organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-[4-(3-Meth­oxy­benzamido)phen­­oxy]-N-methyl­picolinamide

aState Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, People's Republic of China, bKey Laboratory of Bio-resources and Eco-environment of the Ministry of Education, College of Life Science, Sichuan University, Chengdu 610041, People's Republic of China, and cDepartment of Pharmaceutical and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, People's Republic of China
*Correspondence e-mail: luodyu@163.com

(Received 10 December 2009; accepted 29 December 2009; online 30 January 2010)

In the title compound, C21H19N3O4, the central benzene ring makes dihedral angles of 78.54 (6) and 75.30 (6)° with the pyridine and 3-methoxy­phenyl rings, respectively. An intra­molecular N—H⋯N interaction occurs, generating an S(?). The crystal packing shows inter­molecular N—H⋯O hydrogen-bonding inter­actions between the N—H groups and the O atoms of the 3-methoxy­phenyl ring and the carbonyl groups of the amide functions. Inter­molecular C—H⋯O inter­actions are also present.

Related literature

For related compounds and their biological activity, see: Khire et al. (2004[Khire, U. R., Bankston, D., Barbosa, J., Brittelli, D. R. & Caringal, Y. (2004). Bioorg. Med. Chem. Lett. 14, 783-786.]); Dominguez et al. (2007[Dominguez, C., Smith, L., Huang, Q., Yuan, C. & Ouyang, X. H. (2007). Bioorg. Med. Chem. Lett. 17, 6003-6008.]).

[Scheme 1]

Experimental

Crystal data
  • C21H19N3O4

  • Mr = 377.39

  • Triclinic, P 1

  • a = 5.0915 (10) Å

  • b = 8.3251 (17) Å

  • c = 11.611 (2) Å

  • α = 71.29 (3)°

  • β = 87.74 (3)°

  • γ = 76.10 (3)°

  • V = 452.14 (16) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 113 K

  • 0.34 × 0.29 × 0.19 mm

Data collection
  • Rigaku Saturn CCD area-detector diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.968, Tmax = 0.982

  • 3733 measured reflections

  • 2108 independent reflections

  • 1811 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.085

  • S = 1.10

  • 2108 reflections

  • 263 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O2i 0.89 (3) 2.08 (3) 2.918 (2) 155 (3)
N3—H3N⋯O1ii 0.85 (3) 2.38 (3) 3.148 (3) 151 (2)
N3—H3N⋯N2 0.85 (3) 2.33 (3) 2.681 (3) 105 (2)
C7—H7B⋯O4iii 0.98 2.55 3.475 (3) 158
Symmetry codes: (i) x+1, y, z; (ii) x+2, y-2, z+1; (iii) x-1, y+1, z-1.

Data collection: CrystalClear (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Sorafenib is of great importance owing to its antitumor properties (Khire et al., 2004; Dominguez et al., 2007). The title compound, as one of its derivatives, possessed even better in vitro anticancer activity against both two tumor cell lines (HCT116 and HEPG2). As a potent antitumor drug, we report here its crystal structure.

In the title molecule, C21H19N3O4, (Fig.1), the phenyl ring makes dihedral angles of 78.54 (6)° and 75.30 (6)° with the pyridine ring and the 3-methoxyphenyl ring, respectively. In the crystal structure, intermolecular N—H···O hydrogen-bonding interactions between the N—H and O atoms of 3-methoxyphenyl ring and carbonyl groups of the amide functionalities form an infinite three-dimensional structure (Table 1 and Fig. 2).

Related literature top

For related compounds and their biological activity, see: Khire et al. (2004); Dominguez et al. (2007).

Experimental top

To the suspension of anhydrous potassium carbonate (1.635 g,12.5 mmol) and 4-(4-aminophenoxy)-N-methylpicolinamide (1.22 g, 5 mmol) in 11.4 ml THF was added dropwise 3-methoxybenzoyl chloride(1.28 g,7.5 mmol). After being stirred at room temperature for 2 h, the mixture was extracted with 90 ml EA and 30 ml water for three times and the combined organic layers were dried over anhydrous Na2SO4. Then the solution was concentrated under vacuum, and the residue was recrystallized from ethanol to give the title compound. Crystals suitable for X-ray analysis were obtained by slow evaporation from a solution of ethanol.

Refinement top

The two H atoms of N1 and N3 were located in a difference map and refined isotropically. The reminaing H atoms were positioned geometrically (C—H = 0.95–0.98 Å) and refined using a riding model, with Uiso(H) = 1.2–1.5Ueq(C). In the final stages of refinement, Friedel-pair reflections were merged.

Structure description top

Sorafenib is of great importance owing to its antitumor properties (Khire et al., 2004; Dominguez et al., 2007). The title compound, as one of its derivatives, possessed even better in vitro anticancer activity against both two tumor cell lines (HCT116 and HEPG2). As a potent antitumor drug, we report here its crystal structure.

In the title molecule, C21H19N3O4, (Fig.1), the phenyl ring makes dihedral angles of 78.54 (6)° and 75.30 (6)° with the pyridine ring and the 3-methoxyphenyl ring, respectively. In the crystal structure, intermolecular N—H···O hydrogen-bonding interactions between the N—H and O atoms of 3-methoxyphenyl ring and carbonyl groups of the amide functionalities form an infinite three-dimensional structure (Table 1 and Fig. 2).

For related compounds and their biological activity, see: Khire et al. (2004); Dominguez et al. (2007).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. The cell packing of the title compound.
4-[4-(3-Methoxybenzamido)phenoxy]-N-methylpicolinamide top
Crystal data top
C21H19N3O4Z = 1
Mr = 377.39F(000) = 198
Triclinic, P1Dx = 1.386 Mg m3
a = 5.0915 (10) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.3251 (17) ÅCell parameters from 1652 reflections
c = 11.611 (2) Åθ = 2.7–27.8°
α = 71.29 (3)°µ = 0.10 mm1
β = 87.74 (3)°T = 113 K
γ = 76.10 (3)°Block, colourless
V = 452.14 (16) Å30.34 × 0.29 × 0.19 mm
Data collection top
Rigaku Saturn CCD area-detector
diffractometer
2108 independent reflections
Radiation source: rotating anode1811 reflections with I > 2σ(I)
Confocal monochromatorRint = 0.026
Detector resolution: 7.31 pixels mm-1θmax = 27.8°, θmin = 2.7°
ω and φ scansh = 64
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1010
Tmin = 0.968, Tmax = 0.982l = 1415
3733 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: mixed
wR(F2) = 0.085H atoms treated by a mixture of independent and constrained refinement
S = 1.10 w = 1/[σ2(Fo2) + (0.0481P)2]
where P = (Fo2 + 2Fc2)/3
2108 reflections(Δ/σ)max < 0.001
263 parametersΔρmax = 0.22 e Å3
3 restraintsΔρmin = 0.24 e Å3
Crystal data top
C21H19N3O4γ = 76.10 (3)°
Mr = 377.39V = 452.14 (16) Å3
Triclinic, P1Z = 1
a = 5.0915 (10) ÅMo Kα radiation
b = 8.3251 (17) ŵ = 0.10 mm1
c = 11.611 (2) ÅT = 113 K
α = 71.29 (3)°0.34 × 0.29 × 0.19 mm
β = 87.74 (3)°
Data collection top
Rigaku Saturn CCD area-detector
diffractometer
2108 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
1811 reflections with I > 2σ(I)
Tmin = 0.968, Tmax = 0.982Rint = 0.026
3733 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0353 restraints
wR(F2) = 0.085H atoms treated by a mixture of independent and constrained refinement
S = 1.10Δρmax = 0.22 e Å3
2108 reflectionsΔρmin = 0.24 e Å3
263 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.3679 (3)1.5504 (2)0.23318 (15)0.0212 (4)
O20.1469 (3)0.9491 (2)0.56055 (17)0.0249 (4)
O30.4394 (3)0.1895 (2)0.81518 (15)0.0220 (4)
O41.1345 (3)0.2263 (2)1.10678 (16)0.0230 (4)
N10.3007 (3)0.9089 (2)0.60459 (17)0.0154 (4)
H1N0.443 (6)0.954 (4)0.579 (3)0.031 (8)*
N21.0377 (4)0.1617 (2)1.06587 (18)0.0197 (4)
N31.3326 (4)0.0601 (3)1.20340 (18)0.0202 (4)
H3N1.353 (6)0.166 (4)1.208 (3)0.025 (7)*
C10.0404 (4)1.1969 (3)0.48677 (19)0.0138 (4)
C20.1555 (4)1.2811 (3)0.3920 (2)0.0157 (4)
H20.26831.21790.37130.019*
C30.1849 (4)1.4569 (3)0.3282 (2)0.0166 (5)
C40.0230 (4)1.5503 (3)0.3610 (2)0.0186 (5)
H40.04411.67110.31810.022*
C50.1675 (4)1.4670 (3)0.4559 (2)0.0196 (5)
H50.27541.53160.47840.024*
C60.2036 (4)1.2891 (3)0.5190 (2)0.0167 (5)
H60.33771.23180.58300.020*
C70.4855 (5)1.4516 (3)0.1769 (2)0.0240 (5)
H7A0.60351.39020.23400.036*
H7B0.34101.36630.15490.036*
H7C0.59191.53100.10340.036*
C80.0553 (4)1.0091 (3)0.5533 (2)0.0163 (4)
C90.3486 (4)0.7259 (3)0.66625 (19)0.0145 (4)
C100.5761 (4)0.6131 (3)0.6406 (2)0.0162 (4)
H100.70460.65890.58650.019*
C110.6152 (4)0.4336 (3)0.6942 (2)0.0190 (5)
H110.76890.35600.67630.023*
C120.4271 (4)0.3690 (3)0.7740 (2)0.0174 (5)
C130.2105 (4)0.4795 (3)0.8055 (2)0.0213 (5)
H130.08920.43360.86400.026*
C140.1710 (4)0.6586 (3)0.7512 (2)0.0204 (5)
H140.02150.73560.77230.025*
C150.6403 (4)0.0792 (3)0.8978 (2)0.0169 (5)
C160.6760 (5)0.0977 (3)0.9182 (2)0.0194 (5)
H160.56610.13940.87570.023*
C170.8763 (5)0.2126 (3)1.0024 (2)0.0210 (5)
H170.90120.33411.01610.025*
C180.9936 (4)0.0107 (3)1.0450 (2)0.0163 (4)
C190.8000 (4)0.1369 (3)0.9625 (2)0.0161 (4)
H190.77770.25780.95090.019*
C201.1623 (4)0.0692 (3)1.1206 (2)0.0172 (5)
C211.4960 (5)0.0250 (3)1.2878 (2)0.0220 (5)
H21A1.39160.07331.31220.033*
H21B1.65980.00431.24840.033*
H21C1.54700.12881.35990.033*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0201 (8)0.0162 (9)0.0232 (9)0.0018 (6)0.0079 (6)0.0016 (7)
O20.0138 (7)0.0175 (8)0.0376 (10)0.0063 (6)0.0052 (7)0.0017 (7)
O30.0228 (8)0.0134 (8)0.0260 (9)0.0053 (6)0.0103 (7)0.0010 (7)
O40.0243 (8)0.0170 (9)0.0262 (9)0.0024 (6)0.0048 (7)0.0060 (7)
N10.0118 (8)0.0135 (9)0.0184 (9)0.0030 (7)0.0003 (7)0.0017 (8)
N20.0229 (10)0.0139 (10)0.0209 (10)0.0021 (7)0.0008 (8)0.0053 (8)
N30.0245 (10)0.0165 (11)0.0183 (10)0.0019 (8)0.0045 (8)0.0054 (8)
C10.0115 (9)0.0125 (10)0.0163 (11)0.0010 (7)0.0023 (8)0.0047 (8)
C20.0125 (9)0.0155 (11)0.0195 (11)0.0034 (8)0.0000 (8)0.0059 (9)
C30.0138 (10)0.0149 (11)0.0180 (11)0.0004 (8)0.0001 (8)0.0032 (9)
C40.0187 (11)0.0121 (11)0.0227 (12)0.0029 (8)0.0017 (9)0.0032 (9)
C50.0179 (11)0.0174 (12)0.0260 (13)0.0069 (8)0.0007 (9)0.0085 (10)
C60.0136 (10)0.0171 (12)0.0189 (11)0.0029 (8)0.0014 (8)0.0056 (9)
C70.0237 (12)0.0198 (12)0.0272 (12)0.0009 (9)0.0095 (10)0.0088 (10)
C80.0139 (10)0.0159 (11)0.0174 (11)0.0024 (8)0.0000 (8)0.0038 (9)
C90.0134 (9)0.0137 (11)0.0142 (10)0.0016 (8)0.0038 (8)0.0021 (8)
C100.0129 (10)0.0169 (11)0.0179 (11)0.0037 (8)0.0012 (8)0.0043 (9)
C110.0168 (10)0.0166 (11)0.0217 (11)0.0005 (8)0.0025 (9)0.0057 (9)
C120.0200 (11)0.0130 (11)0.0164 (11)0.0055 (8)0.0073 (9)0.0010 (9)
C130.0188 (11)0.0206 (12)0.0206 (12)0.0061 (8)0.0018 (9)0.0006 (9)
C140.0177 (11)0.0209 (12)0.0185 (11)0.0017 (8)0.0027 (8)0.0031 (9)
C150.0168 (10)0.0147 (11)0.0146 (11)0.0018 (8)0.0010 (8)0.0002 (9)
C160.0229 (11)0.0179 (12)0.0190 (11)0.0069 (9)0.0001 (8)0.0064 (9)
C170.0276 (12)0.0116 (10)0.0220 (12)0.0034 (8)0.0005 (9)0.0040 (9)
C180.0182 (11)0.0152 (11)0.0143 (10)0.0053 (8)0.0034 (8)0.0027 (9)
C190.0189 (10)0.0131 (10)0.0147 (10)0.0043 (8)0.0014 (8)0.0021 (9)
C200.0155 (10)0.0195 (12)0.0162 (11)0.0034 (8)0.0022 (8)0.0060 (9)
C210.0206 (11)0.0253 (13)0.0203 (11)0.0024 (9)0.0031 (9)0.0091 (10)
Geometric parameters (Å, º) top
O1—C31.369 (3)C7—H7A0.9800
O1—C71.440 (3)C7—H7B0.9800
O2—C81.237 (3)C7—H7C0.9800
O3—C151.368 (3)C9—C141.387 (3)
O3—C121.402 (3)C9—C101.394 (3)
O4—C201.239 (3)C10—C111.389 (3)
N1—C81.360 (3)C10—H100.9500
N1—C91.424 (3)C11—C121.387 (3)
N1—H1N0.89 (3)C11—H110.9500
N2—C181.340 (3)C12—C131.376 (3)
N2—C171.346 (3)C13—C141.387 (3)
N3—C201.337 (3)C13—H130.9500
N3—C211.450 (3)C14—H140.9500
N3—H3N0.85 (3)C15—C161.382 (3)
C1—C61.391 (3)C15—C191.387 (3)
C1—C21.397 (3)C16—C171.386 (3)
C1—C81.491 (3)C16—H160.9500
C2—C31.386 (3)C17—H170.9500
C2—H20.9500C18—C191.387 (3)
C3—C41.397 (3)C18—C201.510 (3)
C4—C51.380 (3)C19—H190.9500
C4—H40.9500C21—H21A0.9800
C5—C61.396 (3)C21—H21B0.9800
C5—H50.9500C21—H21C0.9800
C6—H60.9500
C3—O1—C7116.81 (17)C11—C10—C9120.1 (2)
C15—O3—C12119.17 (17)C11—C10—H10120.0
C8—N1—C9122.98 (18)C9—C10—H10120.0
C8—N1—H1N116 (2)C12—C11—C10119.2 (2)
C9—N1—H1N118 (2)C12—C11—H11120.4
C18—N2—C17116.25 (18)C10—C11—H11120.4
C20—N3—C21121.4 (2)C13—C12—C11121.2 (2)
C20—N3—H3N122 (2)C13—C12—O3118.26 (19)
C21—N3—H3N117 (2)C11—C12—O3120.3 (2)
C6—C1—C2120.42 (19)C12—C13—C14119.4 (2)
C6—C1—C8122.61 (19)C12—C13—H13120.3
C2—C1—C8116.91 (19)C14—C13—H13120.3
C3—C2—C1119.96 (19)C13—C14—C9120.4 (2)
C3—C2—H2120.0C13—C14—H14119.8
C1—C2—H2120.0C9—C14—H14119.8
O1—C3—C2124.4 (2)O3—C15—C16116.9 (2)
O1—C3—C4115.84 (19)O3—C15—C19123.2 (2)
C2—C3—C4119.77 (19)C16—C15—C19119.86 (19)
C5—C4—C3120.0 (2)C15—C16—C17118.2 (2)
C5—C4—H4120.0C15—C16—H16120.9
C3—C4—H4120.0C17—C16—H16120.9
C4—C5—C6120.8 (2)N2—C17—C16123.7 (2)
C4—C5—H5119.6N2—C17—H17118.1
C6—C5—H5119.6C16—C17—H17118.1
C1—C6—C5119.04 (19)N2—C18—C19124.8 (2)
C1—C6—H6120.5N2—C18—C20116.87 (18)
C5—C6—H6120.5C19—C18—C20118.32 (19)
O1—C7—H7A109.5C18—C19—C15117.2 (2)
O1—C7—H7B109.5C18—C19—H19121.4
H7A—C7—H7B109.5C15—C19—H19121.4
O1—C7—H7C109.5O4—C20—N3124.1 (2)
H7A—C7—H7C109.5O4—C20—C18120.93 (19)
H7B—C7—H7C109.5N3—C20—C18115.0 (2)
O2—C8—N1122.4 (2)N3—C21—H21A109.5
O2—C8—C1120.97 (19)N3—C21—H21B109.5
N1—C8—C1116.65 (19)H21A—C21—H21B109.5
C14—C9—C10119.6 (2)N3—C21—H21C109.5
C14—C9—N1120.77 (18)H21A—C21—H21C109.5
C10—C9—N1119.64 (19)H21B—C21—H21C109.5
C6—C1—C2—C31.0 (3)C15—O3—C12—C13113.2 (2)
C8—C1—C2—C3178.42 (18)C15—O3—C12—C1172.9 (3)
C7—O1—C3—C216.6 (3)C11—C12—C13—C143.7 (3)
C7—O1—C3—C4164.13 (19)O3—C12—C13—C14170.2 (2)
C1—C2—C3—O1179.13 (19)C12—C13—C14—C90.3 (3)
C1—C2—C3—C41.6 (3)C10—C9—C14—C133.6 (3)
O1—C3—C4—C5180.0 (2)N1—C9—C14—C13176.2 (2)
C2—C3—C4—C50.7 (3)C12—O3—C15—C16168.06 (19)
C3—C4—C5—C60.8 (3)C12—O3—C15—C1913.8 (3)
C2—C1—C6—C50.5 (3)O3—C15—C16—C17179.4 (2)
C8—C1—C6—C5176.77 (19)C19—C15—C16—C171.1 (3)
C4—C5—C6—C11.4 (3)C18—N2—C17—C160.8 (3)
C9—N1—C8—O22.7 (3)C15—C16—C17—N20.3 (4)
C9—N1—C8—C1177.13 (19)C17—N2—C18—C191.2 (3)
C6—C1—C8—O2149.6 (2)C17—N2—C18—C20176.7 (2)
C2—C1—C8—O227.7 (3)N2—C18—C19—C150.3 (3)
C6—C1—C8—N130.6 (3)C20—C18—C19—C15177.45 (19)
C2—C1—C8—N1152.10 (19)O3—C15—C19—C18178.95 (19)
C8—N1—C9—C1446.8 (3)C16—C15—C19—C180.8 (3)
C8—N1—C9—C10133.0 (2)C21—N3—C20—O41.9 (3)
C14—C9—C10—C114.1 (3)C21—N3—C20—C18176.19 (19)
N1—C9—C10—C11175.67 (19)N2—C18—C20—O4179.9 (2)
C9—C10—C11—C120.7 (3)C19—C18—C20—O42.2 (3)
C10—C11—C12—C133.2 (3)N2—C18—C20—N32.0 (3)
C10—C11—C12—O3170.56 (18)C19—C18—C20—N3175.94 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.89 (3)2.08 (3)2.918 (2)155 (3)
N3—H3N···O1ii0.85 (3)2.38 (3)3.148 (3)151 (2)
N3—H3N···N20.85 (3)2.33 (3)2.681 (3)105 (2)
C7—H7B···O4iii0.982.553.475 (3)158
C14—H14···O20.952.562.887 (3)100
Symmetry codes: (i) x+1, y, z; (ii) x+2, y2, z+1; (iii) x1, y+1, z1.

Experimental details

Crystal data
Chemical formulaC21H19N3O4
Mr377.39
Crystal system, space groupTriclinic, P1
Temperature (K)113
a, b, c (Å)5.0915 (10), 8.3251 (17), 11.611 (2)
α, β, γ (°)71.29 (3), 87.74 (3), 76.10 (3)
V3)452.14 (16)
Z1
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.34 × 0.29 × 0.19
Data collection
DiffractometerRigaku Saturn CCD area-detector
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.968, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
3733, 2108, 1811
Rint0.026
(sin θ/λ)max1)0.657
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.085, 1.10
No. of reflections2108
No. of parameters263
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.22, 0.24

Computer programs: CrystalClear (Rigaku/MSC, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.89 (3)2.08 (3)2.918 (2)155 (3)
N3—H3N···O1ii0.85 (3)2.38 (3)3.148 (3)151 (2)
N3—H3N···N20.85 (3)2.33 (3)2.681 (3)105 (2)
C7—H7B···O4iii0.982.553.475 (3)158.0
C14—H14···O20.952.562.887 (3)100.2
Symmetry codes: (i) x+1, y, z; (ii) x+2, y2, z+1; (iii) x1, y+1, z1.
 

Acknowledgements

The project was sponsored by the Scientific Research Foundation for Returned Overseas Chinese Scholars (No. 20071108–18–14), State Education Ministry. We thank the Analytical and Testing Center of Sichuan University for the X-ray measurements.

References

First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationDominguez, C., Smith, L., Huang, Q., Yuan, C. & Ouyang, X. H. (2007). Bioorg. Med. Chem. Lett. 17, 6003–6008.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationKhire, U. R., Bankston, D., Barbosa, J., Brittelli, D. R. & Caringal, Y. (2004). Bioorg. Med. Chem. Lett. 14, 783–786.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRigaku/MSC (2005). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds