organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(R)-2′-Benz­yl­oxy-5,5′,6,6′,7,7′,8,8′-octa­hydro-1,1′-bi­naphthyl-2-ol

aChemistry Department, University of Coimbra, P-3004-516 Coimbra, Portugal, bCEMDRX, Physics Department, University of Coimbra, P-3004-516 Coimbra, Portugal, and cChemistry Department, University of Barcelona, Bellaterra, 08193 Barcelona, Portugal
*Correspondence e-mail: manuela@pollux.fis.uc.pt

(Received 28 December 2009; accepted 18 January 2010; online 23 January 2010)

The mol­ecules of the title compound, C27H28O2, exhibit axial chirality. The planes of the aromatic rings of the tetra­lin ring systems make an angle of 85.72 (11)°. The non-aromatic rings adopt distorted half-chair conformations. In one of them, two C atoms of the four-atom aliphatic chain are disordered over two sites in a 0.75 (2):0.25 (2) ratio. The substituent phenyl ring is also disordered over two positions in a 0.59 (3):0.41 (3) ratio. There are no conventional hydrogen bonds joining the mol­ecules.

Related literature

For the use of 1,1′-binaphthyl-2,2′-diol in asymmetric synthesis, see: Brunel (2005[Brunel, J. M. (2005). Chem. Rev. 105, 857-897.]) Nájera et al. (2009[Nájera, C., Sansano, J. & Saá, J. M. (2009). Eur. J. Org. Chem. pp. 2385-2400.]). For the catalytic properties of related compounds, see: Zhang et al. (1997[Zhang, F.-Y., Yip, C.-W., Cao, R. & Chan, A. S. C. (1997). Tetrahedron Asymmetry, 8, 585-589.]); Reetz et al. (1997[Reetz, M. T., Merk, C., Naberfeld, G., Rudolph, J., Gribenow, N. & Goddard, R. (1997). Tetrahedron Lett. 38, 5273-5276.]); Chan et al. (1997[Chan, A. S. C., Zhang, F.-Y. & Yip, C.-W. (1997). J. Am. Chem. Soc. 119, 4080-4081.]); Waltz et al. (2004[Waltz, K. M., Carroll, P. J. & Walsh, P. J. (2004). Organometallics, 23, 127-134.]). For the synthetic procedure, see: Carrilho et al. (2009[Carrilho, R. M. B., Abreu, A. R., Peticz, G., Bayón, J. C., Moreno, M. J. S. M., Kollár, L. & Pereira, M. M. (2009). Chem. Lett. 8, 844-845.]); Abreu et al. (2010[Abreu, A. R., Bayón, J. C. & Pereira, M. M. (2010). Tetrahedron, 66, 743-749.]).

[Scheme 1]

Experimental

Crystal data
  • C27H28O2

  • Mr = 384.49

  • Orthorhombic, P 21 21 21

  • a = 8.9871 (3) Å

  • b = 11.6926 (3) Å

  • c = 20.0324 (5) Å

  • V = 2105.06 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.30 × 0.30 × 0.22 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2000) Tmin = 0.944, Tmax = 0.999

  • 26201 measured reflections

  • 2294 independent reflections

  • 1798 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.094

  • S = 1.09

  • 2294 reflections

  • 329 parameters

  • H-atom parameters constrained

  • Δρmax = 0.12 e Å−3

  • Δρmin = −0.15 e Å−3

Data collection: SMART (Bruker, 2003[Bruker (2003). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2003[Bruker (2003). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPII (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Over the last twenty years an explosive growth of the research in the field of asymmetric synthesis has occurred. The aim of such enantioselective synthesis is to produce chiral optically pure products. Chiral catalysts are often used to promote reactions and lead to the formation of enantiomericaly pure or enriched produts. 1,1'-binaphthyl-2,2'-diol (BINOL) and its derivatives are some of the most successful chiral catalysts in asymmetric synthesis (Brunel, 2005, Nájera et al., 2009). Catalysts containing partially hydrogenated BINOL ligands, 5,5',6,6',7,7',8,8'-octahydro-1,1'-bi-2-naphthol (H8-BINOL) and 5,6,7,8-tetrahydro1,1'-bi-2-naphthol (H4-BINOL) very often exhibited better stereoselectivity than those obtained from the corresponding BINOL catalysts (Zhang et al., 1997, Reetz et al., 1997, Chan et al., 1997, Waltz et al. 2004) Within our project of synthesizing BINOL and H8-BINOL derivatives (Carrilho et al., 2009, Abreu et al., 2010), we have obtained the title compound, C27H28O2. The molecules of the title compound, that lack a chiral carbon center, exhibit axial chirality: due to a restrited rotation around the aryl-aryl bond, the tetralin rings have a spatial arrangement that is not superposable on its mirror image. The angle between the planes of the aromatic rings of the tetralin ring systems is 85.72 (11)°. The C1—C10—C11—C20 torsion angle is -95.4 (3). In one of the fused ring systems, the four-atom aliphatic chain is disordered over two sites in a 0.75:0.25 ratio. The phenyl ring of the benzyloxy group is also disordered over two close positions (0.60:0.40). The non-aromatic rings adopt distorted half-chair conformations. There are no conventional hydrogen bonds joining the molecules, the H atom attached to O1 points to the π cloud of the aromatic ring C11/C12/C17/C18/C19/C20 with a distance to the centroid of 3.10° A and an O—H···centroid angle of 141.4°.

Related literature top

For the use of 1,1'-binaphthyl-2,2'-diol in asymmetric synthesis, see: Brunel (2005) Nájera et al. (2009). For the catalytic properties of related compounds, see: Zhang et al. (1997); Reetz et al. (1997); Chan et al. (1997); Waltz et al. (2004). For the synthetic procedure, see: Carrilho et al. (2009); Abreu et al. (2010).

Experimental top

The title compound was synthesized according to the previously reported method (Carrilho et al., 2009, Abreu et al., 2010).

Refinement top

Due to the absence of a strong anomalous scatterer, Friedel pairs were merged.

H-atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 Å (aromatic H) and Uiso(H) = 1.2Ueq(C), with C—H = 0.97 Å (CH2) and Uiso(H) = 1.2Ueq(C). O—H distance was set to 0.82 Å and Uiso(H) = 1.5Ueq(O). but the torsion angle was refined to fit the electron density.

The title compound shows static disorder and it was necessary to divide many atoms in two partitions. Atoms C23, C24, C25, C26, C27 were refined as disordered over two partially occupied positions, with an occupancy ratio of 0.41 (3) and 0.59 (3). SIMU restraints were used to relate the displacement factor of both partitions. Atoms C14 and C15 were also refined as disordered over two partially occupied positions with occupancy ratio of 0.75 (2) and 0.25 (2).

Structure description top

Over the last twenty years an explosive growth of the research in the field of asymmetric synthesis has occurred. The aim of such enantioselective synthesis is to produce chiral optically pure products. Chiral catalysts are often used to promote reactions and lead to the formation of enantiomericaly pure or enriched produts. 1,1'-binaphthyl-2,2'-diol (BINOL) and its derivatives are some of the most successful chiral catalysts in asymmetric synthesis (Brunel, 2005, Nájera et al., 2009). Catalysts containing partially hydrogenated BINOL ligands, 5,5',6,6',7,7',8,8'-octahydro-1,1'-bi-2-naphthol (H8-BINOL) and 5,6,7,8-tetrahydro1,1'-bi-2-naphthol (H4-BINOL) very often exhibited better stereoselectivity than those obtained from the corresponding BINOL catalysts (Zhang et al., 1997, Reetz et al., 1997, Chan et al., 1997, Waltz et al. 2004) Within our project of synthesizing BINOL and H8-BINOL derivatives (Carrilho et al., 2009, Abreu et al., 2010), we have obtained the title compound, C27H28O2. The molecules of the title compound, that lack a chiral carbon center, exhibit axial chirality: due to a restrited rotation around the aryl-aryl bond, the tetralin rings have a spatial arrangement that is not superposable on its mirror image. The angle between the planes of the aromatic rings of the tetralin ring systems is 85.72 (11)°. The C1—C10—C11—C20 torsion angle is -95.4 (3). In one of the fused ring systems, the four-atom aliphatic chain is disordered over two sites in a 0.75:0.25 ratio. The phenyl ring of the benzyloxy group is also disordered over two close positions (0.60:0.40). The non-aromatic rings adopt distorted half-chair conformations. There are no conventional hydrogen bonds joining the molecules, the H atom attached to O1 points to the π cloud of the aromatic ring C11/C12/C17/C18/C19/C20 with a distance to the centroid of 3.10° A and an O—H···centroid angle of 141.4°.

For the use of 1,1'-binaphthyl-2,2'-diol in asymmetric synthesis, see: Brunel (2005) Nájera et al. (2009). For the catalytic properties of related compounds, see: Zhang et al. (1997); Reetz et al. (1997); Chan et al. (1997); Waltz et al. (2004). For the synthetic procedure, see: Carrilho et al. (2009); Abreu et al. (2010).

Computing details top

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEPII (Johnson, 1976) plot of the title compound. Displacement ellipsoids are drawn at the 50% level. For clarity reasons, only one of the disordered positions is shown.
(R)-2'-Benzyloxy-5,5',6,6',7,7',8,8'-octahydro-1,1'-binaphthyl-2-ol top
Crystal data top
C27H28O2F(000) = 824
Mr = 384.49Dx = 1.213 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 5906 reflections
a = 8.9871 (3) Åθ = 2.5–22.4°
b = 11.6926 (3) ŵ = 0.08 mm1
c = 20.0324 (5) ÅT = 293 K
V = 2105.06 (10) Å3Prism, colorless
Z = 40.30 × 0.30 × 0.22 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2294 independent reflections
Radiation source: fine-focus sealed tube1798 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
φ and ω scansθmax = 25.8°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
h = 1010
Tmin = 0.944, Tmax = 0.999k = 1314
26201 measured reflectionsl = 2424
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.094 w = 1/[σ2(Fo2) + (0.0428P)2 + 0.2705P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
2294 reflectionsΔρmax = 0.12 e Å3
329 parametersΔρmin = 0.15 e Å3
Primary atom site location: structure-invariant direct methods
Crystal data top
C27H28O2V = 2105.06 (10) Å3
Mr = 384.49Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 8.9871 (3) ŵ = 0.08 mm1
b = 11.6926 (3) ÅT = 293 K
c = 20.0324 (5) Å0.30 × 0.30 × 0.22 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2294 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
1798 reflections with I > 2σ(I)
Tmin = 0.944, Tmax = 0.999Rint = 0.026
26201 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.038329 parameters
wR(F2) = 0.094H-atom parameters constrained
S = 1.09Δρmax = 0.12 e Å3
2294 reflectionsΔρmin = 0.15 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.5068 (3)0.40183 (17)0.26056 (9)0.0769 (6)
H10.44980.45360.25000.115*
O20.1397 (2)0.34165 (15)0.17560 (10)0.0679 (5)
C10.5140 (3)0.32318 (19)0.20970 (12)0.0529 (6)
C20.6048 (3)0.2290 (2)0.21946 (13)0.0622 (7)
H20.65820.22070.25890.075*
C30.6146 (3)0.1486 (2)0.17029 (13)0.0604 (7)
H30.67640.08580.17680.072*
C40.5357 (3)0.15730 (18)0.11101 (12)0.0522 (6)
C50.5454 (4)0.0637 (2)0.05917 (16)0.0709 (8)
H5A0.63900.07100.03540.085*
H5B0.54540.00980.08160.085*
C60.4207 (4)0.0661 (3)0.00973 (16)0.0836 (10)
H6A0.44310.01430.02670.100*
H6B0.33000.04000.03110.100*
C70.3975 (4)0.1834 (3)0.01718 (14)0.0765 (9)
H7A0.31790.18170.04990.092*
H7B0.48740.20850.03960.092*
C80.3580 (3)0.2683 (2)0.03772 (12)0.0589 (7)
H8A0.37310.34520.02090.071*
H8B0.25330.26020.04840.071*
C90.4471 (3)0.25388 (18)0.10066 (11)0.0443 (5)
C100.4371 (3)0.33731 (18)0.15065 (10)0.0430 (5)
C110.3478 (3)0.44389 (19)0.14014 (10)0.0436 (5)
C120.4165 (3)0.5432 (2)0.11576 (11)0.0450 (6)
C130.5816 (3)0.5420 (2)0.10123 (14)0.0579 (7)
H13A0.59860.49910.06050.069*
H13B0.63220.50230.13720.069*
C14A0.6497 (9)0.6605 (7)0.0935 (6)0.0717 (19)0.75 (2)
H14A0.74890.65420.07480.086*0.75 (2)
H14B0.65740.69710.13680.086*0.75 (2)
C15A0.5503 (9)0.7326 (5)0.0470 (5)0.077 (2)0.75 (2)
H15A0.59720.80590.03850.093*0.75 (2)
H15B0.53770.69350.00470.093*0.75 (2)
C23A0.112 (4)0.489 (4)0.281 (3)0.069 (4)0.41 (3)
H23A0.17580.51570.24780.083*0.41 (3)
C24A0.112 (3)0.540 (4)0.347 (2)0.080 (4)0.41 (3)
H24A0.17810.59760.35850.096*0.41 (3)
C25A0.009 (3)0.499 (3)0.3897 (18)0.075 (4)0.41 (3)
H25A0.00530.52840.43270.090*0.41 (3)
C26A0.090 (4)0.416 (2)0.3722 (17)0.072 (4)0.41 (3)
H26A0.16160.39440.40350.086*0.41 (3)
C27A0.092 (6)0.365 (3)0.316 (3)0.064 (4)0.41 (3)
H27A0.16010.30730.30570.077*0.41 (3)
C14B0.635 (3)0.641 (2)0.0616 (14)0.067 (5)0.25 (2)
H14C0.74250.64490.06420.081*0.25 (2)
H14D0.60770.63010.01520.081*0.25 (2)
C15B0.571 (2)0.7482 (16)0.0862 (18)0.078 (6)0.25 (2)
H15C0.61330.81160.06160.093*0.25 (2)
H15D0.59640.75780.13290.093*0.25 (2)
C23B0.142 (3)0.469 (3)0.2812 (17)0.069 (4)0.59 (3)
H23B0.21750.47210.24950.082*0.59 (3)
C24B0.157 (2)0.532 (2)0.3375 (13)0.080 (4)0.59 (3)
H24B0.23760.58100.34220.095*0.59 (3)
C25B0.052 (2)0.5232 (18)0.3887 (11)0.074 (4)0.59 (3)
H25B0.06270.56660.42740.089*0.59 (3)
C26B0.065 (2)0.4502 (18)0.3814 (11)0.071 (4)0.59 (3)
H26B0.13350.43890.41570.086*0.59 (3)
C27B0.079 (4)0.392 (2)0.319 (2)0.064 (4)0.59 (3)
H27B0.16120.34400.31280.077*0.59 (3)
C160.4025 (4)0.7508 (2)0.07886 (14)0.0699 (8)
H16A0.33580.78500.04650.084*
H16B0.41380.80440.11550.084*
C170.3329 (3)0.6418 (2)0.10512 (11)0.0509 (6)
C180.1833 (3)0.6394 (2)0.12075 (12)0.0599 (7)
H180.12700.70520.11430.072*
C190.1144 (3)0.5433 (2)0.14556 (12)0.0600 (7)
H190.01370.54480.15630.072*
C200.1962 (3)0.4446 (2)0.15439 (11)0.0505 (6)
C210.0075 (3)0.3394 (3)0.20324 (14)0.0707 (8)
H21A0.03770.26050.20950.085*
H21B0.07590.37420.17180.085*
C220.0181 (3)0.4012 (2)0.26870 (13)0.0560 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0951 (16)0.0787 (13)0.0568 (10)0.0208 (12)0.0111 (11)0.0132 (9)
O20.0558 (11)0.0554 (10)0.0924 (12)0.0041 (9)0.0288 (10)0.0081 (10)
C10.0592 (16)0.0494 (13)0.0500 (13)0.0042 (13)0.0045 (12)0.0043 (11)
C20.0661 (18)0.0623 (16)0.0583 (14)0.0106 (15)0.0012 (14)0.0150 (13)
C30.0609 (17)0.0441 (13)0.0763 (16)0.0138 (13)0.0138 (14)0.0197 (13)
C40.0524 (15)0.0348 (11)0.0696 (15)0.0013 (12)0.0172 (13)0.0057 (11)
C50.078 (2)0.0419 (14)0.093 (2)0.0029 (15)0.0260 (18)0.0077 (14)
C60.089 (2)0.0685 (19)0.093 (2)0.0068 (18)0.019 (2)0.0367 (17)
C70.078 (2)0.085 (2)0.0667 (16)0.0009 (18)0.0029 (15)0.0224 (16)
C80.0582 (16)0.0596 (15)0.0589 (14)0.0007 (14)0.0023 (13)0.0099 (12)
C90.0427 (13)0.0364 (11)0.0539 (12)0.0036 (10)0.0107 (11)0.0026 (10)
C100.0437 (13)0.0371 (11)0.0483 (11)0.0010 (11)0.0089 (11)0.0043 (10)
C110.0476 (14)0.0399 (12)0.0434 (11)0.0064 (11)0.0010 (10)0.0041 (10)
C120.0510 (14)0.0403 (12)0.0438 (11)0.0036 (11)0.0008 (11)0.0030 (10)
C130.0558 (17)0.0485 (14)0.0694 (15)0.0006 (13)0.0048 (14)0.0055 (13)
C14A0.069 (4)0.058 (3)0.088 (5)0.017 (3)0.006 (4)0.001 (4)
C15A0.116 (5)0.042 (2)0.075 (4)0.008 (3)0.023 (4)0.008 (3)
C23A0.044 (10)0.093 (10)0.069 (2)0.004 (7)0.010 (7)0.002 (6)
C24A0.069 (10)0.096 (5)0.074 (7)0.012 (9)0.011 (8)0.014 (4)
C25A0.071 (11)0.083 (9)0.069 (2)0.002 (6)0.017 (7)0.017 (5)
C26A0.060 (8)0.090 (12)0.065 (6)0.007 (7)0.004 (5)0.006 (7)
C27A0.051 (6)0.063 (11)0.080 (4)0.003 (8)0.007 (4)0.008 (9)
C14B0.065 (9)0.056 (11)0.081 (12)0.014 (8)0.006 (11)0.007 (10)
C15B0.088 (11)0.056 (9)0.089 (15)0.002 (8)0.008 (10)0.010 (10)
C23B0.044 (9)0.093 (10)0.069 (2)0.003 (6)0.010 (6)0.003 (5)
C24B0.067 (10)0.097 (4)0.074 (7)0.012 (8)0.012 (8)0.015 (4)
C25B0.071 (11)0.083 (9)0.069 (2)0.002 (6)0.018 (7)0.017 (5)
C26B0.060 (8)0.091 (12)0.064 (6)0.007 (7)0.004 (5)0.006 (7)
C27B0.050 (5)0.062 (11)0.080 (4)0.004 (7)0.007 (4)0.008 (9)
C160.099 (2)0.0436 (15)0.0676 (16)0.0071 (15)0.0067 (17)0.0063 (13)
C170.0662 (18)0.0420 (13)0.0444 (12)0.0092 (13)0.0044 (12)0.0018 (11)
C180.072 (2)0.0526 (15)0.0549 (14)0.0236 (15)0.0084 (13)0.0043 (12)
C190.0492 (16)0.0681 (17)0.0627 (15)0.0151 (14)0.0028 (13)0.0103 (14)
C200.0492 (15)0.0491 (13)0.0531 (13)0.0027 (12)0.0057 (11)0.0084 (11)
C210.0506 (16)0.0779 (17)0.0835 (18)0.0146 (15)0.0171 (14)0.0169 (16)
C220.0414 (15)0.0584 (15)0.0683 (17)0.0077 (13)0.0070 (14)0.0010 (13)
Geometric parameters (Å, º) top
O1—C11.374 (3)C23A—C221.35 (5)
O1—H10.8200C23A—C24A1.45 (7)
O2—C201.374 (3)C23A—H23A0.9300
O2—C211.434 (3)C24A—C25A1.35 (4)
C1—C101.380 (3)C24A—H24A0.9300
C1—C21.384 (3)C25A—C26A1.37 (3)
C2—C31.365 (4)C25A—H25A0.9300
C2—H20.9300C26A—C27A1.28 (6)
C3—C41.387 (4)C26A—H26A0.9300
C3—H30.9300C27A—C221.43 (6)
C4—C91.397 (3)C27A—H27A0.9300
C4—C51.511 (3)C14B—C15B1.47 (5)
C5—C61.495 (5)C14B—H14C0.9700
C5—H5A0.9700C14B—H14D0.9700
C5—H5B0.9700C15B—C161.518 (18)
C6—C71.488 (4)C15B—H15C0.9700
C6—H6A0.9700C15B—H15D0.9700
C6—H6B0.9700C23B—C24B1.35 (4)
C7—C81.524 (3)C23B—C221.39 (3)
C7—H7A0.9700C23B—H23B0.9300
C7—H7B0.9700C24B—C25B1.39 (3)
C8—C91.503 (3)C24B—H24B0.9300
C8—H8A0.9700C25B—C26B1.367 (17)
C8—H8B0.9700C25B—H25B0.9300
C9—C101.401 (3)C26B—C27B1.43 (4)
C10—C111.497 (3)C26B—H26B0.9300
C11—C201.392 (3)C27B—C221.34 (4)
C11—C121.403 (3)C27B—H27B0.9300
C12—C171.392 (3)C16—C171.515 (4)
C12—C131.512 (4)C16—H16A0.9700
C13—C14B1.48 (2)C16—H16B0.9700
C13—C14A1.523 (8)C17—C181.380 (4)
C13—H13A0.9700C18—C191.376 (4)
C13—H13B0.9700C18—H180.9300
C14A—C15A1.542 (17)C19—C201.379 (4)
C14A—H14A0.9700C19—H190.9300
C14A—H14B0.9700C21—C221.500 (4)
C15A—C161.488 (7)C21—H21A0.9700
C15A—H15A0.9700C21—H21B0.9700
C15A—H15B0.9700
C1—O1—H1109.5C24A—C23A—H23A120.8
C20—O2—C21118.4 (2)C25A—C24A—C23A116 (4)
O1—C1—C10122.1 (2)C25A—C24A—H24A122.1
O1—C1—C2117.1 (2)C23A—C24A—H24A122.1
C10—C1—C2120.8 (2)C24A—C25A—C26A122 (3)
C3—C2—C1119.0 (2)C24A—C25A—H25A118.8
C3—C2—H2120.5C26A—C25A—H25A118.8
C1—C2—H2120.5C27A—C26A—C25A124 (4)
C2—C3—C4122.3 (2)C27A—C26A—H26A117.8
C2—C3—H3118.8C25A—C26A—H26A117.8
C4—C3—H3118.8C26A—C27A—C22116 (3)
C3—C4—C9118.5 (2)C26A—C27A—H27A122.1
C3—C4—C5120.4 (2)C22—C27A—H27A121.0
C9—C4—C5121.1 (2)C15B—C14B—C13111 (2)
C6—C5—C4113.5 (2)C15B—C14B—H14C109.4
C6—C5—H5A108.9C13—C14B—H14C109.4
C4—C5—H5A108.9C15B—C14B—H14D109.4
C6—C5—H5B108.9C13—C14B—H14D109.4
C4—C5—H5B108.9H14C—C14B—H14D108.0
H5A—C5—H5B107.7C14B—C15B—C16112 (2)
C7—C6—C5111.2 (3)C14B—C15B—H15C109.2
C7—C6—H6A109.4C16—C15B—H15C109.2
C5—C6—H6A109.4C14B—C15B—H15D109.2
C7—C6—H6B109.4C16—C15B—H15D109.2
C5—C6—H6B109.4H15C—C15B—H15D107.9
H6A—C6—H6B108.0C24B—C23B—C22123 (2)
C6—C7—C8111.8 (2)C24B—C23B—H23B118.7
C6—C7—H7A109.3C22—C23B—H23B118.7
C8—C7—H7A109.3C23B—C24B—C25B121 (2)
C6—C7—H7B109.3C23B—C24B—H24B119.7
C8—C7—H7B109.3C25B—C24B—H24B119.7
H7A—C7—H7B107.9C26B—C25B—C24B119.2 (19)
C9—C8—C7114.1 (2)C26B—C25B—H25B120.4
C9—C8—H8A108.7C24B—C25B—H25B120.4
C7—C8—H8A108.7C25B—C26B—C27B117 (2)
C9—C8—H8B108.7C25B—C26B—H26B121.3
C7—C8—H8B108.7C27B—C26B—H26B121.3
H8A—C8—H8B107.6C22—C27B—C26B124 (2)
C4—C9—C10119.6 (2)C22—C27B—H27B118.0
C4—C9—C8121.2 (2)C26B—C27B—H27B118.0
C10—C9—C8119.2 (2)C15A—C16—C17113.4 (3)
C1—C10—C9119.8 (2)C17—C16—C15B111.1 (7)
C1—C10—C11119.25 (19)C15A—C16—H16A108.9
C9—C10—C11120.92 (19)C17—C16—H16A108.9
C20—C11—C12119.8 (2)C15B—C16—H16A133.5
C20—C11—C10120.1 (2)C15A—C16—H16B108.9
C12—C11—C10120.2 (2)C17—C16—H16B108.9
C17—C12—C11120.1 (2)C15B—C16—H16B80.6
C17—C12—C13120.5 (2)H16A—C16—H16B107.7
C11—C12—C13119.4 (2)C18—C17—C12118.3 (2)
C14B—C13—C12114.4 (10)C18—C17—C16119.9 (2)
C12—C13—C14A113.9 (4)C12—C17—C16121.8 (2)
C14B—C13—H13A84.3C19—C18—C17122.5 (3)
C12—C13—H13A108.8C19—C18—H18118.8
C14A—C13—H13A108.8C17—C18—H18118.8
C14B—C13—H13B128.3C18—C19—C20119.3 (2)
C12—C13—H13B108.8C18—C19—H19120.3
C14A—C13—H13B108.8C20—C19—H19120.3
H13A—C13—H13B107.7O2—C20—C19125.1 (2)
C13—C14A—C15A109.0 (8)O2—C20—C11114.8 (2)
C13—C14A—H14A109.9C19—C20—C11120.0 (2)
C15A—C14A—H14A109.9O2—C21—C22112.8 (2)
C13—C14A—H14B109.9O2—C21—H21A109.0
C15A—C14A—H14B109.9C22—C21—H21A109.0
H14A—C14A—H14B108.3O2—C21—H21B109.0
C16—C15A—C14A109.6 (7)C22—C21—H21B109.0
C16—C15A—H15A109.7H21A—C21—H21B107.8
C14A—C15A—H15A109.7C27B—C22—C23B115.8 (18)
C16—C15A—H15B109.7C23A—C22—C27A123 (3)
C14A—C15A—H15B109.7C27B—C22—C21125.1 (12)
H15A—C15A—H15B108.2C23A—C22—C21124 (2)
C22—C23A—C24A118 (4)C23B—C22—C21119.0 (14)
C22—C23A—H23A120.8C27A—C22—C21112.8 (19)
O1—C1—C2—C3179.7 (2)C12—C13—C14B—C15B44 (3)
C10—C1—C2—C31.5 (4)C14A—C13—C14B—C15B51 (3)
C1—C2—C3—C40.6 (4)C13—C14B—C15B—C1663 (3)
C2—C3—C4—C92.2 (4)C22—C23B—C24B—C25B5 (4)
C2—C3—C4—C5177.5 (2)C23B—C24B—C25B—C26B0 (4)
C3—C4—C5—C6161.4 (3)C24B—C25B—C26B—C27B4 (4)
C9—C4—C5—C618.3 (4)C25B—C26B—C27B—C222 (4)
C4—C5—C6—C748.1 (3)C14A—C15A—C16—C1749.2 (10)
C5—C6—C7—C860.5 (4)C14B—C15B—C16—C1748 (3)
C6—C7—C8—C941.5 (4)C11—C12—C17—C181.6 (3)
C3—C4—C9—C101.7 (3)C13—C12—C17—C18178.4 (2)
C5—C4—C9—C10178.0 (2)C11—C12—C17—C16180.0 (2)
C3—C4—C9—C8179.6 (2)C13—C12—C17—C160.0 (4)
C5—C4—C9—C80.1 (3)C15A—C16—C17—C18164.1 (6)
C7—C8—C9—C411.7 (3)C15B—C16—C17—C18161.5 (15)
C7—C8—C9—C10170.4 (2)C15A—C16—C17—C1217.6 (6)
O1—C1—C10—C9179.3 (2)C15B—C16—C17—C1216.8 (15)
C2—C1—C10—C91.9 (4)C12—C17—C18—C190.8 (4)
O1—C1—C10—C112.7 (4)C16—C17—C18—C19179.2 (2)
C2—C1—C10—C11176.1 (2)C17—C18—C19—C201.0 (4)
C4—C9—C10—C10.3 (3)C21—O2—C20—C1912.9 (4)
C8—C9—C10—C1177.7 (2)C21—O2—C20—C11168.4 (2)
C4—C9—C10—C11177.6 (2)C18—C19—C20—O2176.7 (2)
C8—C9—C10—C114.4 (3)C18—C19—C20—C111.9 (4)
C1—C10—C11—C2095.4 (3)C12—C11—C20—O2177.69 (19)
C9—C10—C11—C2086.7 (3)C10—C11—C20—O22.1 (3)
C1—C10—C11—C1284.8 (3)C12—C11—C20—C191.0 (3)
C9—C10—C11—C1293.2 (3)C10—C11—C20—C19179.1 (2)
C20—C11—C12—C170.7 (3)C20—O2—C21—C2267.3 (3)
C10—C11—C12—C17179.08 (19)C26B—C27B—C22—C23B3 (4)
C20—C11—C12—C13179.3 (2)C26B—C27B—C22—C21178.9 (18)
C10—C11—C12—C130.9 (3)C24A—C23A—C22—C27A6 (5)
C17—C12—C13—C14B13.4 (14)C24A—C23A—C22—C21179 (2)
C11—C12—C13—C14B166.5 (13)C24B—C23B—C22—C27B7 (3)
C17—C12—C13—C14A15.8 (6)C24B—C23B—C22—C21177 (2)
C11—C12—C13—C14A164.2 (5)C26A—C27A—C22—C23A4 (6)
C12—C13—C14A—C15A47.0 (9)C26A—C27A—C22—C21179 (3)
C13—C14A—C15A—C1664.6 (11)O2—C21—C22—C27B44.8 (19)
C22—C23A—C24A—C25A4 (5)O2—C21—C22—C23A123.0 (19)
C23A—C24A—C25A—C26A1 (6)O2—C21—C22—C23B139.0 (12)
C24A—C25A—C26A—C27A4 (7)O2—C21—C22—C27A52 (2)
C25A—C26A—C27A—C221 (7)

Experimental details

Crystal data
Chemical formulaC27H28O2
Mr384.49
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)8.9871 (3), 11.6926 (3), 20.0324 (5)
V3)2105.06 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.30 × 0.30 × 0.22
Data collection
DiffractometerBruker SMART APEX CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2000)
Tmin, Tmax0.944, 0.999
No. of measured, independent and
observed [I > 2σ(I)] reflections
26201, 2294, 1798
Rint0.026
(sin θ/λ)max1)0.611
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.094, 1.09
No. of reflections2294
No. of parameters329
No. of restraints?
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.12, 0.15

Computer programs: SMART (Bruker, 2003), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPII (Johnson, 1976).

 

Acknowledgements

This work was supported by the Fundação para a Ciência e a Tecnologia (FCT) through project PTDC/QUI/66015/2006 and Merquinsa (Barcelona, Spain). ARA also thanks the FCT for a PhD grant (SFRH/BD/21314/2005).

References

First citationAbreu, A. R., Bayón, J. C. & Pereira, M. M. (2010). Tetrahedron, 66, 743–749.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2003). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBrunel, J. M. (2005). Chem. Rev. 105, 857–897.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCarrilho, R. M. B., Abreu, A. R., Peticz, G., Bayón, J. C., Moreno, M. J. S. M., Kollár, L. & Pereira, M. M. (2009). Chem. Lett. 8, 844–845.  Web of Science CrossRef Google Scholar
First citationChan, A. S. C., Zhang, F.-Y. & Yip, C.-W. (1997). J. Am. Chem. Soc. 119, 4080–4081.  CrossRef CAS Web of Science Google Scholar
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationNájera, C., Sansano, J. & Saá, J. M. (2009). Eur. J. Org. Chem. pp. 2385–2400.  Google Scholar
First citationReetz, M. T., Merk, C., Naberfeld, G., Rudolph, J., Gribenow, N. & Goddard, R. (1997). Tetrahedron Lett. 38, 5273–5276.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWaltz, K. M., Carroll, P. J. & Walsh, P. J. (2004). Organometallics, 23, 127–134.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhang, F.-Y., Yip, C.-W., Cao, R. & Chan, A. S. C. (1997). Tetrahedron Asymmetry, 8, 585–589.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds