organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

A monoclinic polymorph of 1-(4-chloro­phen­yl)-3-(4-meth­oxy­phen­yl)prop-2-en-1-one

aDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, bDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA, cDepartment of Studies in Chemistry, Mangalore University, Manalaganotri 574 199, India, and dDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India
*Correspondence e-mail: jjasinski@keene.edu

(Received 5 December 2009; accepted 21 December 2009; online 9 January 2010)

The crystal structure of the title compound, C16H13ClO2 (II), (space group P21/c,) is a polymorph of the structure, (I), reported by Harrison, Yathirajan, Sarojini, Narayana & Indira [Acta Cryst. (2006), E62, o1647–o1649] in the ortho­rhom­bic space group Pna21. The dihedral angle between the mean planes of the 4-chloro- and 4-meth­oxy-substituted benzene rings is 52.9 (1)° in (II) compared to 21.82 (6)° for polymorph (I). The dihedral angles between the mean planes of the prop-2-en-1-one group and those of the 4-chloro­phenyl and 4-methoxy­phenyl rings are 23.3 (3) and 33.7 (1)°, respectively. in (II). The corresponding values are 17.7 (1) and 6.0 (3)°, respectively, in polymorph (I). In the crystal, weak C—H⋯π inter­actions are observed.

Related literature

For the orthorhomic polymorph, see: Harrison et al. (2006[Harrison, W. T. A., Yathirajan, H. S., Sarojini, B. K., Narayana, B. & Indira, J. (2006). Acta Cryst. E62, o1647-o1649.]). For the biological activity of chalcones and flavonoids, see: Dimmock et al. (1999[Dimmock, J. R., Elias, D. W., Beazely, M. A. & Kandepu, N. M. (1999). Curr. Med. Chem. 6, 1125-1149.]); Opletalova & Sedivy (1999[Opletalova, V. & Sedivy, D. (1999). Ceska Slov. Farm. 48, 252-255.]); Lin et al. (2002[Lin, Y. M., Zhou, Y., Flavin, M. T., Zhou, L. M., Nie, W. & Chen, F. C. (2002). Bioorg. Med. Chem. 10, 2795-2802.]); Nowakowska (2007[Nowakowska, Z. (2007). Eur. J. Med. Chem. 42, 125-137.]). For the synthesis and biological activity of some fluorinated chalcone derivatives, see: Nakamura et al. (2002[Nakamura, C., Kawasaki, N., Miyataka, H., Jayachandran, E., Kim, I., Kirk, K. L., Taguchi, T., Takeuchi, Y., Hori, H. & Satoh, T. (2002). Bioorg. Med. Chem. 10, 699-706.]). For non-linear optical studies of chalcones and their derivatives, see: Sarojini et al. (2006[Sarojini, B. K., Narayana, B., Ashalatha, B. V., Indira, J. & Lobo, K. J. (2006). J. Cryst. Growth, 295, 54-59.]); Poornesh et al. (2009[Poornesh, P., Shettigar, S., Umesh, G., Manjunatha, K. B., Prakash Kamath, K., Sarojini, B. K. & Narayana, B. (2009). Opt. Mater. 31, 854-859.]); Shettigar et al. (2006[Shettigar, S., Chandrasekharan, K., Umesh, G., Sarojini, B. K. & Narayana, B. (2006). Polymer, 47, 3565-3567.], 2008[Shettigar, S., Umesh, G., Chandrasekharan, K., Sarojini, B. K. & Narayana, B. (2008). Opt. Mater. 30, 1297-1303.]). For our studies of chalcones, see: Jasinski et al. (2009[Jasinski, J. P., Butcher, R. J., Mayekar, A. N., Yathirajan, H. S. & Narayana, B. (2009). J. Chem. Crystallogr. 39, 157-162.]).

[Scheme 1]

Experimental

Crystal data
  • C16H13ClO2

  • Mr = 272.71

  • Monoclinic, P 21 /c

  • a = 15.6695 (7) Å

  • b = 14.1235 (8) Å

  • c = 5.8455 (3) Å

  • β = 90.771 (5)°

  • V = 1293.53 (12) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 2.57 mm−1

  • T = 110 K

  • 0.54 × 0.13 × 0.08 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with a Ruby (Gemini Cu) detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.483, Tmax = 0.558

  • 5083 measured reflections

  • 2537 independent reflections

  • 2223 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.096

  • S = 1.04

  • 2537 reflections

  • 173 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C1–C6 and C10–C15 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯Cg1i 0.95 2.85 3.4675 (15) 124
C12—H12⋯Cg2ii 0.95 2.92 3.6616 (17) 136
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: CrysAlis PRO (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Chalcone is an unique template molecule that is associated with several biological activities. A review on the bioactivities of chalcones is described (Dimmock et al. 1999). Chalcones and their heterocyclic analogs as potential antifungal chemotherapeutic agents is published (Opletalova & Sedivy, 1999). Chalcones and flavonoids as anti-tuberculosis agents has been reported (Lin et al. 2002) and a review of anti-infective and anti-inflammatory chalcones is also described (Nowakowska, 2007) as well as the synthesis and biological activities of some fluorinated chalcone derivatives (Nakamura et al. 2002). In addition, chalcones are finding applications as organic non-linear optical materials (NLO) due to their good SHG conversion efficiencies (Sarojini et al. 2006). Recently, non-linear optical studies on a few chalcones and their derivatives were reported (Poornesh et al. 2009; Shettigar et al. 2006; 2008). In continuation of our work on chalcones (Jasinski et al. 2009) and in view of the importance of chloro chalcones, this paper describes a new polymorphic form of (I), C16H13ClO2, 1-(4-chlorophenyl)-3-(4-methoxyphenyl)-prop-2-en-1-one, first reported by Harrison et al. (2006). Substantial changes in the cell parameters provides solid support for the recognition of this new polymorphic form for (I).

The title compound, (II), is a chalcone derivative with 4-chlorophenyl and 4-methoxyphenyl rings bonded at the opposite ends of a propenone group, the biologically active region (Fig.1). The dihedral angle between mean planes of the 4-chloro and 4-methoxy substituted benzene rings in (II) is 52.9 (1)° compared to 21.82 (6)° (Harrison et al. (2006); 4-chlorohenyl & 4-methoxyphenyl) for polymorph (I) in the orthorhombic, Pna21, space group. The angles between the mean plane of the prop-2-ene-1-one group and those of the 4-chlorophenyl and 4-methoxyphenyl rings in (II) are 23.3 (3)° and 33.7 (1)°, respectively. This compares to 17.7 (1)° and 6.0 (3)° in polymorph (I). A weak intramolecular C9–H9···O1 hydrogen bond interaction is present which may help to maintain the molecular conformation of the molecule (Table 1) and similar to that observed in (I). While no classical hydrogen bonds are present, weak intermolecular C–H···Cg π-ring interactions are observed, Cg1 = C1–C6 and Cg2 = C10–C15, see Table 1.

Related literature top

Forthe orthorhomic polymorph, see: Harrison et al. (2006). For the biological activity of chalcones and flavonoids, see: Dimmock et al. (1999); Opletalova & Sedivy, (1999); Lin et al. (2002); Nowakowska, (2007). For the synthesis and biological activity of some fluorinated chalcone derivatives, see: Nakamura et al. (2002). For non-linear optical studies of chalcones and their derivatives, see: Sarojini et al. (2006); Poornesh et al. (2009); Shettigar et al. (2006, 2008). For our studies of chalcones, see: Jasinski et al. (2009).

Experimental top

In (II), 4-chloroacetophenone in ethanol (1.54 g, 0.01 mol) (25 ml) was mixed with 4-methoxybenzaldehyde (1.36 g, 0.01 mol) in ethanol (25 ml) and the mixture was treated with an aqueous solution of potassium hydroxide (20 ml, 5%). This mixture was stirred well and left to stand for 24 hr. The resulting crude solid mass was collected by filtration and recrystallized from ethanol, yielding clear blocks of (II). Yield: 90%, m.p.: 391–393 K, analysis found (calculated) for C16H13ClO2: C: 70.5 (70.4%); H: 4.72 (4.76%). The preparation and crystallization procedure for (I) was identical to that described above for (II). However, in (I) the m.p. measured 380 K, a difference of 12 K. The samples of (I) and (II) were not independently tested for concomitant polymorphism.

Refinement top

All of the H atoms were placed in their calculated positions and then refined using the riding model with C—H = 0.95–0.98 Å, and with Uiso(H) = 1.18–1.48Ueq(C).

Structure description top

Chalcone is an unique template molecule that is associated with several biological activities. A review on the bioactivities of chalcones is described (Dimmock et al. 1999). Chalcones and their heterocyclic analogs as potential antifungal chemotherapeutic agents is published (Opletalova & Sedivy, 1999). Chalcones and flavonoids as anti-tuberculosis agents has been reported (Lin et al. 2002) and a review of anti-infective and anti-inflammatory chalcones is also described (Nowakowska, 2007) as well as the synthesis and biological activities of some fluorinated chalcone derivatives (Nakamura et al. 2002). In addition, chalcones are finding applications as organic non-linear optical materials (NLO) due to their good SHG conversion efficiencies (Sarojini et al. 2006). Recently, non-linear optical studies on a few chalcones and their derivatives were reported (Poornesh et al. 2009; Shettigar et al. 2006; 2008). In continuation of our work on chalcones (Jasinski et al. 2009) and in view of the importance of chloro chalcones, this paper describes a new polymorphic form of (I), C16H13ClO2, 1-(4-chlorophenyl)-3-(4-methoxyphenyl)-prop-2-en-1-one, first reported by Harrison et al. (2006). Substantial changes in the cell parameters provides solid support for the recognition of this new polymorphic form for (I).

The title compound, (II), is a chalcone derivative with 4-chlorophenyl and 4-methoxyphenyl rings bonded at the opposite ends of a propenone group, the biologically active region (Fig.1). The dihedral angle between mean planes of the 4-chloro and 4-methoxy substituted benzene rings in (II) is 52.9 (1)° compared to 21.82 (6)° (Harrison et al. (2006); 4-chlorohenyl & 4-methoxyphenyl) for polymorph (I) in the orthorhombic, Pna21, space group. The angles between the mean plane of the prop-2-ene-1-one group and those of the 4-chlorophenyl and 4-methoxyphenyl rings in (II) are 23.3 (3)° and 33.7 (1)°, respectively. This compares to 17.7 (1)° and 6.0 (3)° in polymorph (I). A weak intramolecular C9–H9···O1 hydrogen bond interaction is present which may help to maintain the molecular conformation of the molecule (Table 1) and similar to that observed in (I). While no classical hydrogen bonds are present, weak intermolecular C–H···Cg π-ring interactions are observed, Cg1 = C1–C6 and Cg2 = C10–C15, see Table 1.

Forthe orthorhomic polymorph, see: Harrison et al. (2006). For the biological activity of chalcones and flavonoids, see: Dimmock et al. (1999); Opletalova & Sedivy, (1999); Lin et al. (2002); Nowakowska, (2007). For the synthesis and biological activity of some fluorinated chalcone derivatives, see: Nakamura et al. (2002). For non-linear optical studies of chalcones and their derivatives, see: Sarojini et al. (2006); Poornesh et al. (2009); Shettigar et al. (2006, 2008). For our studies of chalcones, see: Jasinski et al. (2009).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2007); cell refinement: CrysAlis RED (Oxford Diffraction, 2007); data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, C16H13ClO2, (II), showing the atom labeling scheme and 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. Packing diagram of the title compound, (II), viewed down the c axis. Weak C–H..O intramolecular hydrogen bond interactions are shown as dashed lines.
1-(4-chlorophenyl)-3-(4-methoxyphenyl)prop-2-en-1-one top
Crystal data top
C16H13ClO2F(000) = 568
Mr = 272.71Dx = 1.400 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
Hall symbol: -P 2ybcCell parameters from 3121 reflections
a = 15.6695 (7) Åθ = 4.2–73.8°
b = 14.1235 (8) ŵ = 2.57 mm1
c = 5.8455 (3) ÅT = 110 K
β = 90.771 (5)°Needle, colorless
V = 1293.53 (12) Å30.54 × 0.13 × 0.08 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Ruby (Gemini Cu) detector
2537 independent reflections
Radiation source: Enhance (Cu) X-ray Source2223 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
Detector resolution: 10.5081 pixels mm-1θmax = 74.0°, θmin = 4.2°
ω scansh = 1917
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
k = 1617
Tmin = 0.483, Tmax = 0.558l = 57
5083 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0574P)2 + 0.4041P]
where P = (Fo2 + 2Fc2)/3
2537 reflections(Δ/σ)max = 0.001
173 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C16H13ClO2V = 1293.53 (12) Å3
Mr = 272.71Z = 4
Monoclinic, P21/cCu Kα radiation
a = 15.6695 (7) ŵ = 2.57 mm1
b = 14.1235 (8) ÅT = 110 K
c = 5.8455 (3) Å0.54 × 0.13 × 0.08 mm
β = 90.771 (5)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Ruby (Gemini Cu) detector
2537 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
2223 reflections with I > 2σ(I)
Tmin = 0.483, Tmax = 0.558Rint = 0.021
5083 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.096H-atom parameters constrained
S = 1.04Δρmax = 0.25 e Å3
2537 reflectionsΔρmin = 0.22 e Å3
173 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.84683 (2)0.61936 (3)0.17788 (6)0.02523 (13)
O10.47093 (7)0.63259 (9)0.70069 (19)0.0289 (3)
O20.01821 (7)0.61488 (8)0.07719 (19)0.0241 (3)
C10.57310 (9)0.62821 (10)0.4074 (3)0.0181 (3)
C20.63878 (9)0.66090 (10)0.5520 (2)0.0188 (3)
H20.62550.68490.69900.023*
C30.72286 (9)0.65859 (10)0.4828 (3)0.0198 (3)
H30.76720.68170.58000.024*
C40.74128 (9)0.62174 (10)0.2682 (3)0.0193 (3)
C50.67775 (10)0.58747 (11)0.1233 (3)0.0205 (3)
H50.69160.56120.02120.025*
C60.59317 (9)0.59211 (11)0.1929 (3)0.0202 (3)
H60.54890.57050.09340.024*
C70.48352 (9)0.63066 (10)0.4945 (3)0.0200 (3)
C80.41225 (9)0.63059 (11)0.3255 (3)0.0211 (3)
H80.42230.64670.17040.025*
C90.33359 (9)0.60773 (11)0.3930 (3)0.0200 (3)
H90.32840.58850.54790.024*
C100.25468 (9)0.60893 (10)0.2562 (3)0.0181 (3)
C110.24715 (9)0.65496 (11)0.0440 (3)0.0202 (3)
H110.29600.68390.02060.024*
C120.16938 (9)0.65893 (11)0.0730 (3)0.0200 (3)
H120.16480.69150.21490.024*
C130.09809 (9)0.61476 (10)0.0193 (3)0.0187 (3)
C140.10492 (9)0.56679 (11)0.2274 (3)0.0202 (3)
H140.05670.53540.28820.024*
C150.18181 (9)0.56513 (11)0.3443 (2)0.0199 (3)
H150.18560.53360.48770.024*
C160.00342 (10)0.67344 (13)0.2722 (3)0.0263 (3)
H16A0.01400.73970.23110.039*
H16B0.05590.66620.32480.039*
H16C0.04200.65470.39480.039*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0180 (2)0.0276 (2)0.0302 (2)0.00214 (13)0.00556 (14)0.00128 (15)
O10.0214 (6)0.0441 (7)0.0212 (6)0.0035 (5)0.0006 (4)0.0008 (5)
O20.0158 (5)0.0266 (6)0.0298 (6)0.0025 (4)0.0041 (4)0.0048 (5)
C10.0174 (7)0.0170 (7)0.0198 (7)0.0009 (5)0.0019 (5)0.0039 (6)
C20.0197 (7)0.0188 (7)0.0180 (7)0.0019 (5)0.0009 (5)0.0002 (6)
C30.0185 (7)0.0188 (7)0.0221 (7)0.0000 (5)0.0031 (5)0.0009 (6)
C40.0167 (7)0.0172 (7)0.0239 (7)0.0018 (5)0.0022 (6)0.0034 (6)
C50.0251 (7)0.0189 (7)0.0176 (7)0.0019 (6)0.0016 (6)0.0002 (5)
C60.0194 (7)0.0206 (7)0.0206 (7)0.0015 (5)0.0038 (5)0.0008 (6)
C70.0196 (7)0.0193 (7)0.0212 (7)0.0006 (5)0.0008 (6)0.0012 (6)
C80.0178 (7)0.0248 (8)0.0207 (7)0.0005 (6)0.0000 (6)0.0021 (6)
C90.0206 (7)0.0189 (7)0.0204 (7)0.0017 (5)0.0001 (6)0.0010 (6)
C100.0167 (7)0.0170 (7)0.0207 (7)0.0023 (5)0.0015 (5)0.0012 (6)
C110.0164 (7)0.0222 (7)0.0220 (7)0.0007 (5)0.0032 (5)0.0011 (6)
C120.0195 (7)0.0215 (8)0.0190 (7)0.0001 (6)0.0012 (5)0.0008 (6)
C130.0161 (7)0.0171 (7)0.0228 (7)0.0009 (5)0.0013 (5)0.0033 (6)
C140.0177 (7)0.0187 (7)0.0245 (7)0.0015 (5)0.0039 (5)0.0012 (6)
C150.0212 (7)0.0186 (7)0.0201 (7)0.0016 (6)0.0030 (5)0.0015 (6)
C160.0213 (7)0.0341 (9)0.0235 (8)0.0027 (6)0.0036 (6)0.0014 (7)
Geometric parameters (Å, º) top
Cl1—C41.7431 (15)C8—H80.9500
O1—C71.2240 (19)C9—C101.464 (2)
O2—C131.3659 (18)C9—H90.9500
O2—C161.4248 (19)C10—C151.403 (2)
C1—C61.394 (2)C10—C111.404 (2)
C1—C21.401 (2)C11—C121.391 (2)
C1—C71.500 (2)C11—H110.9500
C2—C31.384 (2)C12—C131.395 (2)
C2—H20.9500C12—H120.9500
C3—C41.392 (2)C13—C141.395 (2)
C3—H30.9500C14—C151.377 (2)
C4—C51.386 (2)C14—H140.9500
C5—C61.393 (2)C15—H150.9500
C5—H50.9500C16—H16A0.9800
C6—H60.9500C16—H16B0.9800
C7—C81.481 (2)C16—H16C0.9800
C8—C91.339 (2)
C13—O2—C16118.00 (12)C8—C9—H9116.2
C6—C1—C2119.36 (14)C10—C9—H9116.2
C6—C1—C7122.52 (13)C15—C10—C11118.00 (13)
C2—C1—C7118.09 (13)C15—C10—C9118.70 (14)
C3—C2—C1120.69 (14)C11—C10—C9123.25 (13)
C3—C2—H2119.7C12—C11—C10121.06 (13)
C1—C2—H2119.7C12—C11—H11119.5
C2—C3—C4118.82 (13)C10—C11—H11119.5
C2—C3—H3120.6C11—C12—C13119.52 (14)
C4—C3—H3120.6C11—C12—H12120.2
C5—C4—C3121.70 (14)C13—C12—H12120.2
C5—C4—Cl1119.01 (12)O2—C13—C12125.02 (13)
C3—C4—Cl1119.29 (11)O2—C13—C14114.83 (13)
C4—C5—C6118.91 (14)C12—C13—C14120.15 (13)
C4—C5—H5120.5C15—C14—C13119.82 (14)
C6—C5—H5120.5C15—C14—H14120.1
C5—C6—C1120.48 (13)C13—C14—H14120.1
C5—C6—H6119.8C14—C15—C10121.41 (14)
C1—C6—H6119.8C14—C15—H15119.3
O1—C7—C8121.77 (14)C10—C15—H15119.3
O1—C7—C1119.92 (13)O2—C16—H16A109.5
C8—C7—C1118.31 (13)O2—C16—H16B109.5
C9—C8—C7119.51 (14)H16A—C16—H16B109.5
C9—C8—H8120.2O2—C16—H16C109.5
C7—C8—H8120.2H16A—C16—H16C109.5
C8—C9—C10127.64 (14)H16B—C16—H16C109.5
C6—C1—C2—C30.7 (2)C7—C8—C9—C10176.11 (14)
C7—C1—C2—C3178.69 (13)C8—C9—C10—C15167.66 (15)
C1—C2—C3—C41.0 (2)C8—C9—C10—C1114.8 (2)
C2—C3—C4—C50.1 (2)C15—C10—C11—C121.4 (2)
C2—C3—C4—Cl1179.45 (11)C9—C10—C11—C12176.08 (14)
C3—C4—C5—C61.4 (2)C10—C11—C12—C131.4 (2)
Cl1—C4—C5—C6178.06 (11)C16—O2—C13—C127.9 (2)
C4—C5—C6—C11.8 (2)C16—O2—C13—C14171.26 (13)
C2—C1—C6—C50.7 (2)C11—C12—C13—O2178.95 (14)
C7—C1—C6—C5177.17 (14)C11—C12—C13—C140.2 (2)
C6—C1—C7—O1155.92 (15)O2—C13—C14—C15177.58 (13)
C2—C1—C7—O122.0 (2)C12—C13—C14—C151.6 (2)
C6—C1—C7—C824.0 (2)C13—C14—C15—C101.6 (2)
C2—C1—C7—C8158.05 (14)C11—C10—C15—C140.0 (2)
O1—C7—C8—C917.5 (2)C9—C10—C15—C14177.68 (13)
C1—C7—C8—C9162.41 (14)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C1–C6 and C10–C15 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C9—H9···O10.952.472.8080 (19)101
C2—H2···Cg1i0.952.853.4675 (15)124
C12—H12···Cg2ii0.952.923.6616 (17)136
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formulaC16H13ClO2
Mr272.71
Crystal system, space groupMonoclinic, P21/c
Temperature (K)110
a, b, c (Å)15.6695 (7), 14.1235 (8), 5.8455 (3)
β (°) 90.771 (5)
V3)1293.53 (12)
Z4
Radiation typeCu Kα
µ (mm1)2.57
Crystal size (mm)0.54 × 0.13 × 0.08
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer with a Ruby (Gemini Cu) detector
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2007)
Tmin, Tmax0.483, 0.558
No. of measured, independent and
observed [I > 2σ(I)] reflections
5083, 2537, 2223
Rint0.021
(sin θ/λ)max1)0.624
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.096, 1.04
No. of reflections2537
No. of parameters173
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.22

Computer programs: CrysAlis PRO (Oxford Diffraction, 2007), CrysAlis RED (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C1–C6 and C10–C15 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C9—H9···O10.952.472.8080 (19)100.6
C2—H2···Cg1i0.952.853.4675 (15)124
C12—H12···Cg2ii0.952.923.6616 (17)136
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x, y+3/2, z1/2.
 

Acknowledgements

SS thanks Mangalore University and the UGC SAP for financial assistance for the purchase of chemicals. RJB acknowledges the NSF MRI program (grant No. CHE-0619278) for funds to purchase an X-ray diffractometer.

References

First citationDimmock, J. R., Elias, D. W., Beazely, M. A. & Kandepu, N. M. (1999). Curr. Med. Chem. 6, 1125–1149.  Web of Science PubMed CAS Google Scholar
First citationHarrison, W. T. A., Yathirajan, H. S., Sarojini, B. K., Narayana, B. & Indira, J. (2006). Acta Cryst. E62, o1647–o1649.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJasinski, J. P., Butcher, R. J., Mayekar, A. N., Yathirajan, H. S. & Narayana, B. (2009). J. Chem. Crystallogr. 39, 157–162.  Web of Science CSD CrossRef CAS Google Scholar
First citationLin, Y. M., Zhou, Y., Flavin, M. T., Zhou, L. M., Nie, W. & Chen, F. C. (2002). Bioorg. Med. Chem. 10, 2795–2802.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNakamura, C., Kawasaki, N., Miyataka, H., Jayachandran, E., Kim, I., Kirk, K. L., Taguchi, T., Takeuchi, Y., Hori, H. & Satoh, T. (2002). Bioorg. Med. Chem. 10, 699–706.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNowakowska, Z. (2007). Eur. J. Med. Chem. 42, 125–137.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOpletalova, V. & Sedivy, D. (1999). Ceska Slov. Farm. 48, 252–255.  PubMed CAS Google Scholar
First citationOxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationPoornesh, P., Shettigar, S., Umesh, G., Manjunatha, K. B., Prakash Kamath, K., Sarojini, B. K. & Narayana, B. (2009). Opt. Mater. 31, 854–859.  Web of Science CrossRef CAS Google Scholar
First citationSarojini, B. K., Narayana, B., Ashalatha, B. V., Indira, J. & Lobo, K. J. (2006). J. Cryst. Growth, 295, 54–59.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShettigar, S., Chandrasekharan, K., Umesh, G., Sarojini, B. K. & Narayana, B. (2006). Polymer, 47, 3565–3567.  Web of Science CrossRef CAS Google Scholar
First citationShettigar, S., Umesh, G., Chandrasekharan, K., Sarojini, B. K. & Narayana, B. (2008). Opt. Mater. 30, 1297–1303.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds