organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Bromo-2,3,6-tri­chloro-4,5-di­meth­oxy­benzene

aCollege of Pharmaceutical Sciences, Southwest University, Chong Qing 400716, People's Republic of China, bUniversity of Kentucky, Department of Chemistry, Lexington, KY 40506-0055, USA, and cThe University of Iowa, Department of Occupational and Environmental Health, 100 Oakdale Campus, 124 IREH, Iowa City, IA 52242-5000, USA
*Correspondence e-mail: hans-joachim-lehmler@uiowa.edu

(Received 13 January 2010; accepted 24 January 2010; online 30 January 2010)

The halogen atoms of the title compound, C8H6BrCl3O2, are located within the plane of the benzene ring [r.m.s. deviation = 0.036 (11) Å]. The two meth­oxy groups are twisted out of this plane, with dihedral angles of 84.7 (3) and 68.5 (3)°, and point in opposite directions. The structure is disordered by a non-crystallographic twofold rotation which superimposes Cl and Br at two of the halogen sites. The refined occupancies for the major and minor components are 0.517 (2) and 0.483 (2).

Related literature

For similar structures of halogenated meth­oxy benzenes, see: Iimura et al. (1984[Iimura, Y., Sakurai, T., Asahi, K.-i., Takahashi, N. & Oka, H. (1984). Acta Cryst. C40, 2058-2061.]); Rissanen et al. (1987[Rissanen, K., Valkonen, J. & Knuutinen, J. (1987). Acta Cryst. C43, 1966-1968.], 1988a[Rissanen, K., Valkonen, J. & Mannila, B. (1988a). Acta Cryst. C44, 682-684.],b[Rissanen, K., Valkonen, J. & Mannila, B. (1988b). Acta Cryst. C44, 684-686.]); Song et al. (2008[Song, Y., Buettner, G. R., Parkin, S., Wagner, B. A., Robertson, L. W. & Lehmler, H.-J. (2008). J. Org. Chem. 73, 8296-8304.], 2010[Song, Y., Parkin, S. & Lehmler, H.-J. (2010). Acta Cryst. E66, o339.]); Telu et al. (2008[Telu, S., Parkin, S., Robertson, L. W. & Lehmler, H.-J. (2008). Acta Cryst. E64, o424.]); Weller & Gerstner (1995[Weller, F. & Gerstner, E. (1995). Z. Kristallogr. 210, 629-629.]); Wieczorek (1980[Wieczorek, M. W. (1980). Acta Cryst. B36, 1515-1517.]). For background to halogenated meth­oxy benzenes, see: Brownlee et al. (1993[Brownlee, B. G., MacInnis, G. A. & Noton, L. R. (1993). Environ. Sci. Technol. 27, 2450-2455.]); Curtis et al. (1972[Curtis, R. F., Land, D. G., Griffiths, N. M., Gee, M., Robinson, D., Peel, J. L., Dennis, C. & Gee, J. M. (1972). Nature (London), 235, 223-224.]); Pereira et al. (2000[Pereira, C. S., Marques, J. J. F. & SanRomao, M. V. (2000). Crit. Rev. Microbiol. 26, 147-162.]); Vlachos et al. (2007[Vlachos, P., Kampioti, A., Kornaros, M. & Lyberatos, G. (2007). Eur. Food Res. Technol. 225, 653-663.]); Zhang et al. (2006[Zhang, L., Hu, R. & Yang, Z. (2006). Water Sci. Technol. 54, 335-344.]).

[Scheme 1]

Experimental

Crystal data
  • C8H6BrCl3O2

  • Mr = 320.39

  • Triclinic, [P \overline 1]

  • a = 7.7885 (7) Å

  • b = 8.8600 (7) Å

  • c = 9.1523 (8) Å

  • α = 62.256 (3)°

  • β = 75.358 (4)°

  • γ = 75.133 (4)°

  • V = 533.64 (8) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 11.94 mm−1

  • T = 90 K

  • 0.20 × 0.15 × 0.07 mm

Data collection
  • Bruker X8 Proteum diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.193, Tmax = 0.434

  • 6588 measured reflections

  • 1828 independent reflections

  • 1720 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.103

  • S = 1.12

  • 1828 reflections

  • 138 parameters

  • 6 restraints

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.52 e Å−3

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97 and local procedures.

Supporting information


Comment top

Chlorinated methoxy benzenes are a group of persistent organic pollutants that are associated with off-flavors in water, fish, chicken and wine (Brownlee et al.,1993; Curtis et al., 1972; Pereira et al., 2000; Vlachos et al., 2007; Zhang et al., 2006). Their biological properties depend, at least in part, on the conformation of the methoxy group relative to the aromatic ring system. The two methoxy groups of the title compound are twisted out of the plane of the benzene ring system due to the bulky ortho chlorine substituents and point in opposite directions. The respective dihedral angles were calculated between the plane of the benzene ring (C1 through C6) and the methoxy group and are 84.7 (3)° (atoms C1,O1,C7) and 68.5 (3)° (atoms C2,O2,C8), respectively. These dihedral angles are in agreement with the dihedral angels observed for other chlorinated methoxy benzenes with two ortho substituents (Iimura et al.,1984; Rissanen et al., 1987; Rissanen et al., 1988b; Telu et al., 2008; Weller & Gerstner, 1995; Wieczorek, 1980). In contrast, the methoxy group of structurally related compound with no or one substituent ortho to the methoxy group typically lie within the plane of the benzene ring system (Rissanen et al., 1988a; Song et al., 2010).

Related literature top

For similar structures of halogenated methoxy benzenes, see: Iimura et al. (1984); Rissanen et al. (1987, 1988a,b); Rissanen et al. (1988a,b); Song et al. (2008, 2010); Telu et al. (2008); Weller & Gerstner (1995); Wieczorek (1980). For background to halogenated methoxy benzenes, see: Brownlee et al. (1993); Curtis et al. (1972); Pereira et al. (2000); Vlachos et al. (2007); Zhang et al. (2006).

Experimental top

This title compound was synthesized by chlorination of 1-bromo-3,4-dimethoxy-benzene with HCl/H2O2 as described previosuly (Song et al., 2008). Crystals suitable for X-ray diffraction were grown by slow evaporation of a saturated solution of the title compound in CHCl3.

Refinement top

H atoms were found in difference Fourier maps and subsequently placed in idealized positions with constrained C-H distances of 0.98 Å and Uiso(H) values set to 1.5Ueq of the attached C atom. The structure is disordered by a non-crystallographic 2-fold rotation about an axis that bisects the midpoints of bonds C1—C2 and C4—C5. This disorder superimposes Cl and Br at the halogen sites bonded to C4 and C5. The refined occupancies for the major and minor components are 0.517 (2) and 0.483 (2). To ensure a physically/chemically sensible model in spite of the disorder, the bond distances for C—Cl were restrained to a refined variable, 1.713 (8). The C—Br bond distance was restrained to the same variable, but multiplied by 1.096, which is the ratio of C—Br:C—Cl for this type of bond. Six restraints in total were required. In addition, the displacement parameters of the superimposed atoms were constrained to be the same.

Structure description top

Chlorinated methoxy benzenes are a group of persistent organic pollutants that are associated with off-flavors in water, fish, chicken and wine (Brownlee et al.,1993; Curtis et al., 1972; Pereira et al., 2000; Vlachos et al., 2007; Zhang et al., 2006). Their biological properties depend, at least in part, on the conformation of the methoxy group relative to the aromatic ring system. The two methoxy groups of the title compound are twisted out of the plane of the benzene ring system due to the bulky ortho chlorine substituents and point in opposite directions. The respective dihedral angles were calculated between the plane of the benzene ring (C1 through C6) and the methoxy group and are 84.7 (3)° (atoms C1,O1,C7) and 68.5 (3)° (atoms C2,O2,C8), respectively. These dihedral angles are in agreement with the dihedral angels observed for other chlorinated methoxy benzenes with two ortho substituents (Iimura et al.,1984; Rissanen et al., 1987; Rissanen et al., 1988b; Telu et al., 2008; Weller & Gerstner, 1995; Wieczorek, 1980). In contrast, the methoxy group of structurally related compound with no or one substituent ortho to the methoxy group typically lie within the plane of the benzene ring system (Rissanen et al., 1988a; Song et al., 2010).

For similar structures of halogenated methoxy benzenes, see: Iimura et al. (1984); Rissanen et al. (1987, 1988a,b); Rissanen et al. (1988a,b); Song et al. (2008, 2010); Telu et al. (2008); Weller & Gerstner (1995); Wieczorek (1980). For background to halogenated methoxy benzenes, see: Brownlee et al. (1993); Curtis et al. (1972); Pereira et al. (2000); Vlachos et al. (2007); Zhang et al. (2006).

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELX97 (Sheldrick, 2008) and local procedures.

Figures top
[Figure 1] Fig. 1. View of the title compound showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
1-Bromo-2,3,6-trichloro-4,5-dimethoxybenzene top
Crystal data top
C8H6BrCl3O2Z = 2
Mr = 320.39F(000) = 312
Triclinic, P1Dx = 1.994 Mg m3
Hall symbol: -P 1Cu Kα radiation, λ = 1.54178 Å
a = 7.7885 (7) ÅCell parameters from 5684 reflections
b = 8.8600 (7) Åθ = 5.5–66.1°
c = 9.1523 (8) ŵ = 11.94 mm1
α = 62.256 (3)°T = 90 K
β = 75.358 (4)°Irregular plate, colourless
γ = 75.133 (4)°0.20 × 0.15 × 0.07 mm
V = 533.64 (8) Å3
Data collection top
Bruker X8 Proteum
diffractometer
1828 independent reflections
Radiation source: fine-focus rotating anode1720 reflections with I > 2σ(I)
Graded multilayer optics monochromatorRint = 0.038
Detector resolution: 18 pixels mm-1θmax = 67.4°, θmin = 5.5°
φ and ω scansh = 97
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
k = 1010
Tmin = 0.193, Tmax = 0.434l = 1010
6588 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.103 w = 1/[σ2(Fo2) + (0.0466P)2 + 0.726P]
where P = (Fo2 + 2Fc2)/3
S = 1.12(Δ/σ)max = 0.004
1828 reflectionsΔρmax = 0.35 e Å3
138 parametersΔρmin = 0.52 e Å3
6 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0232 (18)
Crystal data top
C8H6BrCl3O2γ = 75.133 (4)°
Mr = 320.39V = 533.64 (8) Å3
Triclinic, P1Z = 2
a = 7.7885 (7) ÅCu Kα radiation
b = 8.8600 (7) ŵ = 11.94 mm1
c = 9.1523 (8) ÅT = 90 K
α = 62.256 (3)°0.20 × 0.15 × 0.07 mm
β = 75.358 (4)°
Data collection top
Bruker X8 Proteum
diffractometer
1828 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
1720 reflections with I > 2σ(I)
Tmin = 0.193, Tmax = 0.434Rint = 0.038
6588 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0386 restraints
wR(F2) = 0.103H-atom parameters constrained
S = 1.12Δρmax = 0.35 e Å3
1828 reflectionsΔρmin = 0.52 e Å3
138 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.2391 (4)0.6704 (4)0.7165 (4)0.0318 (6)
C20.2512 (4)0.7913 (5)0.7681 (4)0.0360 (7)
C30.2598 (4)0.9603 (4)0.6519 (4)0.0356 (7)
C40.2536 (4)1.0107 (4)0.4851 (4)0.0366 (7)
C50.2393 (4)0.8899 (4)0.4345 (4)0.0350 (7)
C60.2314 (4)0.7212 (4)0.5504 (4)0.0329 (7)
O10.2295 (3)0.5051 (3)0.8291 (3)0.0418 (6)
C70.3984 (6)0.3991 (5)0.8622 (6)0.0592 (11)
H7A0.46940.39560.75850.089*
H7B0.38000.28180.94440.089*
H7C0.46270.44640.90660.089*
O20.2646 (3)0.7442 (4)0.9285 (3)0.0486 (6)
C80.1070 (5)0.6975 (6)1.0458 (5)0.0558 (10)
H8A0.00960.79681.01880.084*
H8B0.13090.66191.15840.084*
H8C0.07170.60141.04120.084*
Cl10.27710 (13)1.10613 (13)0.71869 (14)0.0567 (3)
Cl20.265 (3)1.2206 (17)0.326 (2)0.0539 (7)0.483 (3)
Br30.2388 (9)0.9427 (6)0.2147 (7)0.0495 (7)0.483 (3)
Br20.2599 (11)1.2383 (6)0.3376 (8)0.0539 (7)0.517 (3)
Cl30.228 (2)0.9701 (14)0.2211 (15)0.0495 (7)0.517 (3)
Cl40.20968 (13)0.56783 (11)0.49546 (11)0.0485 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0236 (14)0.0338 (16)0.0354 (16)0.0092 (12)0.0006 (11)0.0123 (13)
C20.0257 (15)0.0442 (18)0.0406 (17)0.0106 (13)0.0000 (12)0.0203 (15)
C30.0255 (15)0.0388 (17)0.0513 (19)0.0071 (12)0.0013 (13)0.0280 (15)
C40.0242 (15)0.0279 (15)0.0501 (19)0.0039 (12)0.0005 (13)0.0136 (14)
C50.0269 (15)0.0348 (16)0.0392 (16)0.0046 (12)0.0039 (12)0.0133 (14)
C60.0291 (15)0.0323 (16)0.0387 (16)0.0080 (12)0.0021 (12)0.0163 (13)
O10.0424 (13)0.0343 (12)0.0402 (12)0.0132 (10)0.0033 (10)0.0072 (10)
C70.054 (2)0.040 (2)0.060 (2)0.0007 (17)0.0095 (19)0.0062 (18)
O20.0456 (14)0.0687 (17)0.0418 (13)0.0189 (12)0.0064 (10)0.0275 (13)
C80.050 (2)0.076 (3)0.0380 (19)0.009 (2)0.0024 (16)0.0245 (19)
Cl10.0559 (6)0.0536 (6)0.0797 (7)0.0177 (4)0.0007 (5)0.0454 (5)
Cl20.0526 (6)0.0296 (11)0.0692 (11)0.0075 (10)0.0009 (7)0.0165 (7)
Br30.0579 (9)0.0403 (16)0.0456 (6)0.0037 (12)0.0149 (5)0.0133 (8)
Br20.0526 (6)0.0296 (11)0.0692 (11)0.0075 (10)0.0009 (7)0.0165 (7)
Cl30.0579 (9)0.0403 (16)0.0456 (6)0.0037 (12)0.0149 (5)0.0133 (8)
Cl40.0670 (6)0.0407 (5)0.0471 (5)0.0185 (4)0.0078 (4)0.0221 (4)
Geometric parameters (Å, º) top
C1—O11.351 (4)C5—Cl31.758 (12)
C1—C61.383 (5)C5—Br31.842 (6)
C1—C21.388 (5)C6—Cl41.710 (3)
C2—O21.350 (4)O1—C71.417 (5)
C2—C31.382 (5)C7—H7A0.9800
C3—C41.387 (5)C7—H7B0.9800
C3—Cl11.711 (3)C7—H7C0.9800
C4—C51.386 (5)O2—C81.418 (5)
C4—Cl21.756 (15)C8—H8A0.9800
C4—Br21.837 (6)C8—H8B0.9800
C5—C61.379 (5)C8—H8C0.9800
O1—C1—C6120.3 (3)C4—C5—Br3122.6 (3)
O1—C1—C2120.0 (3)C5—C6—C1120.8 (3)
C6—C1—C2119.7 (3)C5—C6—Cl4121.6 (3)
O2—C2—C3119.5 (3)C1—C6—Cl4117.6 (2)
O2—C2—C1120.9 (3)C1—O1—C7114.5 (3)
C3—C2—C1119.5 (3)O1—C7—H7A109.5
C2—C3—C4120.7 (3)O1—C7—H7B109.5
C2—C3—Cl1118.5 (3)H7A—C7—H7B109.5
C4—C3—Cl1120.8 (3)O1—C7—H7C109.5
C5—C4—C3119.5 (3)H7A—C7—H7C109.5
C5—C4—Cl2115.5 (6)H7B—C7—H7C109.5
C3—C4—Cl2125.0 (7)C2—O2—C8115.4 (3)
C5—C4—Br2121.8 (3)O2—C8—H8A109.5
C3—C4—Br2118.7 (3)O2—C8—H8B109.5
C6—C5—C4119.7 (3)H8A—C8—H8B109.5
C6—C5—Cl3125.0 (5)O2—C8—H8C109.5
C4—C5—Cl3115.3 (4)H8A—C8—H8C109.5
C6—C5—Br3117.6 (3)H8B—C8—H8C109.5
O1—C1—C2—O24.0 (5)Br2—C4—C5—Cl30.1 (7)
C6—C1—C2—O2177.9 (3)C3—C4—C5—Br3177.6 (3)
O1—C1—C2—C3179.6 (3)Cl2—C4—C5—Br31.8 (9)
C6—C1—C2—C31.5 (5)Br2—C4—C5—Br33.7 (5)
O2—C2—C3—C4177.4 (3)C4—C5—C6—C10.6 (5)
C1—C2—C3—C41.0 (5)Cl3—C5—C6—C1179.2 (7)
O2—C2—C3—Cl12.9 (4)Br3—C5—C6—C1177.2 (3)
C1—C2—C3—Cl1179.3 (2)C4—C5—C6—Cl4178.8 (2)
C2—C3—C4—C50.3 (5)Cl3—C5—C6—Cl40.2 (8)
Cl1—C3—C4—C5179.9 (2)Br3—C5—C6—Cl43.4 (4)
C2—C3—C4—Cl2179.6 (9)O1—C1—C6—C5179.4 (3)
Cl1—C3—C4—Cl20.7 (10)C2—C1—C6—C51.3 (5)
C2—C3—C4—Br2178.5 (4)O1—C1—C6—Cl40.0 (4)
Cl1—C3—C4—Br21.2 (5)C2—C1—C6—Cl4178.1 (2)
C3—C4—C5—C60.0 (5)C6—C1—O1—C796.2 (4)
Cl2—C4—C5—C6179.4 (8)C2—C1—O1—C785.7 (4)
Br2—C4—C5—C6178.7 (4)C3—C2—O2—C8113.2 (4)
C3—C4—C5—Cl3178.8 (6)C1—C2—O2—C870.5 (4)
Cl2—C4—C5—Cl31.8 (10)

Experimental details

Crystal data
Chemical formulaC8H6BrCl3O2
Mr320.39
Crystal system, space groupTriclinic, P1
Temperature (K)90
a, b, c (Å)7.7885 (7), 8.8600 (7), 9.1523 (8)
α, β, γ (°)62.256 (3), 75.358 (4), 75.133 (4)
V3)533.64 (8)
Z2
Radiation typeCu Kα
µ (mm1)11.94
Crystal size (mm)0.20 × 0.15 × 0.07
Data collection
DiffractometerBruker X8 Proteum
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2006)
Tmin, Tmax0.193, 0.434
No. of measured, independent and
observed [I > 2σ(I)] reflections
6588, 1828, 1720
Rint0.038
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.103, 1.12
No. of reflections1828
No. of parameters138
No. of restraints6
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.35, 0.52

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008), SHELX97 (Sheldrick, 2008) and local procedures.

 

Acknowledgements

This research was supported by grants ES05605, ES012475, ES013661 from the National Institute of Environmental Health Sciences, NIH (HJL) and NSFC grant No. 20907037 from the National Science Fund of China (YS).

References

First citationBrownlee, B. G., MacInnis, G. A. & Noton, L. R. (1993). Environ. Sci. Technol. 27, 2450–2455.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCurtis, R. F., Land, D. G., Griffiths, N. M., Gee, M., Robinson, D., Peel, J. L., Dennis, C. & Gee, J. M. (1972). Nature (London), 235, 223–224.  CrossRef CAS Web of Science Google Scholar
First citationIimura, Y., Sakurai, T., Asahi, K.-i., Takahashi, N. & Oka, H. (1984). Acta Cryst. C40, 2058–2061.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationPereira, C. S., Marques, J. J. F. & SanRomao, M. V. (2000). Crit. Rev. Microbiol. 26, 147–162.  Web of Science CrossRef PubMed Google Scholar
First citationRissanen, K., Valkonen, J. & Knuutinen, J. (1987). Acta Cryst. C43, 1966–1968.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationRissanen, K., Valkonen, J. & Mannila, B. (1988a). Acta Cryst. C44, 682–684.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationRissanen, K., Valkonen, J. & Mannila, B. (1988b). Acta Cryst. C44, 684–686.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSong, Y., Buettner, G. R., Parkin, S., Wagner, B. A., Robertson, L. W. & Lehmler, H.-J. (2008). J. Org. Chem. 73, 8296–8304.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSong, Y., Parkin, S. & Lehmler, H.-J. (2010). Acta Cryst. E66, o339.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTelu, S., Parkin, S., Robertson, L. W. & Lehmler, H.-J. (2008). Acta Cryst. E64, o424.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationVlachos, P., Kampioti, A., Kornaros, M. & Lyberatos, G. (2007). Eur. Food Res. Technol. 225, 653–663.  Web of Science CrossRef CAS Google Scholar
First citationWeller, F. & Gerstner, E. (1995). Z. Kristallogr. 210, 629–629.  CrossRef CAS Google Scholar
First citationWieczorek, M. W. (1980). Acta Cryst. B36, 1515–1517.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationZhang, L., Hu, R. & Yang, Z. (2006). Water Sci. Technol. 54, 335–344.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds