metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tri­ethyl­ammonium bis­­(2-oxido-2,2-di­phenyl­acetato-κ2O1,O2)anti­monate(III)

aDepartment of Chemistry, University of Rajshahi, Rajshahi 6205, Bangladesh, and bSchool of Chemistry, University of East Anglia, Norwich NR4 7TJ, England
*Correspondence e-mail: motahar_chem@ru.ac.bd

(Received 21 November 2009; accepted 21 December 2009; online 9 January 2010)

The coordination around the Sb atom in the title compound, (C6H16N)[Sb(C14H10O3)2], is fourfold in a pseudo-trigonal-bipyramidal pattern in which one of the equatorial sites is occupied by the stereoactive lone pair of electrons. The four ligating atoms comprise the hydoxylate and carboxyl­ate O atoms from two independent benzilate ligands, each of which forms a five-membered chelating ring, spanning an axial and an equatorial site about the Sb atom. The hydroxy­late atoms occupy the two equatorial sites, and the carboxyl­ate atoms are in the pseudo-axial sites; the O—Sb—O angle is 147.72 (5)°. One carboxyl­ate group shows quite different bond lengths from those of the other group; one O atom is clearly the carbonyl atom and the other O atom the hydroxy­late atom. In the other ligand, there is less distinction in the C—O bonds. This is presumably related to the carbonyl O atom being the acceptor atom of a strong N—H⋯O hydrogen bond, which links the ammonium cation to the Sb complex anion.

Related literature

For metal–carboxyl­ate and alkoxide complexes: Reza et al. (1998[Reza, M. Y., Matsushima, H., Koikawa, M., Nakashima, M. & Tokii, T. (1998). Bull. Chem. Soc. Jpn, 71, 155-160.], 1999[Reza, M. Y., Matsushima, H., Koikawa, M., Nakashima, M. & Tokii, T. (1999). Polyhedron, 18, 787-792.], 2003[Reza, M. Y., Hossain, M. B. & Islam, M. S. (2003). Pak. J. Biol. Sci. 6, 1494-1496.]); Tarafder et al. (2008[Tarafder, M. T. H., Reza, M. Y., Crouse, K. A., Chantrapromma, S. & Fun, H.-K. (2008). Acta Cryst. E64, m872-m873.]). For anti­mony(III) complexes, see: Razak et al. (2002[Razak, I. A., Usman, A., Fun, H.-K., Yamin, B. M. & Keat, G. W. (2002). Acta Cryst. C58, m122-m123.]); Vijjulatha et al. (1997[Vijjulatha, M., Kumara Swamy, K. C., Huch, V. & Veith, M. (1997). Acta Cryst. C53, 1789-1791.]). For α-hydroxy­carboxyl­ate complexes, see: Hartley et al. (1991[Hartley, D. W., Smith, G., Sagatys, D. S. & Kennard, C. H. L. (1991). J. Chem. Soc. Dalton Trans. pp. 2735-2739.]); Smith et al. (1992[Smith, G., Sagatys, D. S., Bott, R. C., Lynch, D. E. & Kennard, C. H. L. (1992). Polyhedron, 11, 631-634.], 1993[Smith, G., Sagatys, D. S., Bott, R. C., Lynch, D. E. & Kennard, C. H. L. (1993). Polyhedron, 12, 1491-1497.]); Smith & Kennard (1996[Smith, G. & Kennard, C. H. L. (1996). Main Group Chem. 1, 175-177.]); Bott et al. (2000[Bott, R. C., Smith, G., Sagatys, D. S., Lynch, D. E. & Kennard, C. H. L. (2000). Aust. J. Chem. 53, 917-924.]); Redshaw & Elsegood (2007[Redshaw, C. & Elsegood, M. R. J. (2007). Angew. Chem. Int. Ed. 46, 7453-7457.]); Redshaw et al. (2005[Redshaw, C., Elsegood, M. R. J. & Holmes, K. E. (2005). Angew. Chem. Int. Ed. 44, 1850-1853.]); Chandrasekhar et al. (2005[Chandrasekhar, V., Thilagar, P., Bickley, J. F. & Steiner, A. (2005). J. Am. Chem. Soc. 127, 11556-11557.]); Vergopoulos et al. (1995[Vergopoulos, V., Jantzen, S., Rodewald, D. & Rehder, D. (1995). J. Chem. Soc. Chem. Commun. pp. 377-378.]); Carballo et al. (2004a[Carballo, R., Castiñeiras, A., Covelo, B., García-Martínez, E., Niclós, J. & Vázquez-López, E. M. (2004a). Polyhedron, 23, 1505-1518.],b[Carballo, R., Covelo, B., García-Martinez, E., Vázquez-López, E. M. & Castiñeiras, A. (2004b). Appl. Organomet. Chem. 18, 201-202.]).

[Scheme 1]

Experimental

Crystal data
  • (C6H16N)[Sb(C14H10O3)2]

  • Mr = 676.39

  • Monoclinic, P 21 /c

  • a = 12.34379 (13) Å

  • b = 10.63317 (12) Å

  • c = 22.5264 (3) Å

  • β = 90.6466 (11)°

  • V = 2956.49 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.98 mm−1

  • T = 140 K

  • 0.28 × 0.27 × 0.09 mm

Data collection
  • Oxford Diffraction Xcalibur 3/CCD diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.911, Tmax = 1.000

  • 61564 measured reflections

  • 6772 independent reflections

  • 5645 reflections with I > 2σ(I)

  • Rint = 0.054

Refinement
  • R[F2 > 2σ(F2)] = 0.023

  • wR(F2) = 0.049

  • S = 1.01

  • 6772 reflections

  • 383 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.42 e Å−3

Table 1
Selected geometric parameters (Å, °)

Sb—O1 2.2091 (12)
Sb—O2 1.9751 (11)
Sb—O4 2.1204 (12)
Sb—O5 1.9662 (11)
O2—Sb—O1 76.77 (4)
O4—Sb—O1 147.72 (5)
O5—Sb—O1 81.60 (5)
O2—Sb—O4 81.84 (5)
O5—Sb—O2 100.79 (5)
O5—Sb—O4 78.97 (5)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N7—H7⋯O11 0.93 (2) 1.78 (2) 2.706 (2) 177.5 (18)

Data collection: CrysAlis CCD (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPII (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]) and ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

In an ongoing study of metal-carboxylate and -alkoxide complexes (Reza et al., 1998, 1999, 2003; Tarafder et al., 2008), with particular interest in their antimicrobial and catalytic properties, we are exploring the coordination chemistry of some α-hydroxycarboxylate ions which contain both the ligating groups of interest and whose parent acids have important roles in enzyme reactions. Often, the α-hydroxycarboxylate ligand forms a simple chelating ring with a metal (e.g. Vergopoulos et al., 1995), but terminal and bridging modes have also been found (e.g. Carballo et al., 2004a, 2004b). The bridging modes, using the three (or more) available oxygen donor atoms, allow the formation of oligomeric complexes, for example the macrocyclic rings formed between benzilate ions and AlMe3 (Redshaw et al., 2005) or ZnEt2 (Redshaw et al., 2007), and the cages formed by 9-hydroxy-9-fluorenecarboxylic acid with n-BuSn(O)OH (Chandrasekhar et al., 2005). We recall also the series of citrate complexes in which the citrate ion chelates an antimony ion and bridges to a range of simple cations (alkali metals, copper, silver, etc) to form a variety of polymeric structures (Hartley et al., 1991, Smith et al., 1992, 1993, Bott et al., 2000).

We have now prepared an Sb(III) complex of the benzilate (diphenylglycolate) ion, with Et3NH+ as the counterion. This cation is non-coordinating and has a single N-H group with potential for formation of hydrogen bonds. The product, the title compound (I), shows (Figure 1) the antimony atom coordinated by two independent benzilate ligands with very similar conformations, each with a five-membered chelating ring which bridges an axial and equatorial site of the pseudo trigonal bipyramidal coordination polyhedron; the fifth, equatorial coordination site is occupied by a stereoactive lone-pair of electrons in the style typical of antimony(III) complexes of citrate and other α-hydrocarboxylate ions. In all these Sb(III) complexes, the alkoxide O atom is in an equatorial position and one of the carboxylate O atoms is in an axial site, and the axial Sb—O bonds are slightly longer than the equatorial bonds. Slight differences in the dimensions of the carboxylate groups in our complex are thought to result from the participation of one of these groups as acceptor of a good, almost linear hydrogen bond, N(7)—H(7)···O(11), from the Et3NH+ cation. The Sb(OOCCOPh2)2- anion and Et3NH+ cation thus appear as a discrete ion-pair unit in the crystal.

On the Sb atom, the lone-pair of electrons (and vacant coordination site) are bounded by the phenyl group of C(511-561) and O(411) of the molecule at (1 - x, y - 1/2, 1/2 - z), Figure 2; a point X calculated along the bisecting vectors towards the coordination site, at 1.5 Å from the Sb atom, has X···C distances in the range 2.45 - 2.90 Å and X···O(411) 2.70 Å.

There are two intermolecular 'weak hydrogen bonds', viz C(24)—H(24)···O(22) and C(75)—H(75b)···O(413) with H···O contacts of 2.44 and 2.49 Å. The other major intermolecular contacts are C—H···π interactions, e.g. the phenyl group of C(21–26) is bounded on one side by the hydrogen atom H(541), and on the other side H(73b4) where these hydrogen atoms are displaced 2.95 and 2.61 Å from the ring mean-plane. The ring of C(31–36) has a similar interaction, with H(74b) displaced 2.73 Å from the ring plane, but on the opposite side, H(545) is directed at the C(35)—C(36) bond. As noted above, the ring of C(51–56) has a lone-pair of electrons on one side; H(76a6) is on the opposite side but points more to the C(51) end of the ring. The hydrogen atoms H(35 and 36) and H(72a7), approaching the ring of C(61–66), are also directed at the edges of the ring. [Symmetry operations, denoted by superscripts are: 1: 1 - x, y - 1/2, 1/2 - z; 2: -x, y - 1/2, 1/2 - z; 3: x, 3/2 - y, 1/2 + z; 4: -x, 1 - y, 1 - z; 5: x - 1, y, z; 6: 1 - x, 1 - y, 1 - z; 7: 1 - x, 2 - y, 1 - z].

Molecular dimensions are available in the archived CIF.

Related literature top

For metal–carboxylate and alkoxide complexes: Reza et al. (1998, 1999, 2003); Tarafder et al. (2008). For antimony(III) complexes, see: Razak et al. (2002); Vijjulatha et al. (1997). For α-hydroxycarboxylate complexes, see: Hartley et al. (1991); Smith et al. (1992, 1993); Smith & Kennard (1996); Bott et al. (2000); Redshaw & Elsegood (2007); Redshaw et al. (2005); Chandrasekhar et al. (2005); Vergopoulos et al. (1995); Carballo et al. (2004a,b).

Experimental top

The title complex, (Et3NH) [Sb(Ph2COCOO)2] (1) was synthesized by adding, with stirring, a mixture of benzilic acid (2 mmol) and triethylamine (2 mmol) in acetonitrile (50 ml) to 30 ml of an aqueous solution of SbCl3 (1 mmol). The stirring was continued for another 30 min at 60 C. Precipitates initially formed were filtered and the filtrate was concentrated to one-third of its original volume (ca 30 ml). The colourless single crystals of 1 which appeared after a week were collected, washed with water and dried in air at room temperature, Mp. 558 K.

Refinement top

The non-hydrogen atoms were refined with anisotropic thermal parameters. The ammonium hydrogen atom, H(7), was located in a difference map and was refined freely; the remaining hydrogen atoms were included in idealized positions and their Uiso values were set to ride on the Ueq values of the parent carbon atoms. The largest difference peak (near Sb) and hole were 0.41 and -0.42 e.Å-3.

Structure description top

In an ongoing study of metal-carboxylate and -alkoxide complexes (Reza et al., 1998, 1999, 2003; Tarafder et al., 2008), with particular interest in their antimicrobial and catalytic properties, we are exploring the coordination chemistry of some α-hydroxycarboxylate ions which contain both the ligating groups of interest and whose parent acids have important roles in enzyme reactions. Often, the α-hydroxycarboxylate ligand forms a simple chelating ring with a metal (e.g. Vergopoulos et al., 1995), but terminal and bridging modes have also been found (e.g. Carballo et al., 2004a, 2004b). The bridging modes, using the three (or more) available oxygen donor atoms, allow the formation of oligomeric complexes, for example the macrocyclic rings formed between benzilate ions and AlMe3 (Redshaw et al., 2005) or ZnEt2 (Redshaw et al., 2007), and the cages formed by 9-hydroxy-9-fluorenecarboxylic acid with n-BuSn(O)OH (Chandrasekhar et al., 2005). We recall also the series of citrate complexes in which the citrate ion chelates an antimony ion and bridges to a range of simple cations (alkali metals, copper, silver, etc) to form a variety of polymeric structures (Hartley et al., 1991, Smith et al., 1992, 1993, Bott et al., 2000).

We have now prepared an Sb(III) complex of the benzilate (diphenylglycolate) ion, with Et3NH+ as the counterion. This cation is non-coordinating and has a single N-H group with potential for formation of hydrogen bonds. The product, the title compound (I), shows (Figure 1) the antimony atom coordinated by two independent benzilate ligands with very similar conformations, each with a five-membered chelating ring which bridges an axial and equatorial site of the pseudo trigonal bipyramidal coordination polyhedron; the fifth, equatorial coordination site is occupied by a stereoactive lone-pair of electrons in the style typical of antimony(III) complexes of citrate and other α-hydrocarboxylate ions. In all these Sb(III) complexes, the alkoxide O atom is in an equatorial position and one of the carboxylate O atoms is in an axial site, and the axial Sb—O bonds are slightly longer than the equatorial bonds. Slight differences in the dimensions of the carboxylate groups in our complex are thought to result from the participation of one of these groups as acceptor of a good, almost linear hydrogen bond, N(7)—H(7)···O(11), from the Et3NH+ cation. The Sb(OOCCOPh2)2- anion and Et3NH+ cation thus appear as a discrete ion-pair unit in the crystal.

On the Sb atom, the lone-pair of electrons (and vacant coordination site) are bounded by the phenyl group of C(511-561) and O(411) of the molecule at (1 - x, y - 1/2, 1/2 - z), Figure 2; a point X calculated along the bisecting vectors towards the coordination site, at 1.5 Å from the Sb atom, has X···C distances in the range 2.45 - 2.90 Å and X···O(411) 2.70 Å.

There are two intermolecular 'weak hydrogen bonds', viz C(24)—H(24)···O(22) and C(75)—H(75b)···O(413) with H···O contacts of 2.44 and 2.49 Å. The other major intermolecular contacts are C—H···π interactions, e.g. the phenyl group of C(21–26) is bounded on one side by the hydrogen atom H(541), and on the other side H(73b4) where these hydrogen atoms are displaced 2.95 and 2.61 Å from the ring mean-plane. The ring of C(31–36) has a similar interaction, with H(74b) displaced 2.73 Å from the ring plane, but on the opposite side, H(545) is directed at the C(35)—C(36) bond. As noted above, the ring of C(51–56) has a lone-pair of electrons on one side; H(76a6) is on the opposite side but points more to the C(51) end of the ring. The hydrogen atoms H(35 and 36) and H(72a7), approaching the ring of C(61–66), are also directed at the edges of the ring. [Symmetry operations, denoted by superscripts are: 1: 1 - x, y - 1/2, 1/2 - z; 2: -x, y - 1/2, 1/2 - z; 3: x, 3/2 - y, 1/2 + z; 4: -x, 1 - y, 1 - z; 5: x - 1, y, z; 6: 1 - x, 1 - y, 1 - z; 7: 1 - x, 2 - y, 1 - z].

Molecular dimensions are available in the archived CIF.

For metal–carboxylate and alkoxide complexes: Reza et al. (1998, 1999, 2003); Tarafder et al. (2008). For antimony(III) complexes, see: Razak et al. (2002); Vijjulatha et al. (1997). For α-hydroxycarboxylate complexes, see: Hartley et al. (1991); Smith et al. (1992, 1993); Smith & Kennard (1996); Bott et al. (2000); Redshaw & Elsegood (2007); Redshaw et al. (2005); Chandrasekhar et al. (2005); Vergopoulos et al. (1995); Carballo et al. (2004a,b).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell refinement: CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED (Oxford Diffraction, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976) and ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. View of a molecule of (Et3NH)[Sb(Ph2COCOO)2] (1), indicating the atom numbering scheme. Hydrogen atoms (except that involved in the hydrogen bond) have been omitted for clarity. Thermal ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Environs of lone-pair of electrons (around the point X) of the antimony atom. The superscript denotes the symmetry operation: 1 - x, y - 1/2, 1/2 - z.
Triethylammonium bis(2-oxido-2,2-diphenylacetato-κ2O1,O2)antimonate(III) top
Crystal data top
(C6H16N)[Sb(C14H10O3)2]F(000) = 1384
Mr = 676.39Dx = 1.520 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 12.34379 (13) ÅCell parameters from 33278 reflections
b = 10.63317 (12) Åθ = 3.1–32.3°
c = 22.5264 (3) ŵ = 0.98 mm1
β = 90.6466 (11)°T = 140 K
V = 2956.49 (5) Å3Plate, colourless
Z = 40.28 × 0.27 × 0.09 mm
Data collection top
Oxford Diffraction Xcalibur 3/CCD
diffractometer
6772 independent reflections
Radiation source: Enhance (Mo) X-ray Source5645 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.054
Detector resolution: 16.0050 pixels mm-1θmax = 27.5°, θmin = 3.1°
Thin–slice φ and ω scansh = 1616
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2008)
k = 1313
Tmin = 0.911, Tmax = 1.000l = 2929
61564 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.049H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0274P)2]
where P = (Fo2 + 2Fc2)/3
6772 reflections(Δ/σ)max = 0.003
383 parametersΔρmax = 0.41 e Å3
0 restraintsΔρmin = 0.42 e Å3
Crystal data top
(C6H16N)[Sb(C14H10O3)2]V = 2956.49 (5) Å3
Mr = 676.39Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.34379 (13) ŵ = 0.98 mm1
b = 10.63317 (12) ÅT = 140 K
c = 22.5264 (3) Å0.28 × 0.27 × 0.09 mm
β = 90.6466 (11)°
Data collection top
Oxford Diffraction Xcalibur 3/CCD
diffractometer
6772 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2008)
5645 reflections with I > 2σ(I)
Tmin = 0.911, Tmax = 1.000Rint = 0.054
61564 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0230 restraints
wR(F2) = 0.049H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.41 e Å3
6772 reflectionsΔρmin = 0.42 e Å3
383 parameters
Special details top

Experimental. CrysAlisPro RED, Oxford Diffraction Ltd., Version 1.171.32.24 Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sb0.344289 (9)0.578178 (10)0.306991 (5)0.01409 (4)
O10.31229 (9)0.51859 (11)0.39909 (6)0.0186 (3)
C10.21403 (13)0.53115 (16)0.41481 (8)0.0146 (3)
O110.17823 (10)0.49894 (12)0.46352 (5)0.0199 (3)
C20.13642 (13)0.58983 (15)0.36784 (7)0.0125 (3)
O20.19745 (9)0.64426 (11)0.32163 (5)0.0144 (2)
C210.06322 (13)0.48800 (16)0.34061 (8)0.0137 (3)
C220.07864 (14)0.36064 (17)0.35079 (8)0.0187 (4)
H220.13100.33420.37810.022*
C230.01619 (15)0.27202 (17)0.32035 (8)0.0225 (4)
H230.02790.18670.32700.027*
C240.06292 (14)0.30980 (18)0.28049 (8)0.0231 (4)
H240.10440.25050.26010.028*
C250.07987 (14)0.43711 (18)0.27118 (8)0.0226 (4)
H250.13360.46340.24470.027*
C260.01765 (14)0.52544 (17)0.30094 (8)0.0178 (4)
H260.03000.61060.29440.021*
C310.06915 (13)0.69218 (15)0.39781 (8)0.0142 (3)
C320.01336 (14)0.65910 (17)0.43647 (8)0.0184 (4)
H320.02790.57460.44360.022*
C330.07398 (14)0.75074 (18)0.46439 (9)0.0229 (4)
H330.12880.72770.49020.027*
C340.05292 (15)0.87695 (18)0.45388 (9)0.0243 (4)
H340.09410.93880.47210.029*
C350.02932 (16)0.90969 (17)0.41627 (9)0.0242 (4)
H350.04400.99420.40950.029*
C360.09080 (14)0.81839 (16)0.38823 (8)0.0194 (4)
H360.14640.84190.36300.023*
O40.34473 (9)0.72582 (12)0.24372 (5)0.0201 (3)
C40.39510 (14)0.82763 (17)0.25927 (8)0.0195 (4)
O410.40424 (11)0.91988 (13)0.22763 (6)0.0311 (3)
C50.44681 (13)0.82505 (16)0.32260 (8)0.0153 (3)
O50.43343 (9)0.70446 (10)0.34853 (5)0.0166 (3)
C510.56859 (13)0.84740 (16)0.31541 (8)0.0147 (3)
C520.62838 (14)0.75725 (17)0.28514 (9)0.0220 (4)
H520.59330.68760.26890.026*
C530.73872 (15)0.76966 (18)0.27882 (9)0.0264 (4)
H530.77740.70850.25850.032*
C540.79229 (15)0.87246 (19)0.30243 (9)0.0259 (4)
H540.86690.88030.29860.031*
C550.73385 (15)0.96320 (19)0.33175 (9)0.0249 (4)
H550.76931.03300.34750.030*
C560.62251 (14)0.95149 (16)0.33797 (8)0.0197 (4)
H560.58391.01400.35740.024*
C610.39459 (13)0.92205 (17)0.36336 (9)0.0210 (4)
C620.33837 (16)1.0251 (2)0.34307 (11)0.0354 (5)
H620.33001.03840.30250.043*
C630.2942 (2)1.1093 (2)0.38288 (15)0.0536 (8)
H630.25621.17870.36870.064*
C640.30550 (18)1.0921 (2)0.44250 (14)0.0515 (8)
H640.27451.14870.46880.062*
C650.3631 (2)0.9904 (2)0.46345 (12)0.0501 (7)
H650.37260.97870.50410.060*
C660.40684 (19)0.9058 (2)0.42384 (10)0.0377 (5)
H660.44520.83670.43820.045*
N70.28608 (12)0.57191 (14)0.56292 (7)0.0187 (3)
C710.38735 (15)0.6338 (2)0.54177 (10)0.0293 (5)
H71A0.36770.70090.51450.035*
H71B0.42950.57270.51990.035*
C720.45699 (17)0.6876 (2)0.59098 (11)0.0404 (6)
H72A0.52030.72580.57440.061*
H72B0.47850.62150.61760.061*
H72C0.41660.74980.61230.061*
C730.21227 (15)0.65915 (17)0.59532 (8)0.0217 (4)
H73A0.24810.68710.63150.026*
H73B0.14740.61370.60640.026*
C740.18027 (17)0.77240 (19)0.55908 (9)0.0316 (5)
H74A0.13360.82530.58200.047*
H74B0.14280.74560.52370.047*
H74C0.24400.81850.54840.047*
C750.30507 (16)0.45419 (17)0.59820 (8)0.0234 (4)
H75A0.23600.42050.61070.028*
H75B0.34720.47430.63350.028*
C760.36437 (17)0.35545 (19)0.56253 (9)0.0313 (5)
H76A0.35950.27570.58230.047*
H76B0.43910.37890.55900.047*
H76C0.33210.34920.52370.047*
H70.2489 (16)0.5445 (18)0.5292 (9)0.021 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sb0.01236 (6)0.01524 (6)0.01468 (6)0.00074 (5)0.00095 (4)0.00073 (5)
O10.0142 (6)0.0211 (6)0.0203 (7)0.0006 (5)0.0024 (5)0.0061 (5)
C10.0163 (8)0.0120 (8)0.0155 (9)0.0021 (6)0.0032 (7)0.0003 (7)
O110.0208 (6)0.0252 (7)0.0137 (7)0.0039 (5)0.0014 (5)0.0044 (5)
C20.0122 (7)0.0143 (8)0.0111 (8)0.0004 (6)0.0001 (6)0.0017 (7)
O20.0104 (5)0.0199 (6)0.0128 (6)0.0004 (5)0.0016 (5)0.0050 (5)
C210.0116 (8)0.0173 (9)0.0122 (8)0.0007 (6)0.0028 (7)0.0031 (7)
C220.0165 (9)0.0201 (9)0.0196 (10)0.0017 (7)0.0009 (7)0.0030 (7)
C230.0234 (9)0.0167 (9)0.0276 (11)0.0008 (7)0.0035 (8)0.0064 (8)
C240.0186 (9)0.0298 (11)0.0211 (10)0.0059 (8)0.0026 (8)0.0116 (8)
C250.0169 (9)0.0321 (11)0.0186 (9)0.0000 (8)0.0040 (7)0.0032 (8)
C260.0172 (9)0.0198 (9)0.0162 (9)0.0003 (7)0.0013 (7)0.0009 (7)
C310.0128 (8)0.0176 (9)0.0122 (8)0.0002 (6)0.0034 (7)0.0017 (7)
C320.0169 (9)0.0177 (9)0.0208 (10)0.0029 (7)0.0011 (7)0.0017 (7)
C330.0174 (9)0.0273 (10)0.0240 (10)0.0012 (8)0.0046 (8)0.0047 (8)
C340.0238 (10)0.0230 (9)0.0262 (11)0.0064 (8)0.0002 (8)0.0079 (8)
C350.0302 (10)0.0151 (9)0.0274 (10)0.0010 (8)0.0007 (8)0.0015 (8)
C360.0202 (9)0.0204 (9)0.0177 (9)0.0018 (7)0.0004 (7)0.0015 (7)
O40.0179 (6)0.0271 (7)0.0153 (6)0.0026 (5)0.0013 (5)0.0032 (5)
C40.0139 (8)0.0259 (10)0.0189 (10)0.0035 (7)0.0018 (7)0.0057 (8)
O410.0336 (8)0.0303 (8)0.0292 (8)0.0038 (6)0.0051 (6)0.0166 (7)
C50.0144 (8)0.0150 (8)0.0165 (9)0.0006 (6)0.0009 (7)0.0044 (7)
O50.0166 (6)0.0161 (6)0.0170 (6)0.0037 (5)0.0039 (5)0.0051 (5)
C510.0139 (8)0.0151 (8)0.0152 (9)0.0004 (6)0.0004 (7)0.0049 (7)
C520.0203 (9)0.0176 (9)0.0283 (11)0.0007 (7)0.0037 (8)0.0027 (8)
C530.0209 (9)0.0258 (10)0.0328 (12)0.0045 (8)0.0084 (8)0.0029 (9)
C540.0137 (9)0.0353 (11)0.0287 (11)0.0021 (8)0.0006 (8)0.0035 (9)
C550.0195 (9)0.0303 (10)0.0249 (11)0.0091 (8)0.0015 (8)0.0027 (8)
C560.0210 (9)0.0200 (10)0.0181 (9)0.0003 (7)0.0018 (7)0.0021 (7)
C610.0129 (8)0.0200 (9)0.0303 (10)0.0037 (7)0.0068 (7)0.0011 (8)
C620.0278 (11)0.0266 (11)0.0516 (15)0.0058 (9)0.0084 (10)0.0058 (11)
C630.0339 (13)0.0348 (14)0.092 (2)0.0164 (10)0.0059 (14)0.0206 (14)
C640.0288 (12)0.0404 (15)0.086 (2)0.0080 (10)0.0289 (13)0.0346 (15)
C650.0664 (18)0.0438 (15)0.0409 (15)0.0146 (13)0.0332 (14)0.0149 (12)
C660.0536 (14)0.0298 (12)0.0301 (12)0.0052 (10)0.0191 (11)0.0008 (9)
N70.0203 (7)0.0211 (8)0.0148 (7)0.0020 (6)0.0002 (6)0.0011 (7)
C710.0267 (10)0.0290 (11)0.0326 (12)0.0049 (9)0.0121 (9)0.0002 (9)
C720.0242 (11)0.0432 (14)0.0539 (16)0.0119 (10)0.0011 (11)0.0037 (11)
C730.0206 (9)0.0249 (10)0.0199 (10)0.0008 (7)0.0036 (8)0.0047 (8)
C740.0366 (12)0.0265 (11)0.0315 (12)0.0037 (9)0.0042 (10)0.0043 (9)
C750.0289 (10)0.0254 (10)0.0157 (9)0.0017 (8)0.0054 (8)0.0034 (7)
C760.0382 (12)0.0299 (12)0.0255 (11)0.0100 (9)0.0098 (9)0.0004 (9)
Geometric parameters (Å, º) top
Sb—O12.2091 (12)C52—H520.9300
Sb—O21.9751 (11)C53—C541.381 (3)
Sb—O42.1204 (12)C53—H530.9300
Sb—O51.9662 (11)C54—C551.378 (3)
O1—C11.274 (2)C54—H540.9300
C1—O111.236 (2)C55—C561.389 (2)
C1—C21.550 (2)C55—H550.9300
C2—O21.4155 (19)C56—H560.9300
C2—C311.530 (2)C61—C621.373 (3)
C2—C211.534 (2)C61—C661.380 (3)
C21—C221.386 (2)C62—C631.383 (3)
C21—C261.390 (2)C62—H620.9300
C22—C231.393 (2)C63—C641.361 (4)
C22—H220.9300C63—H630.9300
C23—C241.379 (3)C64—C651.375 (4)
C23—H230.9300C64—H640.9300
C24—C251.385 (3)C65—C661.382 (3)
C24—H240.9300C65—H650.9300
C25—C261.382 (2)C66—H660.9300
C25—H250.9300N7—C711.495 (2)
C26—H260.9300N7—C731.496 (2)
C31—C361.386 (2)N7—C751.500 (2)
C31—C321.393 (2)N7—H70.93 (2)
C32—C331.384 (2)C71—C721.508 (3)
C32—H320.9300C71—H71A0.9700
C33—C341.388 (3)C71—H71B0.9700
C33—H330.9300C72—H72A0.9600
C34—C351.374 (3)C72—H72B0.9600
C34—H340.9300C72—H72C0.9600
C35—C361.389 (3)C73—C741.505 (3)
C35—H350.9300C73—H73A0.9700
C36—H360.9300C73—H73B0.9700
O4—C41.295 (2)C74—H74A0.9600
C4—O411.218 (2)C74—H74B0.9600
C4—C51.557 (2)C74—H74C0.9600
C5—O51.4195 (19)C75—C761.516 (3)
C5—C611.528 (2)C75—H75A0.9700
C5—C511.532 (2)C75—H75B0.9700
C51—C561.385 (2)C76—H76A0.9600
C51—C521.393 (2)C76—H76B0.9600
C52—C531.377 (2)C76—H76C0.9600
O2—Sb—O176.77 (4)C52—C53—H53119.8
O4—Sb—O1147.72 (5)C54—C53—H53119.8
O5—Sb—O181.60 (5)C55—C54—C53119.20 (17)
O2—Sb—O481.84 (5)C55—C54—H54120.4
O5—Sb—O2100.79 (5)C53—C54—H54120.4
O5—Sb—O478.97 (5)C54—C55—C56120.64 (18)
C1—O1—Sb114.31 (11)C54—C55—H55119.7
O11—C1—O1124.65 (16)C56—C55—H55119.7
O11—C1—C2119.54 (15)C51—C56—C55120.44 (17)
O1—C1—C2115.80 (14)C51—C56—H56119.8
O2—C2—C31109.24 (13)C55—C56—H56119.8
O2—C2—C21108.10 (13)C62—C61—C66118.57 (19)
C31—C2—C21111.00 (13)C62—C61—C5123.62 (18)
O2—C2—C1109.66 (12)C66—C61—C5117.80 (17)
C31—C2—C1108.62 (13)C61—C62—C63120.1 (2)
C21—C2—C1110.21 (13)C61—C62—H62119.9
C2—O2—Sb118.32 (9)C63—C62—H62119.9
C22—C21—C26118.83 (16)C64—C63—C62121.1 (2)
C22—C21—C2122.98 (15)C64—C63—H63119.5
C26—C21—C2118.05 (15)C62—C63—H63119.5
C21—C22—C23120.35 (17)C63—C64—C65119.4 (2)
C21—C22—H22119.8C63—C64—H64120.3
C23—C22—H22119.8C65—C64—H64120.3
C24—C23—C22120.49 (18)C64—C65—C66119.7 (3)
C24—C23—H23119.8C64—C65—H65120.2
C22—C23—H23119.8C66—C65—H65120.2
C23—C24—C25119.20 (17)C61—C66—C65121.1 (2)
C23—C24—H24120.4C61—C66—H66119.4
C25—C24—H24120.4C65—C66—H66119.4
C26—C25—C24120.56 (17)C71—N7—C73113.47 (15)
C26—C25—H25119.7C71—N7—C75114.21 (15)
C24—C25—H25119.7C73—N7—C75110.58 (14)
C25—C26—C21120.55 (17)C71—N7—H7106.6 (12)
C25—C26—H26119.7C73—N7—H7107.1 (12)
C21—C26—H26119.7C75—N7—H7104.1 (12)
C36—C31—C32119.05 (16)N7—C71—C72113.86 (17)
C36—C31—C2120.90 (15)N7—C71—H71A108.8
C32—C31—C2120.03 (15)C72—C71—H71A108.8
C33—C32—C31120.62 (17)N7—C71—H71B108.8
C33—C32—H32119.7C72—C71—H71B108.8
C31—C32—H32119.7H71A—C71—H71B107.7
C32—C33—C34120.00 (17)C71—C72—H72A109.5
C32—C33—H33120.0C71—C72—H72B109.5
C34—C33—H33120.0H72A—C72—H72B109.5
C35—C34—C33119.42 (17)C71—C72—H72C109.5
C35—C34—H34120.3H72A—C72—H72C109.5
C33—C34—H34120.3H72B—C72—H72C109.5
C34—C35—C36120.97 (17)N7—C73—C74112.90 (15)
C34—C35—H35119.5N7—C73—H73A109.0
C36—C35—H35119.5C74—C73—H73A109.0
C31—C36—C35119.93 (17)N7—C73—H73B109.0
C31—C36—H36120.0C74—C73—H73B109.0
C35—C36—H36120.0H73A—C73—H73B107.8
C4—O4—Sb116.24 (11)C73—C74—H74A109.5
O41—C4—O4124.22 (17)C73—C74—H74B109.5
O41—C4—C5120.70 (16)H74A—C74—H74B109.5
O4—C4—C5115.08 (15)C73—C74—H74C109.5
O5—C5—C61108.09 (14)H74A—C74—H74C109.5
O5—C5—C51107.60 (13)H74B—C74—H74C109.5
C61—C5—C51112.32 (14)N7—C75—C76111.77 (16)
O5—C5—C4110.16 (14)N7—C75—H75A109.3
C61—C5—C4111.56 (14)C76—C75—H75A109.3
C51—C5—C4107.04 (14)N7—C75—H75B109.3
C5—O5—Sb119.22 (10)C76—C75—H75B109.3
C56—C51—C52118.33 (16)H75A—C75—H75B107.9
C56—C51—C5123.58 (15)C75—C76—H76A109.5
C52—C51—C5118.09 (15)C75—C76—H76B109.5
C53—C52—C51120.98 (17)H76A—C76—H76B109.5
C53—C52—H52119.5C75—C76—H76C109.5
C51—C52—H52119.5H76A—C76—H76C109.5
C52—C53—C54120.38 (18)H76B—C76—H76C109.5
O5—Sb—O1—C1115.32 (12)Sb—O4—C4—O41178.69 (14)
O2—Sb—O1—C112.08 (11)Sb—O4—C4—C50.40 (18)
O4—Sb—O1—C161.90 (15)O41—C4—C5—O5174.87 (16)
Sb—O1—C1—O11177.04 (14)O4—C4—C5—O54.3 (2)
Sb—O1—C1—C22.13 (18)O41—C4—C5—C6165.1 (2)
O11—C1—C2—O2167.18 (15)O4—C4—C5—C61115.79 (16)
O1—C1—C2—O213.6 (2)O41—C4—C5—C5158.2 (2)
O11—C1—C2—C3147.9 (2)O4—C4—C5—C51120.97 (16)
O1—C1—C2—C31132.91 (15)C61—C5—O5—Sb115.54 (12)
O11—C1—C2—C2173.93 (19)C51—C5—O5—Sb122.94 (12)
O1—C1—C2—C21105.29 (16)C4—C5—O5—Sb6.58 (17)
C31—C2—O2—Sb144.16 (10)O2—Sb—O5—C574.24 (11)
C21—C2—O2—Sb94.96 (13)O4—Sb—O5—C55.13 (11)
C1—C2—O2—Sb25.23 (16)O1—Sb—O5—C5148.95 (11)
O5—Sb—O2—C299.33 (11)O5—C5—C51—C56125.51 (17)
O4—Sb—O2—C2176.37 (11)C61—C5—C51—C566.7 (2)
O1—Sb—O2—C220.72 (10)C4—C5—C51—C56116.10 (19)
O2—C2—C21—C22110.46 (18)O5—C5—C51—C5253.7 (2)
C31—C2—C21—C22129.76 (17)C61—C5—C51—C52172.54 (16)
C1—C2—C21—C229.4 (2)C4—C5—C51—C5264.69 (19)
O2—C2—C21—C2665.23 (18)C56—C51—C52—C531.4 (3)
C31—C2—C21—C2654.6 (2)C5—C51—C52—C53177.87 (17)
C1—C2—C21—C26174.93 (14)C51—C52—C53—C540.1 (3)
C26—C21—C22—C231.9 (3)C52—C53—C54—C550.8 (3)
C2—C21—C22—C23173.74 (16)C53—C54—C55—C560.4 (3)
C21—C22—C23—C241.1 (3)C52—C51—C56—C551.7 (3)
C22—C23—C24—C250.2 (3)C5—C51—C56—C55177.48 (17)
C23—C24—C25—C260.7 (3)C54—C55—C56—C510.8 (3)
C24—C25—C26—C210.2 (3)O5—C5—C61—C62142.21 (17)
C22—C21—C26—C251.5 (3)C51—C5—C61—C6299.2 (2)
C2—C21—C26—C25174.40 (16)C4—C5—C61—C6221.0 (2)
O2—C2—C31—C3614.4 (2)O5—C5—C61—C6639.1 (2)
C21—C2—C31—C36133.47 (17)C51—C5—C61—C6679.4 (2)
C1—C2—C31—C36105.21 (18)C4—C5—C61—C66160.38 (17)
O2—C2—C31—C32167.26 (14)C66—C61—C62—C630.8 (3)
C21—C2—C31—C3248.2 (2)C5—C61—C62—C63179.45 (19)
C1—C2—C31—C3273.17 (19)C61—C62—C63—C640.1 (4)
C36—C31—C32—C330.9 (3)C62—C63—C64—C650.9 (4)
C2—C31—C32—C33179.26 (16)C63—C64—C65—C661.3 (4)
C31—C32—C33—C340.1 (3)C62—C61—C66—C650.5 (3)
C32—C33—C34—C350.9 (3)C5—C61—C66—C65179.2 (2)
C33—C34—C35—C360.7 (3)C64—C65—C66—C610.6 (4)
C32—C31—C36—C351.1 (3)C73—N7—C71—C7260.8 (2)
C2—C31—C36—C35179.46 (16)C75—N7—C71—C7267.2 (2)
C34—C35—C36—C310.3 (3)C71—N7—C73—C7456.6 (2)
O5—Sb—O4—C42.44 (12)C75—N7—C73—C74173.54 (16)
O2—Sb—O4—C4100.31 (12)C71—N7—C75—C7659.8 (2)
O1—Sb—O4—C451.60 (15)C73—N7—C75—C76170.79 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N7—H7···O110.93 (2)1.78 (2)2.706 (2)177.5 (18)

Experimental details

Crystal data
Chemical formula(C6H16N)[Sb(C14H10O3)2]
Mr676.39
Crystal system, space groupMonoclinic, P21/c
Temperature (K)140
a, b, c (Å)12.34379 (13), 10.63317 (12), 22.5264 (3)
β (°) 90.6466 (11)
V3)2956.49 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.98
Crystal size (mm)0.28 × 0.27 × 0.09
Data collection
DiffractometerOxford Diffraction Xcalibur 3/CCD
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2008)
Tmin, Tmax0.911, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
61564, 6772, 5645
Rint0.054
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.049, 1.01
No. of reflections6772
No. of parameters383
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.41, 0.42

Computer programs: CrysAlis CCD (Oxford Diffraction, 2008), CrysAlis RED (Oxford Diffraction, 2008), SHELXS97 (Sheldrick, 2008), ORTEPII (Johnson, 1976) and ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
Sb—O12.2091 (12)Sb—O42.1204 (12)
Sb—O21.9751 (11)Sb—O51.9662 (11)
O2—Sb—O176.77 (4)O2—Sb—O481.84 (5)
O4—Sb—O1147.72 (5)O5—Sb—O2100.79 (5)
O5—Sb—O181.60 (5)O5—Sb—O478.97 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N7—H7···O110.93 (2)1.78 (2)2.706 (2)177.5 (18)
 

Footnotes

Currently at: Division of Environmental Materials, Faculty of Environmental Earth Science, Hokkaido University, Sapporo 060-0808, Japan.

Acknowledgements

MYR, MMH and MTHT thank Rajshahi University for provision of their central laboratory facilities. The authors also thank Dr Imroz Ali for his special assistance.

References

First citationBott, R. C., Smith, G., Sagatys, D. S., Lynch, D. E. & Kennard, C. H. L. (2000). Aust. J. Chem. 53, 917–924.  Web of Science CSD CrossRef CAS Google Scholar
First citationCarballo, R., Castiñeiras, A., Covelo, B., García-Martínez, E., Niclós, J. & Vázquez-López, E. M. (2004a). Polyhedron, 23, 1505–1518.  Web of Science CSD CrossRef CAS Google Scholar
First citationCarballo, R., Covelo, B., García-Martinez, E., Vázquez-López, E. M. & Castiñeiras, A. (2004b). Appl. Organomet. Chem. 18, 201–202.  Web of Science CSD CrossRef CAS Google Scholar
First citationChandrasekhar, V., Thilagar, P., Bickley, J. F. & Steiner, A. (2005). J. Am. Chem. Soc. 127, 11556–11557.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHartley, D. W., Smith, G., Sagatys, D. S. & Kennard, C. H. L. (1991). J. Chem. Soc. Dalton Trans. pp. 2735–2739.  CSD CrossRef Web of Science Google Scholar
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationOxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationRazak, I. A., Usman, A., Fun, H.-K., Yamin, B. M. & Keat, G. W. (2002). Acta Cryst. C58, m122–m123.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRedshaw, C. & Elsegood, M. R. J. (2007). Angew. Chem. Int. Ed. 46, 7453–7457.  Web of Science CSD CrossRef CAS Google Scholar
First citationRedshaw, C., Elsegood, M. R. J. & Holmes, K. E. (2005). Angew. Chem. Int. Ed. 44, 1850–1853.  Web of Science CrossRef CAS Google Scholar
First citationReza, M. Y., Hossain, M. B. & Islam, M. S. (2003). Pak. J. Biol. Sci. 6, 1494–1496.  Google Scholar
First citationReza, M. Y., Matsushima, H., Koikawa, M., Nakashima, M. & Tokii, T. (1998). Bull. Chem. Soc. Jpn, 71, 155–160.  Web of Science CSD CrossRef CAS Google Scholar
First citationReza, M. Y., Matsushima, H., Koikawa, M., Nakashima, M. & Tokii, T. (1999). Polyhedron, 18, 787–792.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmith, G. & Kennard, C. H. L. (1996). Main Group Chem. 1, 175–177.  CrossRef CAS Web of Science Google Scholar
First citationSmith, G., Sagatys, D. S., Bott, R. C., Lynch, D. E. & Kennard, C. H. L. (1992). Polyhedron, 11, 631–634.  CSD CrossRef CAS Web of Science Google Scholar
First citationSmith, G., Sagatys, D. S., Bott, R. C., Lynch, D. E. & Kennard, C. H. L. (1993). Polyhedron, 12, 1491–1497.  CSD CrossRef CAS Web of Science Google Scholar
First citationTarafder, M. T. H., Reza, M. Y., Crouse, K. A., Chantrapromma, S. & Fun, H.-K. (2008). Acta Cryst. E64, m872–m873.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationVergopoulos, V., Jantzen, S., Rodewald, D. & Rehder, D. (1995). J. Chem. Soc. Chem. Commun. pp. 377–378.  CrossRef Web of Science Google Scholar
First citationVijjulatha, M., Kumara Swamy, K. C., Huch, V. & Veith, M. (1997). Acta Cryst. C53, 1789–1791.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds