metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[N,N′-Bis(3-meth­­oxy-2-oxido­benzyl­­idene)ethane-1,2-diaminium-κ4O,O′,O′′,O′′′]tris­­(nitrato-κ2O,O′)erbium(III)

aSchool of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People's Republic of China
*Correspondence e-mail: yanpf@vip.sina.com

(Received 1 December 2009; accepted 23 December 2009; online 9 January 2010)

In the mononuclear salen-type complex, [Er(NO3)3(C18H20N2O4)], the ErIII ion is ten-coordinated in a distorted hexa­deca­hedral geometry by six O atoms of three nitrate anions and four O atoms of the salen-like ligand. Inter­molecular N—H⋯O hydrogen bonds occur. The crystal structure is stabilized by inter­molecular C—H⋯O hydrogen bonds.

Related literature

For similar lanthanide complexes of the same salen-like ligand, see: Gao et al. (2008[Gao, T., Yan, P. F., Li, G. M., Hou, G. F. & Gao, J. S. (2008). Inorg. Chim. Acta, 361, 2051-2058.], 2009[Gao, T., Li, G.-M., Gao, P., Yan, P.-F. & Hou, G.-F. (2009). Acta Cryst. E65, m1585.]).

[Scheme 1]

Experimental

Crystal data
  • [Er(NO3)3(C18H20N2O4)]

  • Mr = 681.65

  • Monoclinic, P 21 /n

  • a = 14.098 (3) Å

  • b = 11.865 (2) Å

  • c = 14.571 (3) Å

  • β = 103.98 (3)°

  • V = 2365.1 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.63 mm−1

  • T = 291 K

  • 0.37 × 0.36 × 0.34 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.344, Tmax = 0.368

  • 21792 measured reflections

  • 5358 independent reflections

  • 4748 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.022

  • wR(F2) = 0.049

  • S = 1.04

  • 5358 reflections

  • 344 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.97 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O3 0.85 (1) 1.89 (3) 2.574 (3) 137 (3)
N1—H1⋯O1 0.85 (1) 1.84 (2) 2.567 (3) 143 (3)
C7—H7⋯O5i 0.93 2.33 3.073 (3) 137
C9—H9A⋯O12ii 0.97 2.50 3.241 (3) 133
C10—H10⋯O9iii 0.93 2.57 3.395 (4) 148
C14—H14⋯O12iv 0.93 2.50 3.341 (4) 150
Symmetry codes: (i) -x+2, -y+2, -z+1; (ii) -x+2, -y+1, -z+1; (iii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iv) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalClear (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In continuation of our studies of salen-type lanthanide complexes (Gao et al., 2008, 2009), we present here the crystal structure of the title compound. As shown in Fig. 1, the ten-coordinate ErIII ion adopts a hexadecahedral geometry provided by the O atoms of three bidentate nitrate anions and by one ligand that utilizes two hydroxyl and two methoxy oxygen atoms, while the protonated nitrogen atoms remain uncoordinated. This compound is isostructural with the corresponding Nd, Eu, Tb and Dy complexes (Gao et al., 2008, 2009). The Er—O bond distances range from 2.2462 (19) to 2.682 (2) Å, with the shorter bonds involving the O1 and O3 deprotonated phenol oxygen atoms. The crystal structure is stabilized by intra- and intermolecular N—H···O and C—H···O hydrogen bonds (Table 1).

Related literature top

For similar lanthanide complexes of the same salen-like ligand, see: Gao et al. (2008, 2009).

Experimental top

The title complex was obtained by the treatment of erbium (III) nitrate hexahydrate (0.114 g, 0.25 mmol) with the salen-type ligand (0.083 g, 0.25 mmol) in acetonitrile/methanol (10 ml/10 ml). The mixture was stirred for 3 h. The reaction mixture was filtered; diethyl ether was allowed to diffuse slowly into the solution of the filtrate. Single crystals were obtained after several days. Analysis calculated for for C18H20Er1N5O13: C 31.72, H 2.96, N 10.27%; found: C 32.08, H 3.00, N 10.38%.

Refinement top

H atoms bound to C atoms were placed in calculated positions and treated as riding on their parent atoms, with C—H = 0.93 Å (aromatic C), C—H = 0.97Å (methylene C), and with Uiso(H) = 1.2Ueq(C) or C—H = 0.96 Å (methyl C) and with Uiso(H) = 1.5Ueq(C). The N-bound H atoms were initially located in a difference Fourier map and they were refined with the N—H bond distance restrained to 0.85 Å.

Structure description top

In continuation of our studies of salen-type lanthanide complexes (Gao et al., 2008, 2009), we present here the crystal structure of the title compound. As shown in Fig. 1, the ten-coordinate ErIII ion adopts a hexadecahedral geometry provided by the O atoms of three bidentate nitrate anions and by one ligand that utilizes two hydroxyl and two methoxy oxygen atoms, while the protonated nitrogen atoms remain uncoordinated. This compound is isostructural with the corresponding Nd, Eu, Tb and Dy complexes (Gao et al., 2008, 2009). The Er—O bond distances range from 2.2462 (19) to 2.682 (2) Å, with the shorter bonds involving the O1 and O3 deprotonated phenol oxygen atoms. The crystal structure is stabilized by intra- and intermolecular N—H···O and C—H···O hydrogen bonds (Table 1).

For similar lanthanide complexes of the same salen-like ligand, see: Gao et al. (2008, 2009).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalClear (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the the title compound, showing 30% probability displacement ellipsoids.
[N,N'-Bis(3-methoxy-2-oxidobenzylidene)ethane-1,2-diaminium- κ4O,O',O'',O''']tris(nitrato- κ2O,O')erbium(III) top
Crystal data top
[Er(NO3)3(C18H20N2O4)]F(000) = 1340
Mr = 681.65Dx = 1.914 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 19557 reflections
a = 14.098 (3) Åθ = 6.7–55.0°
b = 11.865 (2) ŵ = 3.63 mm1
c = 14.571 (3) ÅT = 291 K
β = 103.98 (3)°Block, brown
V = 2365.1 (8) Å30.37 × 0.36 × 0.34 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID
diffractometer
5358 independent reflections
Radiation source: fine-focus sealed tube4748 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
Detector resolution: 10.000 pixels mm-1θmax = 27.5°, θmin = 3.4°
ω scansh = 1818
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1513
Tmin = 0.344, Tmax = 0.368l = 1818
21792 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.022Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.049H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0212P)2 + 1.495P]
where P = (Fo2 + 2Fc2)/3
5358 reflections(Δ/σ)max = 0.002
344 parametersΔρmax = 0.97 e Å3
2 restraintsΔρmin = 0.32 e Å3
Crystal data top
[Er(NO3)3(C18H20N2O4)]V = 2365.1 (8) Å3
Mr = 681.65Z = 4
Monoclinic, P21/nMo Kα radiation
a = 14.098 (3) ŵ = 3.63 mm1
b = 11.865 (2) ÅT = 291 K
c = 14.571 (3) Å0.37 × 0.36 × 0.34 mm
β = 103.98 (3)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
5358 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
4748 reflections with I > 2σ(I)
Tmin = 0.344, Tmax = 0.368Rint = 0.024
21792 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0222 restraints
wR(F2) = 0.049H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.97 e Å3
5358 reflectionsΔρmin = 0.32 e Å3
344 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C11.11705 (18)0.8605 (2)0.45224 (18)0.0382 (5)
C21.20341 (19)0.8854 (2)0.42275 (19)0.0407 (5)
C31.28633 (19)0.9208 (2)0.4865 (2)0.0473 (6)
H31.34340.93340.46670.057*
C41.2851 (2)0.9379 (2)0.5812 (2)0.0514 (7)
H41.34160.96180.62410.062*
C51.2025 (2)0.9199 (2)0.6108 (2)0.0482 (6)
H51.20210.93380.67360.058*
C61.11664 (18)0.8802 (2)0.54721 (17)0.0398 (5)
C71.03136 (19)0.8571 (2)0.57937 (18)0.0419 (6)
H71.03400.86610.64330.050*
C80.8585 (2)0.8013 (2)0.5501 (2)0.0476 (6)
H8A0.81900.86920.54240.057*
H8B0.87210.77910.61610.057*
C90.8026 (2)0.7084 (2)0.4892 (2)0.0463 (6)
H9A0.83840.63810.50290.056*
H9B0.73950.69850.50380.056*
C100.71313 (18)0.7852 (2)0.33653 (19)0.0405 (6)
H100.65850.79630.36070.049*
C110.70956 (17)0.8234 (2)0.24387 (18)0.0378 (5)
C120.62437 (19)0.8736 (2)0.1881 (2)0.0487 (6)
H120.56900.87990.21180.058*
C130.6223 (2)0.9123 (3)0.1009 (2)0.0562 (8)
H130.56520.94420.06470.067*
C140.7057 (2)0.9052 (2)0.0634 (2)0.0509 (7)
H140.70330.93190.00290.061*
C150.78977 (18)0.8588 (2)0.11660 (18)0.0393 (5)
C160.79432 (17)0.8157 (2)0.20754 (18)0.0353 (5)
C170.8799 (3)0.8857 (3)0.0015 (2)0.0660 (9)
H150.82870.84950.04750.099*
H160.94200.86690.01350.099*
H170.87080.96590.00560.099*
C181.2751 (3)0.8925 (4)0.2892 (3)0.0813 (12)
H181.29670.96850.30430.122*
H191.25670.88350.22170.122*
H201.32700.84110.31580.122*
Er11.027172 (8)0.791612 (9)0.235283 (7)0.03487 (4)
H10.954 (2)0.824 (3)0.4667 (10)0.055 (9)*
H20.8358 (18)0.723 (3)0.364 (2)0.065 (10)*
N10.95017 (17)0.8241 (2)0.52382 (16)0.0431 (5)
N20.78847 (16)0.7357 (2)0.38932 (16)0.0410 (5)
N31.0155 (2)1.0328 (2)0.1988 (2)0.0662 (7)
N41.07427 (19)0.6872 (2)0.07369 (18)0.0498 (6)
N51.08572 (16)0.57223 (19)0.31635 (15)0.0422 (5)
O11.04131 (13)0.82028 (18)0.39117 (13)0.0500 (5)
O21.19230 (13)0.86931 (18)0.32755 (13)0.0500 (5)
O30.87510 (12)0.77016 (15)0.25531 (12)0.0393 (4)
O40.87710 (14)0.84819 (17)0.09111 (13)0.0485 (4)
O50.97238 (19)0.9849 (2)0.25442 (16)0.0729 (7)
O61.0101 (3)1.1337 (2)0.1861 (3)0.1093 (11)
O71.06391 (17)0.96856 (19)0.15897 (16)0.0613 (6)
O81.12293 (19)0.7666 (2)0.11639 (19)0.0714 (7)
O91.0911 (2)0.6461 (2)0.00302 (18)0.0794 (7)
O101.00528 (15)0.6536 (2)0.10706 (16)0.0615 (6)
O111.14616 (13)0.64176 (18)0.29752 (16)0.0543 (5)
O121.11095 (15)0.48027 (17)0.35168 (15)0.0566 (5)
O130.99850 (14)0.60343 (17)0.29684 (16)0.0547 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0425 (13)0.0366 (14)0.0352 (13)0.0009 (10)0.0089 (10)0.0014 (10)
C20.0466 (14)0.0346 (13)0.0415 (14)0.0049 (10)0.0119 (10)0.0005 (11)
C30.0432 (14)0.0371 (14)0.0607 (18)0.0041 (11)0.0111 (12)0.0004 (13)
C40.0519 (16)0.0423 (16)0.0522 (17)0.0049 (12)0.0025 (12)0.0064 (13)
C50.0614 (17)0.0391 (15)0.0390 (15)0.0005 (12)0.0023 (12)0.0049 (11)
C60.0511 (14)0.0329 (13)0.0347 (13)0.0027 (10)0.0092 (10)0.0002 (10)
C70.0570 (16)0.0376 (14)0.0321 (13)0.0075 (11)0.0127 (11)0.0027 (10)
C80.0512 (15)0.0602 (18)0.0377 (14)0.0090 (12)0.0229 (11)0.0051 (12)
C90.0495 (15)0.0522 (16)0.0425 (15)0.0046 (11)0.0217 (11)0.0143 (12)
C100.0382 (13)0.0407 (14)0.0461 (15)0.0002 (10)0.0170 (10)0.0042 (11)
C110.0364 (12)0.0369 (13)0.0406 (14)0.0045 (9)0.0102 (10)0.0024 (10)
C120.0402 (14)0.0496 (16)0.0546 (17)0.0106 (11)0.0084 (11)0.0028 (13)
C130.0496 (16)0.0533 (18)0.0577 (19)0.0179 (13)0.0027 (13)0.0056 (14)
C140.0638 (18)0.0448 (16)0.0390 (15)0.0085 (12)0.0022 (12)0.0072 (12)
C150.0460 (14)0.0371 (14)0.0347 (13)0.0039 (10)0.0094 (10)0.0018 (10)
C160.0378 (12)0.0328 (13)0.0353 (13)0.0031 (9)0.0091 (9)0.0009 (9)
C170.081 (2)0.084 (2)0.0378 (16)0.0008 (18)0.0249 (15)0.0118 (16)
C180.068 (2)0.121 (3)0.066 (2)0.041 (2)0.0381 (18)0.012 (2)
Er10.03856 (7)0.04067 (7)0.02990 (6)0.00224 (4)0.01707 (4)0.00026 (4)
N10.0496 (13)0.0531 (14)0.0309 (12)0.0030 (10)0.0181 (9)0.0011 (10)
N20.0410 (12)0.0482 (13)0.0382 (12)0.0027 (9)0.0183 (9)0.0038 (9)
N30.107 (2)0.0498 (17)0.0492 (15)0.0087 (14)0.0328 (15)0.0004 (13)
N40.0628 (15)0.0502 (15)0.0439 (13)0.0119 (11)0.0270 (11)0.0006 (11)
N50.0452 (12)0.0476 (13)0.0352 (11)0.0032 (9)0.0124 (9)0.0028 (9)
O10.0430 (10)0.0761 (14)0.0332 (10)0.0144 (9)0.0136 (8)0.0086 (9)
O20.0476 (10)0.0648 (13)0.0430 (11)0.0166 (9)0.0215 (8)0.0047 (9)
O30.0348 (9)0.0484 (11)0.0360 (9)0.0081 (7)0.0109 (7)0.0099 (7)
O40.0574 (11)0.0581 (12)0.0335 (10)0.0032 (9)0.0179 (8)0.0075 (8)
O50.127 (2)0.0497 (14)0.0611 (15)0.0098 (12)0.0588 (15)0.0098 (10)
O60.192 (3)0.0431 (16)0.116 (3)0.0054 (17)0.082 (2)0.0152 (16)
O70.0805 (15)0.0568 (13)0.0560 (13)0.0025 (11)0.0344 (11)0.0099 (11)
O80.0880 (17)0.0701 (16)0.0739 (17)0.0253 (13)0.0539 (14)0.0199 (13)
O90.118 (2)0.0705 (17)0.0685 (16)0.0085 (14)0.0590 (15)0.0145 (13)
O100.0520 (12)0.0793 (16)0.0589 (14)0.0083 (10)0.0245 (10)0.0197 (11)
O110.0397 (10)0.0558 (13)0.0686 (14)0.0013 (8)0.0151 (9)0.0030 (10)
O120.0679 (13)0.0489 (12)0.0524 (12)0.0159 (9)0.0132 (9)0.0122 (10)
O130.0414 (10)0.0518 (12)0.0753 (14)0.0058 (8)0.0225 (9)0.0181 (10)
Geometric parameters (Å, º) top
C1—O11.304 (3)C15—C161.407 (3)
C1—C61.405 (3)C16—O31.300 (3)
C1—C21.417 (3)C17—O41.430 (3)
C2—C31.371 (4)C17—H150.9600
C2—O21.371 (3)C17—H160.9600
C3—C41.399 (4)C17—H170.9600
C3—H30.9300C18—O21.437 (3)
C4—C51.354 (4)C18—H180.9600
C4—H40.9300C18—H190.9600
C5—C61.416 (4)C18—H200.9600
C5—H50.9300Er1—O32.2469 (17)
C6—C71.419 (4)Er1—O12.2576 (19)
C7—N11.293 (3)Er1—O102.447 (2)
C7—H70.9300Er1—O52.458 (2)
C8—N11.460 (3)Er1—O82.458 (2)
C8—C91.512 (4)Er1—O112.462 (2)
C8—H8A0.9700Er1—O132.476 (2)
C8—H8B0.9700Er1—O72.488 (2)
C9—N21.457 (3)Er1—O22.562 (2)
C9—H9A0.9700Er1—O42.682 (2)
C9—H9B0.9700Er1—N42.877 (2)
C10—N21.292 (3)Er1—N52.895 (2)
C10—C111.413 (4)N1—H10.846 (10)
C10—H100.9300N2—H20.847 (10)
C11—C121.409 (4)N3—O61.211 (4)
C11—C161.422 (3)N3—O71.255 (3)
C12—C131.344 (4)N3—O51.260 (3)
C12—H120.9300N4—O91.213 (3)
C13—C141.413 (4)N4—O81.241 (3)
C13—H130.9300N4—O101.253 (3)
C14—C151.365 (4)N5—O121.222 (3)
C14—H140.9300N5—O131.249 (3)
C15—O41.375 (3)N5—O111.263 (3)
O1—C1—C6122.4 (2)O8—Er1—O13108.19 (8)
O1—C1—C2119.4 (2)O11—Er1—O1351.07 (6)
C6—C1—C2118.2 (2)O3—Er1—O7117.50 (7)
C3—C2—O2126.7 (2)O1—Er1—O7110.20 (8)
C3—C2—C1120.9 (2)O10—Er1—O7103.00 (8)
O2—C2—C1112.4 (2)O5—Er1—O750.82 (7)
C2—C3—C4120.1 (3)O8—Er1—O765.02 (8)
C2—C3—H3120.0O11—Er1—O7125.25 (7)
C4—C3—H3120.0O13—Er1—O7173.13 (7)
C5—C4—C3120.6 (3)O3—Er1—O2138.34 (6)
C5—C4—H4119.7O1—Er1—O264.51 (6)
C3—C4—H4119.7O10—Er1—O2124.92 (7)
C4—C5—C6120.6 (3)O5—Er1—O282.83 (8)
C4—C5—H5119.7O8—Er1—O280.16 (8)
C6—C5—H5119.7O11—Er1—O267.34 (7)
C1—C6—C5119.6 (2)O13—Er1—O2109.97 (7)
C1—C6—C7119.9 (2)O7—Er1—O270.74 (7)
C5—C6—C7120.4 (2)O3—Er1—O462.17 (6)
N1—C7—C6123.0 (2)O1—Er1—O4127.71 (7)
N1—C7—H7118.5O10—Er1—O468.86 (7)
C6—C7—H7118.5O5—Er1—O469.22 (8)
N1—C8—C9110.5 (2)O8—Er1—O486.66 (8)
N1—C8—H8A109.6O11—Er1—O4143.86 (7)
C9—C8—H8A109.6O13—Er1—O4110.04 (7)
N1—C8—H8B109.6O7—Er1—O469.43 (7)
C9—C8—H8B109.6O2—Er1—O4139.98 (7)
H8A—C8—H8B108.1O3—Er1—N4118.27 (8)
N2—C9—C8110.5 (2)O1—Er1—N4155.06 (7)
N2—C9—H9A109.5O10—Er1—N425.63 (7)
C8—C9—H9A109.5O5—Er1—N4129.48 (7)
N2—C9—H9B109.5O8—Er1—N425.37 (7)
C8—C9—H9B109.5O11—Er1—N473.69 (7)
H9A—C9—H9B108.1O13—Er1—N489.91 (7)
N2—C10—C11123.3 (2)O7—Er1—N483.31 (7)
N2—C10—H10118.4O2—Er1—N4102.96 (7)
C11—C10—H10118.4O4—Er1—N476.17 (7)
C12—C11—C10121.0 (2)O3—Er1—N591.84 (6)
C12—C11—C16119.2 (2)O1—Er1—N577.16 (7)
C10—C11—C16119.7 (2)O10—Er1—N571.38 (8)
C13—C12—C11120.7 (3)O5—Er1—N5149.24 (7)
C13—C12—H12119.7O8—Er1—N591.62 (8)
C11—C12—H12119.7O11—Er1—N525.67 (6)
C12—C13—C14121.0 (2)O13—Er1—N525.39 (6)
C12—C13—H13119.5O7—Er1—N5150.63 (7)
C14—C13—H13119.5O2—Er1—N588.63 (7)
C15—C14—C13119.6 (3)O4—Er1—N5129.63 (6)
C15—C14—H14120.2N4—Er1—N581.22 (7)
C13—C14—H14120.2C7—N1—C8126.7 (2)
C14—C15—O4126.5 (2)C7—N1—H1111 (2)
C14—C15—C16121.1 (2)C8—N1—H1122 (2)
O4—C15—C16112.4 (2)C10—N2—C9126.2 (2)
O3—C16—C15119.3 (2)C10—N2—H2116 (2)
O3—C16—C11122.2 (2)C9—N2—H2117 (2)
C15—C16—C11118.4 (2)O6—N3—O7123.4 (3)
O4—C17—H15109.5O6—N3—O5121.5 (3)
O4—C17—H16109.5O7—N3—O5115.1 (3)
H15—C17—H16109.5O6—N3—Er1178.1 (2)
O4—C17—H17109.5O7—N3—Er158.24 (15)
H15—C17—H17109.5O5—N3—Er156.87 (16)
H16—C17—H17109.5O9—N4—O8122.3 (3)
O2—C18—H18109.5O9—N4—O10122.0 (3)
O2—C18—H19109.5O8—N4—O10115.7 (2)
H18—C18—H19109.5O9—N4—Er1177.1 (2)
O2—C18—H20109.5O8—N4—Er158.09 (13)
H18—C18—H20109.5O10—N4—Er157.67 (14)
H19—C18—H20109.5O12—N5—O13122.0 (2)
O3—Er1—O175.02 (7)O12—N5—O11122.1 (2)
O3—Er1—O1094.30 (7)O13—N5—O11115.8 (2)
O1—Er1—O10146.42 (8)O12—N5—Er1179.17 (19)
O3—Er1—O575.82 (7)O13—N5—Er158.18 (13)
O1—Er1—O572.48 (8)O11—N5—Er157.65 (13)
O10—Er1—O5136.56 (9)C1—O1—Er1126.89 (16)
O3—Er1—O8141.41 (8)C2—O2—C18117.5 (2)
O1—Er1—O8142.88 (8)C2—O2—Er1116.64 (14)
O10—Er1—O851.00 (7)C18—O2—Er1125.79 (19)
O5—Er1—O8115.70 (8)C16—O3—Er1128.54 (15)
O3—Er1—O11117.19 (6)C15—O4—C17117.2 (2)
O1—Er1—O1181.46 (8)C15—O4—Er1113.57 (14)
O10—Er1—O1175.35 (8)C17—O4—Er1128.36 (18)
O5—Er1—O11146.82 (8)N3—O5—Er197.71 (18)
O8—Er1—O1174.41 (9)N3—O7—Er196.36 (16)
O3—Er1—O1366.82 (6)N4—O8—Er196.54 (16)
O1—Er1—O1375.74 (8)N4—O10—Er196.69 (17)
O10—Er1—O1370.83 (8)N5—O11—Er196.68 (14)
O5—Er1—O13135.84 (7)N5—O13—Er196.42 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O30.85 (1)1.89 (3)2.574 (3)137 (3)
N1—H1···O10.85 (1)1.84 (2)2.567 (3)143 (3)
C7—H7···O5i0.932.333.073 (3)137
C9—H9A···O12ii0.972.503.241 (3)133
C10—H10···O9iii0.932.573.395 (4)148
C14—H14···O12iv0.932.503.341 (4)150
Symmetry codes: (i) x+2, y+2, z+1; (ii) x+2, y+1, z+1; (iii) x1/2, y+3/2, z+1/2; (iv) x1/2, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formula[Er(NO3)3(C18H20N2O4)]
Mr681.65
Crystal system, space groupMonoclinic, P21/n
Temperature (K)291
a, b, c (Å)14.098 (3), 11.865 (2), 14.571 (3)
β (°) 103.98 (3)
V3)2365.1 (8)
Z4
Radiation typeMo Kα
µ (mm1)3.63
Crystal size (mm)0.37 × 0.36 × 0.34
Data collection
DiffractometerRigaku R-AXIS RAPID
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.344, 0.368
No. of measured, independent and
observed [I > 2σ(I)] reflections
21792, 5358, 4748
Rint0.024
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.022, 0.049, 1.04
No. of reflections5358
No. of parameters344
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.97, 0.32

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalClear (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O30.847 (10)1.89 (3)2.574 (3)137 (3)
N1—H1···O10.846 (10)1.84 (2)2.567 (3)143 (3)
C7—H7···O5i0.932.333.073 (3)136.9
C9—H9A···O12ii0.972.503.241 (3)133.2
C10—H10···O9iii0.932.573.395 (4)147.5
C14—H14···O12iv0.932.503.341 (4)150.4
Symmetry codes: (i) x+2, y+2, z+1; (ii) x+2, y+1, z+1; (iii) x1/2, y+3/2, z+1/2; (iv) x1/2, y+3/2, z1/2.
 

Acknowledgements

The authors gratefully acknowledge financial support from the National Natural Science Foundation of China (Nos. 20672032 and 20872030), the Key Laboratory of Heilongjiang Province and the Education Department of Heilongjiang Province (Nos. ZJG0504, JC200605, 1152GZD02, GZ08A401, 11531284, 2006FRFLXG031 and 2007RFQXG096) and Heilongjiang University.

References

First citationGao, T., Li, G.-M., Gao, P., Yan, P.-F. & Hou, G.-F. (2009). Acta Cryst. E65, m1585.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGao, T., Yan, P. F., Li, G. M., Hou, G. F. & Gao, J. S. (2008). Inorg. Chim. Acta, 361, 2051–2058.  Web of Science CSD CrossRef CAS Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds