*
C330.7513 (2)0.7005 (2)0.41680 (19)0.0434 (5)
H330.81630.72960.45560.052*
C340.6122 (2)0.70486 (19)0.46623 (17)0.0396 (5)
C350.5142 (2)0.6639 (2)0.41019 (19)0.0426 (5)
H350.42100.66880.44490.051*
C360.55611 (19)0.61538 (19)0.30166 (18)0.0387 (4)
H360.49110.58760.26250.046*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P0.0300 (3)0.0420 (3)0.0339 (3)0.0222 (2)0.0166 (2)0.0181 (2)
O10.0394 (7)0.0653 (9)0.0482 (8)0.0331 (6)0.0286 (6)0.0328 (7)
O20.0414 (7)0.0855 (11)0.0506 (8)0.0435 (7)0.0294 (7)0.0358 (8)
O30.0942 (13)0.1094 (15)0.0620 (11)0.0376 (11)0.0452 (11)0.0528 (11)
O40.0850 (13)0.159 (2)0.0865 (13)0.0732 (13)0.0370 (11)0.0858 (14)
N10.0420 (8)0.0447 (9)0.0346 (8)0.0248 (7)0.0071 (7)0.0117 (7)
N20.0320 (8)0.0443 (9)0.0326 (8)0.0249 (7)0.0149 (7)0.0108 (7)
N30.0298 (7)0.0472 (9)0.0370 (8)0.0261 (7)0.0186 (7)0.0207 (7)
N40.0583 (11)0.0567 (12)0.0434 (10)0.0178 (9)0.0139 (9)0.0231 (9)
C110.0371 (9)0.0358 (10)0.0421 (10)0.0194 (8)0.0116 (9)0.0146 (9)
C120.1058 (19)0.0580 (14)0.0472 (13)0.0402 (14)0.0349 (13)0.0232 (12)
C130.140 (3)0.0675 (17)0.0624 (16)0.0553 (17)0.0237 (17)0.0380 (15)
C140.0989 (19)0.0490 (14)0.0778 (17)0.0416 (14)0.0189 (16)0.0225 (14)
C150.0883 (18)0.0575 (15)0.0794 (17)0.0467 (14)0.0356 (15)0.0188 (14)
C160.0703 (14)0.0544 (13)0.0483 (12)0.0356 (11)0.0280 (11)0.0199 (11)
C210.0390 (10)0.0445 (11)0.0358 (10)0.0222 (8)0.0204 (8)0.0114 (9)
C220.115 (2)0.0475 (14)0.0572 (15)0.0301 (14)0.0266 (15)0.0183 (12)
C230.140 (3)0.0415 (15)0.088 (2)0.0229 (16)0.036 (2)0.0070 (15)
C240.090 (2)0.069 (2)0.083 (2)0.0029 (16)0.0424 (18)0.0226 (17)
C250.0643 (15)0.105 (2)0.0405 (13)0.0401 (15)0.0111 (12)0.0041 (14)
C260.0570 (13)0.0683 (15)0.0364 (11)0.0329 (11)0.0125 (10)0.0075 (11)
C300.0309 (9)0.0421 (10)0.0314 (9)0.0196 (8)0.0145 (8)0.0107 (8)
C310.0305 (9)0.0338 (9)0.0306 (9)0.0141 (7)0.0142 (8)0.0081 (8)
C320.0320 (9)0.0478 (11)0.0426 (11)0.0169 (8)0.0175 (8)0.0168 (9)
C330.0419 (10)0.0517 (12)0.0413 (11)0.0162 (9)0.0235 (9)0.0187 (10)
C340.0466 (11)0.0377 (10)0.0287 (9)0.0137 (8)0.0124 (9)0.0120 (8)
C350.0360 (10)0.0548 (12)0.0412 (11)0.0238 (9)0.0141 (9)0.0209 (10)
C360.0351 (9)0.0524 (12)0.0390 (10)0.0224 (9)0.0204 (9)0.0205 (9)
Geometric parameters (Å, º) top
P—O11.4739 (13)C16—H16B0.9700
P—N11.6174 (16)C21—C221.502 (3)
P—N21.6233 (14)C21—C261.505 (3)
P—N31.6966 (14)C21—H210.9800
O2—C301.222 (2)C22—C231.510 (3)
O3—N41.210 (2)C22—H22A0.9700
O4—N41.206 (2)C22—H22B0.9700
N1—C111.468 (2)C23—C241.498 (4)
N1—H10.8600C23—H23A0.9700
N2—C211.473 (2)C23—H23B0.9700
N2—H20.8600C24—C251.514 (4)
N3—C301.362 (2)C24—H24A0.9700
N3—H30.8600C24—H24B0.9700
N4—C341.471 (2)C25—C261.536 (3)
C11—C121.498 (3)C25—H25A0.9700
C11—C161.509 (3)C25—H25B0.9700
C11—H110.9800C26—H26A0.9700
C12—C131.538 (3)C26—H26B0.9700
C12—H12A0.9700C30—C311.507 (2)
C12—H12B0.9700C31—C361.387 (2)
C13—C141.514 (4)C31—C321.391 (2)
C13—H13A0.9700C32—C331.374 (3)
C13—H13B0.9700C32—H320.9300
C14—C151.485 (4)C33—C341.373 (3)
C14—H14A0.9700C33—H330.9300
C14—H14B0.9700C34—C351.375 (3)
C15—C161.521 (3)C35—C361.380 (3)
C15—H15A0.9700C35—H350.9300
C15—H15B0.9700C36—H360.9300
C16—H16A0.9700
O1—P—N1119.46 (8)C22—C21—C26111.50 (17)
O1—P—N2111.42 (7)N2—C21—H21107.9
N1—P—N2105.05 (8)C22—C21—H21107.9
O1—P—N3105.89 (7)C26—C21—H21107.9
N1—P—N3101.89 (8)C21—C22—C23112.7 (2)
N2—P—N3112.93 (7)C21—C22—H22A109.0
C11—N1—P129.49 (13)C23—C22—H22A109.0
C11—N1—H1115.3C21—C22—H22B109.0
P—N1—H1115.3C23—C22—H22B109.0
C21—N2—P122.67 (11)H22A—C22—H22B107.8
C21—N2—H2118.7C24—C23—C22111.5 (3)
P—N2—H2118.7C24—C23—H23A109.3
C30—N3—P122.74 (11)C22—C23—H23A109.3
C30—N3—H3118.6C24—C23—H23B109.3
P—N3—H3118.6C22—C23—H23B109.3
O4—N4—O3122.9 (2)H23A—C23—H23B108.0
O4—N4—C34118.1 (2)C23—C24—C25110.5 (2)
O3—N4—C34118.90 (19)C23—C24—H24A109.6
N1—C11—C12112.89 (17)C25—C24—H24A109.6
N1—C11—C16109.24 (15)C23—C24—H24B109.6
C12—C11—C16110.75 (16)C25—C24—H24B109.6
N1—C11—H11107.9H24A—C24—H24B108.1
C12—C11—H11107.9C24—C25—C26111.3 (2)
C16—C11—H11107.9C24—C25—H25A109.4
C11—C12—C13111.0 (2)C26—C25—H25A109.4
C11—C12—H12A109.4C24—C25—H25B109.4
C13—C12—H12A109.4C26—C25—H25B109.4
C11—C12—H12B109.4H25A—C25—H25B108.0
C13—C12—H12B109.4C21—C26—C25111.20 (18)
H12A—C12—H12B108.0C21—C26—H26A109.4
C14—C13—C12111.5 (2)C25—C26—H26A109.4
C14—C13—H13A109.3C21—C26—H26B109.4
C12—C13—H13A109.3C25—C26—H26B109.4
C14—C13—H13B109.3H26A—C26—H26B108.0
C12—C13—H13B109.3O2—C30—N3121.79 (16)
H13A—C13—H13B108.0O2—C30—C31119.65 (16)
C15—C14—C13110.7 (2)N3—C30—C31118.55 (14)
C15—C14—H14A109.5C36—C31—C32119.53 (17)
C13—C14—H14A109.5C36—C31—C30123.97 (16)
C15—C14—H14B109.5C32—C31—C30116.44 (15)
C13—C14—H14B109.5C33—C32—C31120.64 (17)
H14A—C14—H14B108.1C33—C32—H32119.7
C14—C15—C16111.0 (2)C31—C32—H32119.7
C14—C15—H15A109.4C34—C33—C32118.64 (18)
C16—C15—H15A109.4C34—C33—H33120.7
C14—C15—H15B109.4C32—C33—H33120.7
C16—C15—H15B109.4C33—C34—C35122.12 (17)
H15A—C15—H15B108.0C33—C34—N4118.82 (18)
C11—C16—C15111.21 (18)C35—C34—N4119.03 (17)
C11—C16—H16A109.4C34—C35—C36119.04 (17)
C15—C16—H16A109.4C34—C35—H35120.5
C11—C16—H16B109.4C36—C35—H35120.5
C15—C16—H16B109.4C35—C36—C31120.01 (17)
H16A—C16—H16B108.0C35—C36—H36120.0
N2—C21—C22112.00 (16)C31—C36—H36120.0
N2—C21—C26109.51 (15)
O1—P—N1—C1195.68 (17)C23—C24—C25—C2656.3 (3)
N2—P—N1—C1130.22 (19)N2—C21—C26—C25177.50 (18)
N3—P—N1—C11148.19 (16)C22—C21—C26—C2553.0 (3)
O1—P—N2—C2135.25 (16)C24—C25—C26—C2155.1 (3)
N1—P—N2—C21166.00 (13)P—N3—C30—O24.9 (2)
N3—P—N2—C2183.79 (15)P—N3—C30—C31173.61 (12)
O1—P—N3—C30170.69 (13)O2—C30—C31—C36170.60 (17)
N1—P—N3—C3063.67 (15)N3—C30—C31—C368.0 (3)
N2—P—N3—C3048.50 (15)O2—C30—C31—C326.5 (2)
P—N1—C11—C1262.5 (2)N3—C30—C31—C32174.97 (15)
P—N1—C11—C16173.78 (14)C36—C31—C32—C331.1 (3)
N1—C11—C12—C13177.69 (19)C30—C31—C32—C33176.11 (16)
C16—C11—C12—C1354.8 (3)C31—C32—C33—C340.2 (3)
C11—C12—C13—C1454.6 (3)C32—C33—C34—C350.7 (3)
C12—C13—C14—C1555.3 (3)C32—C33—C34—N4176.94 (17)
C13—C14—C15—C1656.7 (3)O4—N4—C34—C33174.8 (2)
N1—C11—C16—C15178.52 (19)O3—N4—C34—C337.5 (3)
C12—C11—C16—C1556.5 (3)O4—N4—C34—C357.5 (3)
C14—C15—C16—C1157.7 (3)O3—N4—C34—C35170.23 (19)
P—N2—C21—C2281.3 (2)C33—C34—C35—C360.7 (3)
P—N2—C21—C26154.44 (15)N4—C34—C35—C36176.95 (17)
N2—C21—C22—C23176.5 (2)C34—C35—C36—C310.2 (3)
C26—C21—C22—C2353.4 (3)C32—C31—C36—C351.1 (3)
C21—C22—C23—C2455.0 (4)C30—C31—C36—C35175.88 (17)
C22—C23—C24—C2555.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O4i0.862.543.305 (2)148
N2—H2···O2ii0.862.253.0578 (18)156
N3—H3···O1iii0.861.972.8229 (18)170
Symmetry codes: (i) x+1, y+1, z1; (ii) x+2, y+1, z; (iii) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC19H29N4O4P
Mr408.43
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)10.4091 (7), 10.8527 (9), 11.1116 (10)
α, β, γ (°)99.764 (7), 110.881 (7), 108.158 (7)
V3)1057.25 (18)
Z2
Radiation typeMo Kα
µ (mm1)0.16
Crystal size (mm)0.52 × 0.31 × 0.29
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer with a Sapphire3 (Gemini Mo) detector
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
6746, 3713, 2915
Rint0.016
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.115, 1.11
No. of reflections3713
No. of parameters254
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.38, 0.37

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O4i0.862.543.305 (2)148.1
N2—H2···O2ii0.862.253.0578 (18)155.5
N3—H3···O1iii0.861.972.8229 (18)170.4
Symmetry codes: (i) x+1, y+1, z1; (ii) x+2, y+1, z; (iii) x+1, y+1, z.
 

Acknowledgements

Support of this investigation by Islamic Azad University–Zanjan Branch is gratefully acknowledged.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationPourayoubi, M. & Sabbaghi, F. (2007). Acta Cryst. E63, o4366.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPourayoubi, M. & Sabbaghi, F. (2009). J. Chem. Crystallogr. 39, 874–880.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds