organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Ethyl­sulfanyl-2-(4-fluoro­phen­yl)-5-phenyl-1-benzo­furan

aDepartment of Chemistry, Dongeui University, San 24 Kaya-dong Busanjin-gu, Busan 614-714, Republic of Korea, and bDepartment of Chemistry, Pukyong National University, 599-1 Daeyeon 3-dong, Nam-gu, Busan 608-737, Republic of Korea
*Correspondence e-mail: uklee@pknu.ac.kr

(Received 5 January 2010; accepted 7 January 2010; online 13 January 2010)

In the title compound, C22H17FOS, the crystal studied was an inversion twin with a 0.42 (18):0.58 (18) domain ratio. The 4-fluoro­phenyl ring is rotated out of the benzofuran plane, making a dihedral angle of 17.82 (6)°, and the dihedral angle between the 5-phenyl ring and the benzofuran plane is 29.45 (7)°.

Related literature

For the crystal structures of similar 2,5-diaryl-1-benzofuran derivatives, see: Choi et al. (2006[Choi, H. D., Seo, P. J., Kang, B. W., Son, B. W. & Lee, U. (2006). Acta Cryst. E62, o4796-o4797.], 2009[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2009). Acta Cryst. E65, o2766.]). For natural products with benzofuran rings, see: Akgul & Anil (2003[Akgul, Y. Y. & Anil, H. (2003). Phytochemistry, 63, 939-943.]); Soekamto et al. (2003[Soekamto, N. H., Achmad, S. A., Ghisalberti, E. L., Hakim, E. H. & Syah, Y. M. (2003). Phytochemistry, 64, 831-834.]); von Reuss & König (2004[Reuss, S. H. von & König, W. A. (2004). Phytochemistry, 65, 3113-3118.]).

[Scheme 1]

Experimental

Crystal data
  • C22H17FOS

  • Mr = 348.42

  • Monoclinic, P 21

  • a = 10.5799 (2) Å

  • b = 7.1788 (1) Å

  • c = 11.9361 (2) Å

  • β = 110.031 (1)°

  • V = 851.72 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 173 K

  • 0.26 × 0.23 × 0.20 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.685, Tmax = 0.746

  • 15026 measured reflections

  • 2121 independent reflections

  • 2068 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.079

  • S = 1.14

  • 2121 reflections

  • 227 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.24 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1709 Friedel pairs

  • Flack parameter: 0.42 (18)

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Benzofuran compounds are considerable interesting heterocycles, which are occurring in nature and show diverse biological activities (Akgul & Anil, 2003; Soekamto et al., 2003; von Reuss & König, 2004). As a part of our continuing studies of the effect of side chain substituents on the solid state structures of 2,5-diaryl-1-benzofuran analogues (Choi et al., 2006, 2009), we report the crystal structure of the title compound (Fig. 1).

The title compound crystallizes as the monoclinic space P21. The crystal studied was an inversion twin with a 0.42 (18) : 0.58 (18) domain ratio. The benzofuran unit is essentially planar, with a mean deviation of 0.019 (1) Å from the least-squares plane defined by the nine constituent atoms. The 4-fluorophenyl ring is rotated out of the benzofuran plane, with a dihedral angle of 17.82 (6)°. The dihedral angle between the phenyl ring and the benzofuran plane is 29.45 (7)°.

Related literature top

For the crystal structures of similar 2,5-diaryl-1-benzofuran derivatives, see: Choi et al. (2006, 2009). For natural products with benzofuran rings, see: Akgul & Anil (2003); Soekamto et al. (2003); von Reuss & König (2004).

Experimental top

Zinc chloride (273 mg, 2.0 mmol) was added to a stirred solution of 4-phenylphenol (340 mg, 2.0 mmol) and 2-chloro-2-ethylsulfanyl-4'-fluoroacetophenone (465 mg, 2.0 mmol) in dichloromethane (25 ml) at room temperature, and stirring was continued at the same temperature for 40 min. The reaction was quenched by the addition of water and the organic layer separated, dried over magnesium sulfate, filtered and concentrated in vacuum. The residue was purified by column chromatography (carbon tetrachloride) to afford the title compound as a colorless solid [yield 66 %, m.p. 393-394 K; Rf = 0.76 (carbon tetrachloride)]. Single crystals suitable for X-ray diffraction were prepared by evaporation of a solution of the title compound in acetone at room temperature.

Refinement top

The reported Flack parameter was obtained by TWIN/BASF procedure in SHELXL (Sheldrick, 2008). All H atoms were geometrically positioned and refined using a riding model, with C–H = 0.95 Å for aryl, 0.99 Å for methylene, and 0.98 Å for methyl H atoms. Uiso(H) = 1.2Ueq(C) for all H atoms.

Structure description top

Benzofuran compounds are considerable interesting heterocycles, which are occurring in nature and show diverse biological activities (Akgul & Anil, 2003; Soekamto et al., 2003; von Reuss & König, 2004). As a part of our continuing studies of the effect of side chain substituents on the solid state structures of 2,5-diaryl-1-benzofuran analogues (Choi et al., 2006, 2009), we report the crystal structure of the title compound (Fig. 1).

The title compound crystallizes as the monoclinic space P21. The crystal studied was an inversion twin with a 0.42 (18) : 0.58 (18) domain ratio. The benzofuran unit is essentially planar, with a mean deviation of 0.019 (1) Å from the least-squares plane defined by the nine constituent atoms. The 4-fluorophenyl ring is rotated out of the benzofuran plane, with a dihedral angle of 17.82 (6)°. The dihedral angle between the phenyl ring and the benzofuran plane is 29.45 (7)°.

For the crystal structures of similar 2,5-diaryl-1-benzofuran derivatives, see: Choi et al. (2006, 2009). For natural products with benzofuran rings, see: Akgul & Anil (2003); Soekamto et al. (2003); von Reuss & König (2004).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50 % probability level. H atoms are presented as a small cycles of arbitrary radius.
3-Ethylsulfanyl-2-(4-fluorophenyl)-5-phenyl-1-benzofuran top
Crystal data top
C22H17FOSF(000) = 364
Mr = 348.42Dx = 1.359 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 9177 reflections
a = 10.5799 (2) Åθ = 2.2–27.5°
b = 7.1788 (1) ŵ = 0.21 mm1
c = 11.9361 (2) ÅT = 173 K
β = 110.031 (1)°Block, colourless
V = 851.72 (2) Å30.26 × 0.23 × 0.20 mm
Z = 2
Data collection top
Bruker SMART APEXII CCD
diffractometer
2121 independent reflections
Radiation source: Rotating Anode2068 reflections with I > 2σ(I)
HELIOS monochromatorRint = 0.027
Detector resolution: 10.0 pixels mm-1θmax = 27.6°, θmin = 1.8°
φ and ω scansh = 1313
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
k = 98
Tmin = 0.685, Tmax = 0.746l = 1415
15026 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030H-atom parameters constrained
wR(F2) = 0.079 w = 1/[σ2(Fo2) + (0.0453P)2 + 0.1397P]
where P = (Fo2 + 2Fc2)/3
S = 1.14(Δ/σ)max < 0.001
2121 reflectionsΔρmax = 0.22 e Å3
227 parametersΔρmin = 0.24 e Å3
1 restraintAbsolute structure: Flack (1983), 1709 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.42 (18)
Crystal data top
C22H17FOSV = 851.72 (2) Å3
Mr = 348.42Z = 2
Monoclinic, P21Mo Kα radiation
a = 10.5799 (2) ŵ = 0.21 mm1
b = 7.1788 (1) ÅT = 173 K
c = 11.9361 (2) Å0.26 × 0.23 × 0.20 mm
β = 110.031 (1)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
2121 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2068 reflections with I > 2σ(I)
Tmin = 0.685, Tmax = 0.746Rint = 0.027
15026 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.030H-atom parameters constrained
wR(F2) = 0.079Δρmax = 0.22 e Å3
S = 1.14Δρmin = 0.24 e Å3
2121 reflectionsAbsolute structure: Flack (1983), 1709 Friedel pairs
227 parametersAbsolute structure parameter: 0.42 (18)
1 restraint
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S0.50045 (5)0.02884 (16)0.84349 (4)0.03160 (13)
O10.63181 (12)0.1017 (2)0.57201 (11)0.0289 (3)
F1.19038 (12)0.1458 (3)0.98123 (13)0.0484 (4)
C10.53216 (18)0.0628 (3)0.71024 (16)0.0262 (4)
C20.42846 (18)0.0729 (3)0.59439 (15)0.0258 (4)
C30.28812 (17)0.0710 (3)0.55375 (16)0.0259 (4)
H30.24110.05610.60820.031*
C40.21795 (18)0.0913 (3)0.43231 (16)0.0251 (4)
C50.29034 (19)0.1086 (3)0.35301 (17)0.0289 (4)
H50.24190.11830.26990.035*
C60.42947 (19)0.1118 (3)0.39222 (17)0.0301 (4)
H60.47730.12440.33820.036*
C70.49542 (19)0.0960 (3)0.51340 (17)0.0270 (4)
C80.65154 (19)0.0828 (3)0.69190 (16)0.0269 (4)
C90.79275 (18)0.0965 (3)0.76965 (17)0.0277 (4)
C100.88722 (19)0.1718 (3)0.72355 (19)0.0306 (4)
H100.85910.21110.64270.037*
C111.0211 (2)0.1894 (4)0.7948 (2)0.0350 (5)
H111.08510.24150.76410.042*
C121.05873 (19)0.1296 (3)0.91040 (19)0.0343 (5)
C130.9699 (2)0.0546 (4)0.95918 (18)0.0373 (5)
H130.99970.01481.04000.045*
C140.83584 (19)0.0383 (4)0.88783 (18)0.0348 (4)
H140.77290.01300.92000.042*
C150.06821 (17)0.1006 (3)0.38741 (16)0.0249 (4)
C160.00642 (18)0.0113 (3)0.44819 (17)0.0286 (4)
H160.03850.06220.51640.034*
C170.14547 (18)0.0287 (4)0.40998 (18)0.0331 (4)
H170.19490.03150.45270.040*
C180.2123 (2)0.1335 (4)0.3099 (2)0.0363 (5)
H180.30730.14660.28440.044*
C190.1402 (2)0.2190 (4)0.2472 (2)0.0368 (5)
H190.18600.28890.17750.044*
C200.0015 (2)0.2032 (3)0.28564 (18)0.0307 (4)
H200.04710.26320.24200.037*
C210.4401 (2)0.2604 (4)0.86144 (19)0.0361 (5)
H21A0.36910.29760.78620.043*
H21B0.39950.25680.92480.043*
C220.5514 (3)0.4048 (4)0.8936 (2)0.0433 (6)
H22A0.59020.41160.83000.052*
H22B0.62150.36940.96860.052*
H22C0.51450.52660.90300.052*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S0.0324 (2)0.0376 (3)0.0280 (2)0.0010 (2)0.01449 (17)0.0058 (2)
O10.0248 (6)0.0356 (8)0.0288 (6)0.0005 (6)0.0122 (5)0.0003 (6)
F0.0268 (6)0.0558 (10)0.0544 (8)0.0006 (6)0.0034 (5)0.0004 (7)
C10.0282 (8)0.0254 (11)0.0271 (8)0.0006 (7)0.0121 (7)0.0024 (8)
C20.0308 (9)0.0228 (10)0.0263 (8)0.0002 (7)0.0129 (7)0.0009 (7)
C30.0273 (8)0.0256 (11)0.0277 (8)0.0010 (7)0.0133 (7)0.0004 (8)
C40.0265 (8)0.0217 (9)0.0288 (8)0.0015 (7)0.0117 (7)0.0014 (8)
C50.0328 (9)0.0305 (10)0.0249 (8)0.0011 (8)0.0117 (7)0.0019 (8)
C60.0324 (9)0.0344 (11)0.0290 (9)0.0016 (9)0.0177 (7)0.0008 (9)
C70.0253 (7)0.0273 (9)0.0311 (9)0.0004 (8)0.0133 (7)0.0011 (8)
C80.0303 (8)0.0245 (10)0.0283 (8)0.0019 (7)0.0131 (7)0.0002 (8)
C90.0256 (8)0.0244 (9)0.0344 (9)0.0021 (8)0.0120 (7)0.0005 (8)
C100.0294 (9)0.0272 (10)0.0361 (10)0.0021 (8)0.0124 (7)0.0030 (9)
C110.0283 (9)0.0319 (11)0.0483 (12)0.0001 (8)0.0175 (9)0.0021 (10)
C120.0250 (9)0.0302 (12)0.0433 (11)0.0018 (8)0.0062 (8)0.0024 (9)
C130.0349 (10)0.0405 (15)0.0330 (10)0.0042 (10)0.0072 (8)0.0028 (10)
C140.0305 (9)0.0375 (12)0.0374 (9)0.0001 (10)0.0131 (7)0.0043 (10)
C150.0261 (8)0.0220 (9)0.0277 (8)0.0020 (7)0.0105 (7)0.0044 (8)
C160.0309 (8)0.0259 (10)0.0310 (8)0.0015 (9)0.0131 (7)0.0001 (9)
C170.0314 (9)0.0309 (10)0.0416 (10)0.0051 (10)0.0184 (7)0.0042 (11)
C180.0245 (8)0.0356 (13)0.0460 (11)0.0019 (8)0.0087 (8)0.0036 (10)
C190.0338 (10)0.0332 (12)0.0378 (11)0.0010 (9)0.0049 (8)0.0034 (9)
C200.0330 (10)0.0285 (11)0.0317 (10)0.0037 (8)0.0123 (8)0.0014 (8)
C210.0332 (10)0.0446 (13)0.0331 (10)0.0050 (9)0.0148 (8)0.0020 (10)
C220.0565 (14)0.0429 (14)0.0339 (11)0.0064 (11)0.0197 (10)0.0062 (10)
Geometric parameters (Å, º) top
S—C11.751 (2)C11—H110.9500
S—C211.819 (3)C12—C131.373 (3)
O1—C71.372 (2)C13—C141.387 (3)
O1—C81.380 (2)C13—H130.9500
F—C121.364 (2)C14—H140.9500
C1—C81.361 (3)C15—C161.398 (3)
C1—C21.443 (3)C15—C201.396 (3)
C2—C71.390 (2)C16—C171.389 (2)
C2—C31.395 (2)C16—H160.9500
C3—C41.391 (2)C17—C181.383 (3)
C3—H30.9500C17—H170.9500
C4—C51.412 (2)C18—C191.381 (3)
C4—C151.490 (2)C18—H180.9500
C5—C61.384 (3)C19—C201.384 (3)
C5—H50.9500C19—H190.9500
C6—C71.379 (3)C20—H200.9500
C6—H60.9500C21—C221.516 (3)
C8—C91.467 (3)C21—H21A0.9900
C9—C141.390 (3)C21—H21B0.9900
C9—C101.404 (3)C22—H22A0.9800
C10—C111.386 (3)C22—H22B0.9800
C10—H100.9500C22—H22C0.9800
C11—C121.368 (3)
C1—S—C2199.43 (12)C11—C12—C13123.07 (18)
C7—O1—C8106.56 (14)C12—C13—C14118.5 (2)
C8—C1—C2106.46 (16)C12—C13—H13120.8
C8—C1—S129.62 (15)C14—C13—H13120.8
C2—C1—S123.92 (13)C13—C14—C9120.58 (19)
C7—C2—C3119.63 (16)C13—C14—H14119.7
C7—C2—C1105.73 (16)C9—C14—H14119.7
C3—C2—C1134.59 (16)C16—C15—C20118.04 (16)
C4—C3—C2119.06 (16)C16—C15—C4120.86 (17)
C4—C3—H3120.5C20—C15—C4121.07 (17)
C2—C3—H3120.5C17—C16—C15120.76 (19)
C3—C4—C5119.28 (16)C17—C16—H16119.6
C3—C4—C15120.10 (16)C15—C16—H16119.6
C5—C4—C15120.59 (16)C18—C17—C16120.19 (19)
C6—C5—C4122.21 (17)C18—C17—H17119.9
C6—C5—H5118.9C16—C17—H17119.9
C4—C5—H5118.9C17—C18—C19119.72 (18)
C7—C6—C5116.81 (16)C17—C18—H18120.1
C7—C6—H6121.6C19—C18—H18120.1
C5—C6—H6121.6C20—C19—C18120.2 (2)
O1—C7—C6126.77 (16)C20—C19—H19119.9
O1—C7—C2110.27 (16)C18—C19—H19119.9
C6—C7—C2122.96 (18)C19—C20—C15121.02 (18)
C1—C8—O1110.98 (16)C19—C20—H20119.5
C1—C8—C9134.83 (18)C15—C20—H20119.5
O1—C8—C9114.13 (15)C22—C21—S112.39 (16)
C14—C9—C10118.91 (17)C22—C21—H21A109.1
C14—C9—C8122.06 (17)S—C21—H21A109.1
C10—C9—C8119.03 (18)C22—C21—H21B109.1
C11—C10—C9120.7 (2)S—C21—H21B109.1
C11—C10—H10119.7H21A—C21—H21B107.9
C9—C10—H10119.7C21—C22—H22A109.5
C12—C11—C10118.28 (19)C21—C22—H22B109.5
C12—C11—H11120.9H22A—C22—H22B109.5
C10—C11—H11120.9C21—C22—H22C109.5
F—C12—C11118.76 (19)H22A—C22—H22C109.5
F—C12—C13118.17 (19)H22B—C22—H22C109.5
C21—S—C1—C8105.3 (2)C1—C8—C9—C1418.7 (4)
C21—S—C1—C275.37 (19)O1—C8—C9—C14164.5 (2)
C8—C1—C2—C70.9 (2)C1—C8—C9—C10160.9 (2)
S—C1—C2—C7178.61 (17)O1—C8—C9—C1015.9 (3)
C8—C1—C2—C3176.4 (2)C14—C9—C10—C110.5 (3)
S—C1—C2—C34.1 (3)C8—C9—C10—C11179.1 (2)
C7—C2—C3—C40.4 (3)C9—C10—C11—C120.7 (3)
C1—C2—C3—C4177.4 (2)C10—C11—C12—F179.8 (2)
C2—C3—C4—C51.6 (3)C10—C11—C12—C130.5 (4)
C2—C3—C4—C15176.53 (18)F—C12—C13—C14179.8 (2)
C3—C4—C5—C62.0 (3)C11—C12—C13—C140.1 (4)
C15—C4—C5—C6176.1 (2)C12—C13—C14—C90.1 (4)
C4—C5—C6—C70.4 (3)C10—C9—C14—C130.1 (4)
C8—O1—C7—C6179.2 (2)C8—C9—C14—C13179.5 (2)
C8—O1—C7—C20.3 (2)C3—C4—C15—C1628.7 (3)
C5—C6—C7—O1177.8 (2)C5—C4—C15—C16153.2 (2)
C5—C6—C7—C21.6 (3)C3—C4—C15—C20149.3 (2)
C3—C2—C7—O1177.43 (17)C5—C4—C15—C2028.8 (3)
C1—C2—C7—O10.4 (2)C20—C15—C16—C171.7 (3)
C3—C2—C7—C62.1 (3)C4—C15—C16—C17176.4 (2)
C1—C2—C7—C6179.9 (2)C15—C16—C17—C180.8 (4)
C2—C1—C8—O11.1 (2)C16—C17—C18—C190.8 (4)
S—C1—C8—O1178.35 (17)C17—C18—C19—C201.3 (4)
C2—C1—C8—C9175.8 (2)C18—C19—C20—C150.3 (3)
S—C1—C8—C94.8 (4)C16—C15—C20—C191.2 (3)
C7—O1—C8—C10.9 (2)C4—C15—C20—C19176.9 (2)
C7—O1—C8—C9176.69 (18)C1—S—C21—C2270.70 (17)

Experimental details

Crystal data
Chemical formulaC22H17FOS
Mr348.42
Crystal system, space groupMonoclinic, P21
Temperature (K)173
a, b, c (Å)10.5799 (2), 7.1788 (1), 11.9361 (2)
β (°) 110.031 (1)
V3)851.72 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.26 × 0.23 × 0.20
Data collection
DiffractometerBruker SMART APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.685, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
15026, 2121, 2068
Rint0.027
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.079, 1.14
No. of reflections2121
No. of parameters227
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.24
Absolute structureFlack (1983), 1709 Friedel pairs
Absolute structure parameter0.42 (18)

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998).

 

References

First citationAkgul, Y. Y. & Anil, H. (2003). Phytochemistry, 63, 939–943.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChoi, H. D., Seo, P. J., Kang, B. W., Son, B. W. & Lee, U. (2006). Acta Cryst. E62, o4796–o4797.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2009). Acta Cryst. E65, o2766.  Web of Science CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationReuss, S. H. von & König, W. A. (2004). Phytochemistry, 65, 3113–3118.  Web of Science PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSoekamto, N. H., Achmad, S. A., Ghisalberti, E. L., Hakim, E. H. & Syah, Y. M. (2003). Phytochemistry, 64, 831–834.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds