organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N4-(3-Bromo­phen­yl)quinazoline-4,6-di­amine

aState Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, People's Republic of China
*Correspondence e-mail: hegu@scu.edu.cn

(Received 7 December 2009; accepted 21 January 2010; online 27 January 2010)

In the title compound, C14H11BrN4, the fused benzene and pyrimidine rings are nearly coplanar, making dihedral angles of 1.26 (14) and 3.53 (15)° in the two independent mol­ecules. In the crystal structure, ππ stacking inter­actions [centroid–centroid distances = 3.4736 (19) and 3.5416 (19) Å] and weak N—H⋯N and N—H⋯Br inter­actions contribute to the stability of the structure.

Related literature

For general background to the biological activity of N4-(3-bromo­phen­yl)quinazoline derivatives, see: Fry et al. (2005[Fry, D. W., Krer, A. J. & Denny, W. (2005). Russ. Chem. Bull. 54, 864-904.]).

[Scheme 1]

Experimental

Crystal data
  • C14H11BrN4

  • Mr = 315.18

  • Triclinic, [P \overline 1]

  • a = 7.5579 (15) Å

  • b = 11.743 (2) Å

  • c = 15.554 (3) Å

  • α = 110.24 (3)°

  • β = 96.79 (3)°

  • γ = 96.75 (3)°

  • V = 1267.4 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.23 mm−1

  • T = 113 K

  • 0.36 × 0.26 × 0.23 mm

Data collection
  • Rigaku Saturn CCD area-detector diffractometer

  • Absorption correction: multi-scan [SADABS (Sheldrick, 1996[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) using a modified Dwiggins (1975[Dwiggins, C. W. (1975). Acta Cryst. A31, 146-148.]) procedure] Tmin = 0.389, Tmax = 0.523

  • 10616 measured reflections

  • 5931 independent reflections

  • 3735 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.110

  • S = 1.02

  • 5931 reflections

  • 360 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.42 e Å−3

  • Δρmin = −1.54 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯N4i 0.93 (4) 2.28 (4) 3.069 (4) 142 (3)
N4—H4A⋯N3ii 0.88 2.33 3.137 (4) 153
N4—H4B⋯N8iii 0.88 2.39 3.178 (4) 149
N8—H8N1⋯Br1iv 0.89 (4) 2.88 (4) 3.739 (4) 163 (3)
N8—H8N2⋯N7ii 0.77 (4) 2.31 (4) 3.053 (4) 162 (4)
Symmetry codes: (i) -x+1, -y+2, -z; (ii) x-1, y, z; (iii) -x, -y+1, -z; (iv) x-1, y-1, z.

Data collection: CrystalClear (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear and CrystalStructure Rigaku/MSC, The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

N4-(3-bromophenyl)quinazoline derivatives are of great importance owing to their wide biological properties (Fry et al. 1994). The title compound is one of the key intermediates in our synthetic investigations of antitumor drugs. We report here its crystal structure. As shown in Fig. 1, the benzene and pyrimidine rings of the title compound (I) are nearly coplanar, with the dihedral angle between them are 1.2° and 3.1°, respectively. A combination of intermolecular π-π packing interaction, N—H···N and N—H···Br hydrogen bonds plays important part in the connection of adjacent molecules.

Related literature top

For general background to the biological activity of N4-(3-bromophenyl)quinazoline derivatives, see: Fry et al. (2005).

Experimental top

A mixture of N4-(3-bromophenyl)quinazoline-4,6-diamine (3.45 g, 10 mmol), Sodium sulfide nonahydrate (6.00 g, 25 mmol), sodium hydroxide (2.00 g, 50 mmol), ethanol (40 ml) and water (80 ml) was heated for 5.0 h under reflux. The ethanol was removed under vacuum. The solid was filtered, washed with cold water, dried to yield the title compound as a brown solid (2.2 g, 71% yield). Crystals suitable for X-ray analysis were obtained by slow evaporation from a solution of ethyl acetate.

Refinement top

H atoms of the amino group were located in a difference map and refined freely. The reminaing H atoms were positioned geometrically (C—H = 0.93–0.97 Å) and refined using a riding model, with Uiso(H) = 1.2–1.5Ueq(C).

Structure description top

N4-(3-bromophenyl)quinazoline derivatives are of great importance owing to their wide biological properties (Fry et al. 1994). The title compound is one of the key intermediates in our synthetic investigations of antitumor drugs. We report here its crystal structure. As shown in Fig. 1, the benzene and pyrimidine rings of the title compound (I) are nearly coplanar, with the dihedral angle between them are 1.2° and 3.1°, respectively. A combination of intermolecular π-π packing interaction, N—H···N and N—H···Br hydrogen bonds plays important part in the connection of adjacent molecules.

For general background to the biological activity of N4-(3-bromophenyl)quinazoline derivatives, see: Fry et al. (2005).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. A packing diagram of the title compound.
N4-(3-Bromophenyl)quinazoline-4,6-diamine top
Crystal data top
C14H11BrN4Z = 4
Mr = 315.18F(000) = 632
Triclinic, P1Dx = 1.652 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.5579 (15) ÅCell parameters from 3726 reflections
b = 11.743 (2) Åθ = 1.9–27.9°
c = 15.554 (3) ŵ = 3.23 mm1
α = 110.24 (3)°T = 113 K
β = 96.79 (3)°Block, colourless
γ = 96.75 (3)°0.36 × 0.26 × 0.23 mm
V = 1267.4 (4) Å3
Data collection top
Rigaku Saturn CCD area-detector
diffractometer
5931 independent reflections
Radiation source: rotating anode3735 reflections with I > 2σ(I)
Confocal monochromatorRint = 0.034
Detector resolution: 7.31 pixels mm-1θmax = 27.9°, θmin = 1.9°
ω and φ scansh = 99
Absorption correction: multi-scan
[SADABS (Sheldrick, 1996) using a modified Dwiggins (1975) procedure]
k = 915
Tmin = 0.389, Tmax = 0.523l = 2020
10616 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.043H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.110 w = 1/[σ2(Fo2) + (0.052P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
5931 reflectionsΔρmax = 1.42 e Å3
360 parametersΔρmin = 1.54 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0265 (14)
Crystal data top
C14H11BrN4γ = 96.75 (3)°
Mr = 315.18V = 1267.4 (4) Å3
Triclinic, P1Z = 4
a = 7.5579 (15) ÅMo Kα radiation
b = 11.743 (2) ŵ = 3.23 mm1
c = 15.554 (3) ÅT = 113 K
α = 110.24 (3)°0.36 × 0.26 × 0.23 mm
β = 96.79 (3)°
Data collection top
Rigaku Saturn CCD area-detector
diffractometer
5931 independent reflections
Absorption correction: multi-scan
[SADABS (Sheldrick, 1996) using a modified Dwiggins (1975) procedure]
3735 reflections with I > 2σ(I)
Tmin = 0.389, Tmax = 0.523Rint = 0.034
10616 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.110H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 1.42 e Å3
5931 reflectionsΔρmin = 1.54 e Å3
360 parameters
Special details top

Experimental. Absorption correction: [interpolation using International Tables for Crystallography (Vol. C, 1992, p. 523, Table 6.3.3.3) for values of µR in the range 0–2.5, and International Tables for X-ray Crystallography (Vol. II, 1959, p. 302, Table 5.3.6B) for µR in the range 2.6–10.0; the interpolation procedure of Dwiggins (1975) was used with some modification]

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.32081 (4)0.54984 (3)0.19450 (3)0.02528 (13)
N10.7074 (3)0.7482 (2)0.01210 (19)0.0175 (6)
H1N0.622 (5)0.800 (4)0.026 (3)0.036 (11)*
N20.9911 (3)0.7443 (2)0.03199 (19)0.0176 (6)
N31.0997 (3)0.8702 (2)0.11423 (19)0.0175 (6)
N40.4365 (3)1.0316 (2)0.13941 (19)0.0184 (6)
H4A0.34811.00820.11390.022*
H4B0.42251.08320.16840.022*
C10.5318 (4)0.5673 (3)0.1418 (2)0.0179 (7)
C20.6659 (4)0.4991 (3)0.1522 (2)0.0204 (7)
H20.65280.44330.18390.024*
C30.8198 (4)0.5164 (3)0.1143 (2)0.0198 (7)
H30.91360.47110.12040.024*
C40.8412 (4)0.5974 (3)0.0679 (2)0.0180 (7)
H40.94840.60740.04310.022*
C50.7044 (4)0.6642 (3)0.0580 (2)0.0164 (7)
C60.5474 (4)0.6477 (3)0.0953 (2)0.0167 (7)
H60.45240.69180.08850.020*
C70.8344 (4)0.7850 (3)0.0327 (2)0.0158 (7)
C81.1141 (4)0.7914 (3)0.0728 (2)0.0182 (7)
H81.22670.76320.07100.022*
C90.9338 (4)0.9078 (3)0.1195 (2)0.0151 (6)
C100.7933 (4)0.8659 (3)0.0804 (2)0.0149 (6)
C110.6255 (4)0.9061 (3)0.0889 (2)0.0166 (7)
H110.52950.87710.06330.020*
C120.5995 (4)0.9869 (3)0.1338 (2)0.0154 (7)
C130.7425 (4)1.0290 (3)0.1721 (2)0.0196 (7)
H130.72561.08540.20260.024*
C140.9041 (4)0.9895 (3)0.1658 (2)0.0191 (7)
H140.99801.01750.19290.023*
Br20.47743 (6)0.69252 (4)0.64544 (4)0.05308 (17)
N50.0018 (4)0.2805 (3)0.5104 (2)0.0236 (7)
H5N0.105 (6)0.250 (4)0.497 (3)0.062 (16)*
N60.2839 (4)0.2212 (3)0.5094 (2)0.0225 (6)
N70.3236 (3)0.0159 (3)0.4224 (2)0.0220 (6)
N80.4215 (4)0.1290 (3)0.3066 (2)0.0208 (6)
H8N10.470 (5)0.207 (4)0.292 (3)0.031 (11)*
H8N20.467 (5)0.080 (4)0.339 (3)0.029 (12)*
C150.2510 (5)0.5963 (3)0.6368 (3)0.0297 (8)
C160.1242 (5)0.6528 (4)0.6842 (3)0.0345 (9)
H160.15030.73760.72280.041*
C170.0417 (5)0.5833 (4)0.6743 (3)0.0353 (9)
H170.13170.62020.70670.042*
C180.0788 (5)0.4601 (3)0.6177 (3)0.0294 (8)
H180.19430.41320.61120.035*
C190.0523 (5)0.4039 (3)0.5700 (2)0.0237 (8)
C200.2198 (5)0.4734 (3)0.5799 (3)0.0270 (8)
H200.31120.43750.54830.032*
C210.1078 (4)0.1919 (3)0.4798 (2)0.0200 (7)
C220.3821 (4)0.1307 (3)0.4780 (2)0.0237 (8)
H220.50910.15300.49880.028*
C230.1403 (4)0.0162 (3)0.3923 (2)0.0176 (7)
C240.0232 (4)0.0702 (3)0.4192 (2)0.0179 (7)
C250.1655 (4)0.0310 (3)0.3887 (2)0.0209 (7)
H250.24460.08940.40470.025*
C260.2359 (4)0.0901 (3)0.3363 (2)0.0200 (7)
C270.1169 (4)0.1752 (3)0.3086 (2)0.0208 (7)
H270.16450.25850.27070.025*
C280.0670 (4)0.1386 (3)0.3358 (2)0.0209 (7)
H280.14520.19680.31620.025*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0237 (2)0.0263 (2)0.0295 (2)0.00205 (15)0.01249 (15)0.01294 (17)
N10.0181 (13)0.0173 (14)0.0246 (17)0.0096 (12)0.0100 (12)0.0127 (13)
N20.0158 (13)0.0171 (14)0.0222 (16)0.0055 (11)0.0069 (11)0.0078 (13)
N30.0127 (12)0.0170 (14)0.0236 (16)0.0032 (11)0.0076 (11)0.0068 (13)
N40.0159 (13)0.0229 (15)0.0244 (17)0.0091 (12)0.0096 (11)0.0148 (14)
C10.0198 (16)0.0165 (16)0.0178 (18)0.0030 (13)0.0068 (13)0.0058 (15)
C20.0245 (17)0.0170 (17)0.023 (2)0.0053 (14)0.0063 (14)0.0095 (16)
C30.0224 (17)0.0168 (17)0.0229 (19)0.0085 (14)0.0046 (14)0.0085 (15)
C40.0146 (15)0.0190 (17)0.0223 (19)0.0058 (13)0.0055 (13)0.0082 (16)
C50.0207 (16)0.0130 (15)0.0144 (18)0.0011 (13)0.0053 (13)0.0037 (14)
C60.0181 (16)0.0149 (16)0.0170 (18)0.0061 (13)0.0058 (13)0.0036 (14)
C70.0145 (15)0.0128 (15)0.0182 (18)0.0010 (13)0.0063 (13)0.0025 (14)
C80.0141 (15)0.0147 (16)0.027 (2)0.0059 (13)0.0073 (13)0.0059 (15)
C90.0158 (15)0.0131 (15)0.0158 (17)0.0030 (13)0.0051 (12)0.0036 (14)
C100.0150 (15)0.0130 (15)0.0163 (18)0.0034 (13)0.0058 (12)0.0034 (14)
C110.0165 (15)0.0152 (16)0.0203 (19)0.0038 (13)0.0078 (13)0.0075 (15)
C120.0137 (15)0.0149 (16)0.0163 (18)0.0029 (13)0.0025 (12)0.0041 (14)
C130.0217 (17)0.0207 (17)0.0217 (19)0.0057 (14)0.0085 (14)0.0120 (16)
C140.0164 (16)0.0224 (18)0.0209 (19)0.0026 (14)0.0082 (13)0.0095 (16)
Br20.0563 (3)0.0275 (2)0.0698 (4)0.0053 (2)0.0215 (3)0.0114 (2)
N50.0242 (16)0.0195 (16)0.0269 (18)0.0083 (14)0.0065 (13)0.0060 (14)
N60.0227 (15)0.0241 (16)0.0220 (17)0.0070 (13)0.0061 (12)0.0084 (14)
N70.0180 (14)0.0264 (16)0.0234 (17)0.0076 (13)0.0052 (12)0.0095 (14)
N80.0166 (14)0.0225 (17)0.0203 (18)0.0056 (14)0.0022 (12)0.0037 (15)
C150.040 (2)0.025 (2)0.025 (2)0.0030 (17)0.0080 (17)0.0102 (18)
C160.061 (3)0.0206 (19)0.024 (2)0.0124 (19)0.0130 (19)0.0071 (18)
C170.047 (2)0.035 (2)0.030 (2)0.015 (2)0.0186 (19)0.011 (2)
C180.038 (2)0.026 (2)0.028 (2)0.0114 (17)0.0147 (17)0.0081 (18)
C190.0319 (19)0.0238 (19)0.019 (2)0.0098 (16)0.0056 (15)0.0098 (17)
C200.036 (2)0.0237 (19)0.026 (2)0.0098 (17)0.0119 (16)0.0119 (18)
C210.0244 (17)0.0224 (18)0.0176 (19)0.0081 (15)0.0091 (14)0.0096 (16)
C220.0206 (17)0.030 (2)0.025 (2)0.0069 (15)0.0076 (14)0.0129 (18)
C230.0187 (16)0.0224 (18)0.0144 (18)0.0057 (14)0.0046 (13)0.0086 (15)
C240.0177 (16)0.0239 (18)0.0180 (18)0.0092 (14)0.0056 (13)0.0121 (16)
C250.0221 (17)0.0228 (18)0.0201 (19)0.0094 (15)0.0079 (14)0.0074 (16)
C260.0229 (17)0.0239 (18)0.0162 (19)0.0067 (15)0.0046 (13)0.0094 (16)
C270.0242 (17)0.0228 (18)0.0160 (18)0.0065 (15)0.0050 (13)0.0067 (15)
C280.0245 (17)0.0270 (19)0.0199 (19)0.0160 (15)0.0120 (14)0.0128 (16)
Geometric parameters (Å, º) top
Br1—C11.899 (3)Br2—C151.900 (4)
N1—C71.365 (4)N5—C211.376 (4)
N1—C51.403 (4)N5—C191.401 (5)
N1—H1N0.93 (4)N5—H5N0.82 (4)
N2—C71.328 (4)N6—C211.319 (4)
N2—C81.354 (4)N6—C221.353 (4)
N3—C81.305 (4)N7—C221.313 (4)
N3—C91.380 (4)N7—C231.372 (4)
N4—C121.400 (4)N8—C261.392 (4)
N4—H4A0.8800N8—H8N10.89 (4)
N4—H4B0.8800N8—H8N20.77 (4)
C1—C61.377 (4)C15—C161.372 (5)
C1—C21.391 (4)C15—C201.381 (5)
C2—C31.390 (4)C16—C171.374 (5)
C2—H20.9500C16—H160.9500
C3—C41.384 (4)C17—C181.383 (5)
C3—H30.9500C17—H170.9500
C4—C51.395 (4)C18—C191.399 (5)
C4—H40.9500C18—H180.9500
C5—C61.403 (4)C19—C201.384 (5)
C6—H60.9500C20—H200.9500
C7—C101.433 (4)C21—C241.431 (5)
C8—H80.9500C22—H220.9500
C9—C101.406 (4)C23—C281.402 (5)
C9—C141.407 (4)C23—C241.412 (4)
C10—C111.412 (4)C24—C251.416 (4)
C11—C121.378 (4)C25—C261.374 (5)
C11—H110.9500C25—H250.9500
C12—C131.414 (4)C26—C271.413 (4)
C13—C141.362 (4)C27—C281.375 (4)
C13—H130.9500C27—H270.9500
C14—H140.9500C28—H280.9500
C7—N1—C5131.2 (2)C21—N5—C19129.5 (3)
C7—N1—H1N114 (2)C21—N5—H5N111 (3)
C5—N1—H1N113 (2)C19—N5—H5N119 (3)
C7—N2—C8115.9 (2)C21—N6—C22116.5 (3)
C8—N3—C9115.2 (3)C22—N7—C23116.0 (3)
C12—N4—H4A120.0C26—N8—H8N1121 (2)
C12—N4—H4B120.0C26—N8—H8N2106 (3)
H4A—N4—H4B120.0H8N1—N8—H8N2117 (4)
C6—C1—C2122.4 (3)C16—C15—C20123.2 (4)
C6—C1—Br1118.8 (2)C16—C15—Br2118.7 (3)
C2—C1—Br1118.8 (2)C20—C15—Br2118.1 (3)
C1—C2—C3117.0 (3)C15—C16—C17118.1 (4)
C1—C2—H2121.5C15—C16—H16121.0
C3—C2—H2121.5C17—C16—H16121.0
C4—C3—C2122.3 (3)C16—C17—C18120.6 (4)
C4—C3—H3118.9C16—C17—H17119.7
C2—C3—H3118.9C18—C17—H17119.7
C3—C4—C5119.5 (3)C17—C18—C19120.5 (4)
C3—C4—H4120.2C17—C18—H18119.7
C5—C4—H4120.2C19—C18—H18119.7
C4—C5—C6119.1 (3)C20—C19—C18119.1 (3)
C4—C5—N1125.6 (3)C20—C19—N5123.6 (3)
C6—C5—N1115.3 (3)C18—C19—N5117.2 (3)
C1—C6—C5119.6 (3)C15—C20—C19118.5 (3)
C1—C6—H6120.2C15—C20—H20120.7
C5—C6—H6120.2C19—C20—H20120.7
N2—C7—N1119.6 (3)N6—C21—N5118.7 (3)
N2—C7—C10121.8 (3)N6—C21—C24122.1 (3)
N1—C7—C10118.6 (2)N5—C21—C24119.1 (3)
N3—C8—N2129.1 (3)N7—C22—N6128.0 (3)
N3—C8—H8115.4N7—C22—H22116.0
N2—C8—H8115.4N6—C22—H22116.0
N3—C9—C10121.7 (3)N7—C23—C28119.3 (3)
N3—C9—C14119.1 (3)N7—C23—C24121.5 (3)
C10—C9—C14119.1 (3)C28—C23—C24119.2 (3)
C9—C10—C11119.4 (3)C23—C24—C25119.2 (3)
C9—C10—C7116.1 (2)C23—C24—C21115.8 (3)
C11—C10—C7124.6 (3)C25—C24—C21125.0 (3)
C12—C11—C10120.6 (3)C26—C25—C24121.0 (3)
C12—C11—H11119.7C26—C25—H25119.5
C10—C11—H11119.7C24—C25—H25119.5
C11—C12—N4121.3 (3)C25—C26—N8121.1 (3)
C11—C12—C13119.4 (3)C25—C26—C27119.2 (3)
N4—C12—C13119.2 (3)N8—C26—C27119.6 (3)
C14—C13—C12120.7 (3)C28—C27—C26120.7 (3)
C14—C13—H13119.7C28—C27—H27119.7
C12—C13—H13119.7C26—C27—H27119.7
C13—C14—C9120.8 (3)C27—C28—C23120.7 (3)
C13—C14—H14119.6C27—C28—H28119.7
C9—C14—H14119.6C23—C28—H28119.7
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···N4i0.93 (4)2.28 (4)3.069 (4)142 (3)
N4—H4A···N3ii0.882.333.137 (4)153
N4—H4B···N8iii0.882.393.178 (4)149
N8—H8N1···Br1iv0.89 (4)2.88 (4)3.739 (4)163 (3)
N8—H8N2···N7ii0.77 (4)2.31 (4)3.053 (4)162 (4)
Symmetry codes: (i) x+1, y+2, z; (ii) x1, y, z; (iii) x, y+1, z; (iv) x1, y1, z.

Experimental details

Crystal data
Chemical formulaC14H11BrN4
Mr315.18
Crystal system, space groupTriclinic, P1
Temperature (K)113
a, b, c (Å)7.5579 (15), 11.743 (2), 15.554 (3)
α, β, γ (°)110.24 (3), 96.79 (3), 96.75 (3)
V3)1267.4 (4)
Z4
Radiation typeMo Kα
µ (mm1)3.23
Crystal size (mm)0.36 × 0.26 × 0.23
Data collection
DiffractometerRigaku Saturn CCD area-detector
Absorption correctionMulti-scan
[SADABS (Sheldrick, 1996) using a modified Dwiggins (1975) procedure]
Tmin, Tmax0.389, 0.523
No. of measured, independent and
observed [I > 2σ(I)] reflections
10616, 5931, 3735
Rint0.034
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.110, 1.02
No. of reflections5931
No. of parameters360
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.42, 1.54

Computer programs: CrystalClear (Rigaku/MSC, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···N4i0.93 (4)2.28 (4)3.069 (4)142 (3)
N4—H4A···N3ii0.882.333.137 (4)152.6
N4—H4B···N8iii0.882.393.178 (4)149.4
N8—H8N1···Br1iv0.89 (4)2.88 (4)3.739 (4)163 (3)
N8—H8N2···N7ii0.77 (4)2.31 (4)3.053 (4)162 (4)
Symmetry codes: (i) x+1, y+2, z; (ii) x1, y, z; (iii) x, y+1, z; (iv) x1, y1, z.
 

Acknowledgements

We thank the Analytical and Testing Center of Sichuan University for the X-ray measurements.

References

First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationDwiggins, C. W. (1975). Acta Cryst. A31, 146–148.  CrossRef IUCr Journals Web of Science Google Scholar
First citationFry, D. W., Krer, A. J. & Denny, W. (1994). Science, 265, 1093–1108.  CrossRef CAS PubMed Web of Science Google Scholar
First citationFry, D. W., Krer, A. J. & Denny, W. (2005). Russ. Chem. Bull. 54, 864–904.  Google Scholar
First citationRigaku/MSC (2005). CrystalClear and CrystalStructure Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göottingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds