organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

24-Methyl­ene­cyclo­artanone

aDepartment of Mathematics and Physics, Shanghai University of Electric Power, Shanghai 200090, People's Republic of China, and bDepartment of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai 200003, People's Republic of China
*Correspondence e-mail: wuzhijun999@sina.com

(Received 4 December 2009; accepted 22 December 2009; online 9 January 2010)

The title compound, C31H50O, a tetra­cyclic triterpene, was isolated from Ainsliaea henryi. The mol­ecule contains a three-membered ring, a five-membered ring, which exhibits an envelope conformation, and three six-membered rings, which adopt chair conformations.

Related literature

The title compound was first isolated from rice bran oil, see: Ohta & Shimizu (1958[Ohta, G. & Shimizu, M. (1958). Chem. Pharm. Bull. 3, 325-326.]). For its relative stereochemistry, see: Alves et al. (2000[Alves, J. S., De Castro, J. C. M., Freire, M. O., Leitao Da-Cunha, E. V., Barbosa-Filho, J. M. & De Silva, M. S. (2000). Magn. Reson. Chem. 38, 201-206.]); Ohta & Shimizu (1958[Ohta, G. & Shimizu, M. (1958). Chem. Pharm. Bull. 3, 325-326.]). For general background the title compound and the plant Ainsliaea henryi, see: Anjaneyulu et al. (1999[Anjaneyulu, V., Satyanarayana, P., Viswanadham, K. N., Jyothi, V. G., Rao, K. N. & Radhika, P. (1999). Phytochemistry, 50, 1229-1236.]); Boehme et al. (1997[Boehme, F., Schmidt, J., Van Sung, T. & Adam, G. (1997). Phytochemistry, 45, 1041-1044.]); Chinese Materia Medica (2007[Chinese Materia Medica (2007). Chinese Materia Medica, Vol. 21, p. 643. Shanghai Science Press.]); Ei-Dib et al. (2004[Ei-Dib, R., Kaloga, M., Mahmoud, I., Soliman, H. S. H., Moharram, F. & Kolodzej, H. (2004). Phytochemistry, 65, 1153-1157.]); Fiechi et al. (1966[Fiechi, A., Capella, P., Fedeli, E., Lanzani, A. & Jacini, G. (1966). Ric.Sci. 36, 1316-1320.]); Gabrera & Seldes (1995[Gabrera, G. M. & Seldes, A. (1995). J. Nat. Prod. 58, 1920-1924.]); Jayasinghe et al. (2001[Jayasinghe, U. L. B., Vithana, H. S. K., Wannigama, G. P. & Fujimoto, Y. (2001). Fitoterapia, 72, 594-595.]); Kojima et al. (1985[Kojima, Y., Djamal, S. & Kayama, T. (1985). Mokuzai Gakkaishi, 31, 312-315.]); Kolhe et al. (1982[Kolhe, J. N., Bhaskar, A. & Bringi, N. V. (1982). Lipids, 17, 166-168.]); Lao et al. (1984[Lao, A., Fujimoto, Y. & Tatsuno, T. (1984). Chem. Pharm. Bull. 32, 723-727.]); Lawrie et al. (1970[Lawrie, W., Mclean, J. & Olubajo, O. O. (1970). Phytochemistry, 9, 1669-11670.]); Li & Xue (1986[Li, L. N. & Xue, H. (1986). Planta Med. 6, 492-493.]); Manoharan et al. (2005[Manoharan, K. P., Benny, T. K. H. & Yang, D. (2005). Phytochemistry, 66, 2304-2308.]); Ohtsu et al. (1998[Ohtsu, H., Tanaka, R., Michida, T., Shingu, T. & Matsunaga, S. (1998). Phytochemistry, 49, 1761-1768.]); Schulte et al. (1979[Schulte, K. E., Ruecker, G. & Matern, H. U. (1979). Planta Med. 35, 76-83.]); Tachi et al. (1971[Tachi, Y., Taga, S., Kamano, Y. & Manki, K. (1971). Chem. Pharm. Bull, 19, 2193-2194.]); Tandon & Rastogi (1976[Tandon, S. & Rastogi, R. P. (1976). Planta Med. 29, 190-192.]).

[Scheme 1]

Experimental

Crystal data
  • C31H50O

  • Mr = 438.71

  • Monoclinic, P 21

  • a = 9.918 (5) Å

  • b = 10.212 (6) Å

  • c = 14.077 (7) Å

  • β = 108.542 (6)°

  • V = 1351.7 (12) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.06 mm−1

  • T = 293 K

  • 0.40 × 0.25 × 0.15 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.976, Tmax = 0.991

  • 6145 measured reflections

  • 4360 independent reflections

  • 2901 reflections with I > 2σ(I)

  • Rint = 0.046

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.133

  • S = 0.91

  • 4360 reflections

  • 296 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.20 e Å−3

Data collection: SMART (Bruker, 2005[Bruker (2005). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Ainsliaea henryi Diels is mainly distributed in south-west of China. The whole plant of Ainsliaea henryi has been used in Chinese folk medicine to treat cough, asthma and lumbago (Editorial committee of Chinese Materia Medica, 2007). The chemical constituents of this plant have not all been reported previously. Our chemical investigation of this plant for bioactive components resulted in the isolation of the title compound (I), which was previously first reported isolating from Rice Bran Oil (Ohta & Shimizu, 1958).

The molecular structure is shown in Fig.1. All the bond lengths and angles are within normal ranges. The molecule contains three six-membered rings (A ring atoms C1—C5/C10; B ring atoms C5—C10; C ring atoms C8/C9/C11—C14), a five-member ring (D ring atoms C13—C17), and a three-member ring (E ring C9—C10/C19). Ring A, B and C adopt chair conformations, while ring D exhibits an envelope conformation.

Related literature top

The title compound was first isolated from rice bran oil, see: Ohta & Shimizu (1958). For its relative stereochemistry, see: Alves et al. (2000); Ohta & Shimizu (1958). For general background, see: Anjaneyulu et al. (1999); Boehme et al. (1997); Chinese Materia Medica (2007); Ei-Dib et al. (2004); Fiechi et al. (1966); Gabrera & Seldes (1995); Jayasinghe et al. (2001); Kojima et al. (1985); Kolhe et al. (1982); Lao et al. (1984); Lawrie et al. (1970); Li & Xue (1986); Manoharan et al. (2005); Ohtsu et al. (1998); Schulte et al. (1979); Tachi et al. (1971); Tandon & Rastogi (1976).

Experimental top

The dry powders (5 kg) of the whole plant of Ainsliaea henryi were refluxed for 1 h with 95% ethanol (50L) three times. After removal of the ethanol under reduced pressure, the extract was suspended in water and then partitioned with petroleum ether, chloroform, ethyl acetate and n-butanol. The petroleum ether soluble fraction (100 g) was subjected to silica gel column chromatography using gradient elution (petroleum ether/acetone, 30:1 to 10:1, v/v). 24-methylenecycloartanone was obtained from the fraction eluted by petroleum ether/acetone (20:1). Single crystals suitable for X-ray diffraction analysis were obtained by slow evaporation from acetone after two weeks at room temperature.

Refinement top

The H atoms were located in difference maps and freely refined. As a consequence the absolute configuration of the compound is unknown. The relative stereochemistry of the title compound is known from literature (Alves et al.(2000); Ohta & Shimizu (1958)). Its structure was elucidated by chemical methods and by 1H, 13C, 2D NMR spectroscopy.

Structure description top

Ainsliaea henryi Diels is mainly distributed in south-west of China. The whole plant of Ainsliaea henryi has been used in Chinese folk medicine to treat cough, asthma and lumbago (Editorial committee of Chinese Materia Medica, 2007). The chemical constituents of this plant have not all been reported previously. Our chemical investigation of this plant for bioactive components resulted in the isolation of the title compound (I), which was previously first reported isolating from Rice Bran Oil (Ohta & Shimizu, 1958).

The molecular structure is shown in Fig.1. All the bond lengths and angles are within normal ranges. The molecule contains three six-membered rings (A ring atoms C1—C5/C10; B ring atoms C5—C10; C ring atoms C8/C9/C11—C14), a five-member ring (D ring atoms C13—C17), and a three-member ring (E ring C9—C10/C19). Ring A, B and C adopt chair conformations, while ring D exhibits an envelope conformation.

The title compound was first isolated from rice bran oil, see: Ohta & Shimizu (1958). For its relative stereochemistry, see: Alves et al. (2000); Ohta & Shimizu (1958). For general background, see: Anjaneyulu et al. (1999); Boehme et al. (1997); Chinese Materia Medica (2007); Ei-Dib et al. (2004); Fiechi et al. (1966); Gabrera & Seldes (1995); Jayasinghe et al. (2001); Kojima et al. (1985); Kolhe et al. (1982); Lao et al. (1984); Lawrie et al. (1970); Li & Xue (1986); Manoharan et al. (2005); Ohtsu et al. (1998); Schulte et al. (1979); Tachi et al. (1971); Tandon & Rastogi (1976).

Computing details top

Data collection: SMART (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure showing the atom-labelling scheme with displacement ellipsoids drawn at the 30% probability level. H atoms are shown as small spheres of arbitrary radius.
[Figure 2] Fig. 2. The molecular packing viewed along the b axis.
24-Methylenecycloartanone top
Crystal data top
C31H50OF(000) = 488
Mr = 438.71Dx = 1.078 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 9.918 (5) ÅCell parameters from 829 reflections
b = 10.212 (6) Åθ = 2.2–21.1°
c = 14.077 (7) ŵ = 0.06 mm1
β = 108.542 (6)°T = 293 K
V = 1351.7 (12) Å3Prism, colorless
Z = 20.40 × 0.25 × 0.15 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
4360 independent reflections
Radiation source: fine-focus sealed tube2901 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
φ and ω scansθmax = 26.0°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1212
Tmin = 0.976, Tmax = 0.991k = 1012
6145 measured reflectionsl = 1715
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.052H-atom parameters constrained
wR(F2) = 0.133 w = 1/[σ2(Fo2) + (0.0807P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.91(Δ/σ)max = 0.004
4360 reflectionsΔρmax = 0.14 e Å3
296 parametersΔρmin = 0.20 e Å3
1 restraintAbsolute structure: Flack (1983), 1530 Friedel pairs
0 constraintsAbsolute structure parameter: 6 (3)
Primary atom site location: structure-invariant direct methods
Crystal data top
C31H50OV = 1351.7 (12) Å3
Mr = 438.71Z = 2
Monoclinic, P21Mo Kα radiation
a = 9.918 (5) ŵ = 0.06 mm1
b = 10.212 (6) ÅT = 293 K
c = 14.077 (7) Å0.40 × 0.25 × 0.15 mm
β = 108.542 (6)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
4360 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2901 reflections with I > 2σ(I)
Tmin = 0.976, Tmax = 0.991Rint = 0.046
6145 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.052H-atom parameters constrained
wR(F2) = 0.133Δρmax = 0.14 e Å3
S = 0.91Δρmin = 0.20 e Å3
4360 reflectionsAbsolute structure: Flack (1983), 1530 Friedel pairs
296 parametersAbsolute structure parameter: 6 (3)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.1781 (3)0.0520 (3)0.53829 (18)0.0989 (8)
C11.0700 (3)0.0933 (3)0.7520 (2)0.0627 (8)
H1A1.01120.16490.71630.075*
H1B1.11130.11890.82160.075*
C21.1884 (3)0.0661 (4)0.7068 (2)0.0706 (9)
H2A1.25600.00560.74990.085*
H2B1.23820.14720.70460.085*
C31.1341 (3)0.0092 (3)0.6026 (3)0.0688 (8)
C41.0282 (3)0.1017 (3)0.5845 (2)0.0618 (7)
C50.9150 (3)0.0692 (3)0.63678 (18)0.0535 (6)
H50.86600.00900.60220.064*
C60.7980 (3)0.1717 (3)0.6220 (2)0.0644 (8)
H6A0.83900.25400.65200.077*
H6B0.75100.18610.55110.077*
C70.6908 (3)0.1234 (3)0.67106 (19)0.0630 (8)
H7A0.66040.03550.64780.076*
H7B0.60780.17980.65170.076*
C80.7557 (2)0.1230 (3)0.78469 (17)0.0488 (6)
H80.77960.21440.80440.059*
C90.8977 (2)0.0462 (3)0.82016 (17)0.0487 (6)
C100.9795 (2)0.0275 (3)0.74516 (19)0.0511 (7)
C110.9098 (3)0.0640 (3)0.89571 (19)0.0567 (7)
H11A1.00980.07700.93200.068*
H11B0.87520.14380.85860.068*
C120.8305 (3)0.0463 (3)0.97370 (18)0.0551 (7)
H12A0.77630.12520.97460.066*
H12B0.90030.03671.03960.066*
C130.7297 (2)0.0710 (3)0.95408 (16)0.0457 (6)
C140.6517 (2)0.0792 (3)0.83892 (17)0.0454 (6)
C150.5341 (3)0.1789 (3)0.83282 (19)0.0555 (7)
H15A0.56880.26750.83150.067*
H15B0.45340.16480.77310.067*
C160.4922 (3)0.1564 (3)0.92712 (19)0.0596 (7)
H16A0.39800.11810.90960.072*
H16B0.49150.23890.96120.072*
C170.6035 (2)0.0623 (3)0.99590 (17)0.0492 (6)
H170.56450.02640.98130.059*
C180.8169 (3)0.1938 (3)0.9943 (2)0.0617 (7)
H18A0.88850.20420.96240.092*
H18B0.86150.18551.06540.092*
H18C0.75550.26890.98050.092*
C191.0290 (3)0.1257 (3)0.82928 (19)0.0608 (7)
H19A1.11440.10510.88410.073*
H19B1.01650.21790.81200.073*
C200.6255 (3)0.0873 (3)1.10733 (18)0.0570 (7)
H200.65700.17811.12240.068*
C210.7383 (3)0.0022 (4)1.1761 (2)0.0780 (10)
H21A0.71080.09201.16120.117*
H21B0.74690.01611.24460.117*
H21C0.82800.01291.16550.117*
C220.4822 (3)0.0714 (3)1.12670 (18)0.0603 (7)
H22A0.41720.13681.08740.072*
H22B0.44360.01381.10180.072*
C230.4841 (3)0.0832 (4)1.23481 (19)0.0675 (8)
H23A0.54830.01731.27420.081*
H23B0.52300.16811.26000.081*
C240.3429 (3)0.0683 (3)1.2521 (2)0.0671 (8)
C250.3436 (4)0.0745 (4)1.3605 (2)0.0851 (10)
H250.24960.04271.35900.102*
C260.4480 (4)0.0188 (4)1.4282 (2)0.0938 (11)
H26A0.43230.02251.49200.141*
H26B0.54310.01091.43730.141*
H26C0.43540.10451.39860.141*
C270.3530 (6)0.2084 (4)1.3999 (3)0.1210 (16)
H27A0.27080.25721.36200.181*
H27B0.43720.24981.39450.181*
H27C0.35730.20571.46890.181*
C281.1138 (4)0.2263 (3)0.6265 (3)0.0837 (10)
H28A1.04980.29880.62000.126*
H28B1.17840.24450.58990.126*
H28C1.16660.21330.69600.126*
C290.9553 (4)0.1175 (4)0.4711 (2)0.0858 (10)
H29A0.89860.04150.44530.129*
H29B1.02630.12730.43850.129*
H29C0.89560.19380.45870.129*
C300.5813 (3)0.0514 (3)0.79658 (19)0.0564 (7)
H30A0.65320.11330.79460.085*
H30B0.51720.03790.73000.085*
H30C0.52950.08450.83860.085*
C310.2222 (3)0.0485 (5)1.1819 (3)0.0985 (13)
H31A0.21950.04271.11540.118*
H31B0.13890.04031.19830.118*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.1252 (19)0.092 (2)0.1038 (17)0.0216 (16)0.0714 (15)0.0033 (16)
C10.0527 (15)0.068 (2)0.0665 (17)0.0111 (14)0.0177 (13)0.0094 (15)
C20.0561 (16)0.083 (2)0.0737 (19)0.0086 (16)0.0222 (14)0.0040 (18)
C30.0722 (19)0.062 (2)0.083 (2)0.0045 (16)0.0394 (17)0.0080 (17)
C40.0677 (16)0.059 (2)0.0637 (17)0.0049 (15)0.0278 (13)0.0020 (15)
C50.0566 (14)0.0481 (16)0.0532 (14)0.0033 (14)0.0139 (11)0.0010 (13)
C60.0673 (17)0.066 (2)0.0598 (16)0.0105 (15)0.0198 (13)0.0175 (15)
C70.0539 (15)0.076 (2)0.0544 (15)0.0136 (14)0.0109 (12)0.0157 (15)
C80.0470 (13)0.0434 (14)0.0522 (14)0.0029 (11)0.0106 (11)0.0036 (12)
C90.0424 (13)0.0552 (18)0.0434 (13)0.0042 (12)0.0066 (10)0.0017 (12)
C100.0418 (13)0.0554 (17)0.0538 (15)0.0041 (12)0.0122 (11)0.0004 (12)
C110.0500 (14)0.0578 (18)0.0596 (16)0.0163 (13)0.0137 (12)0.0101 (14)
C120.0539 (15)0.0563 (18)0.0501 (15)0.0095 (13)0.0095 (12)0.0075 (13)
C130.0418 (12)0.0434 (14)0.0477 (13)0.0023 (12)0.0086 (10)0.0003 (12)
C140.0409 (11)0.0410 (14)0.0489 (13)0.0029 (11)0.0067 (10)0.0024 (12)
C150.0498 (14)0.0590 (18)0.0554 (15)0.0119 (13)0.0135 (12)0.0026 (13)
C160.0591 (15)0.0576 (19)0.0606 (15)0.0128 (13)0.0169 (12)0.0001 (14)
C170.0498 (13)0.0439 (15)0.0503 (13)0.0015 (12)0.0110 (11)0.0017 (13)
C180.0627 (17)0.0607 (19)0.0582 (16)0.0092 (14)0.0145 (13)0.0077 (14)
C190.0494 (14)0.072 (2)0.0584 (16)0.0089 (14)0.0129 (12)0.0050 (15)
C200.0608 (15)0.0550 (18)0.0520 (14)0.0003 (14)0.0135 (12)0.0047 (13)
C210.0720 (18)0.103 (3)0.0548 (17)0.0160 (18)0.0145 (14)0.0079 (17)
C220.0714 (16)0.0582 (17)0.0521 (15)0.0002 (15)0.0206 (12)0.0068 (14)
C230.0748 (17)0.072 (2)0.0535 (15)0.0040 (16)0.0165 (13)0.0042 (16)
C240.0770 (19)0.067 (2)0.0611 (17)0.0106 (18)0.0266 (15)0.0006 (16)
C250.099 (2)0.104 (3)0.0598 (19)0.011 (2)0.0346 (17)0.004 (2)
C260.115 (3)0.095 (3)0.067 (2)0.010 (2)0.0237 (19)0.013 (2)
C270.209 (5)0.088 (3)0.083 (3)0.015 (3)0.071 (3)0.014 (2)
C280.092 (2)0.063 (2)0.110 (3)0.0162 (19)0.051 (2)0.000 (2)
C290.107 (2)0.089 (3)0.071 (2)0.007 (2)0.0418 (18)0.0105 (19)
C300.0497 (14)0.0582 (18)0.0587 (16)0.0042 (13)0.0134 (12)0.0114 (14)
C310.074 (2)0.151 (4)0.072 (2)0.004 (2)0.0248 (18)0.000 (2)
Geometric parameters (Å, º) top
O1—C31.205 (3)C16—H16A0.9700
C1—C101.511 (4)C16—H16B0.9700
C1—C21.528 (4)C17—C201.535 (4)
C1—H1A0.9700C17—H170.9800
C1—H1B0.9700C18—H18A0.9600
C2—C31.509 (4)C18—H18B0.9600
C2—H2A0.9700C18—H18C0.9600
C2—H2B0.9700C19—H19A0.9700
C3—C41.511 (4)C19—H19B0.9700
C4—C291.537 (4)C20—C211.528 (4)
C4—C281.539 (4)C20—C221.539 (4)
C4—C51.562 (4)C20—H200.9800
C5—C101.516 (4)C21—H21A0.9600
C5—C61.527 (4)C21—H21B0.9600
C5—H50.9800C21—H21C0.9600
C6—C71.522 (4)C22—C231.521 (4)
C6—H6A0.9700C22—H22A0.9700
C6—H6B0.9700C22—H22B0.9700
C7—C81.523 (4)C23—C241.504 (4)
C7—H7A0.9700C23—H23A0.9700
C7—H7B0.9700C23—H23B0.9700
C8—C141.532 (3)C24—C311.303 (4)
C8—C91.549 (3)C24—C251.524 (4)
C8—H80.9800C25—C271.467 (6)
C9—C191.505 (4)C25—C261.504 (5)
C9—C111.527 (4)C25—H250.9800
C9—C101.534 (4)C26—H26A0.9600
C10—C191.510 (4)C26—H26B0.9600
C11—C121.551 (4)C26—H26C0.9600
C11—H11A0.9700C27—H27A0.9600
C11—H11B0.9700C27—H27B0.9600
C12—C131.528 (4)C27—H27C0.9600
C12—H12A0.9700C28—H28A0.9600
C12—H12B0.9700C28—H28B0.9600
C13—C181.526 (4)C28—H28C0.9600
C13—C171.546 (3)C29—H29A0.9600
C13—C141.561 (3)C29—H29B0.9600
C14—C151.530 (3)C29—H29C0.9600
C14—C301.534 (4)C30—H30A0.9600
C15—C161.529 (4)C30—H30B0.9600
C15—H15A0.9700C30—H30C0.9600
C15—H15B0.9700C31—H31A0.9300
C16—C171.549 (3)C31—H31B0.9300
C10—C1—C2110.2 (2)C17—C16—H16A110.2
C10—C1—H1A109.6C15—C16—H16B110.2
C2—C1—H1A109.6C17—C16—H16B110.2
C10—C1—H1B109.6H16A—C16—H16B108.5
C2—C1—H1B109.6C20—C17—C13120.69 (19)
H1A—C1—H1B108.1C20—C17—C16112.2 (2)
C3—C2—C1113.0 (2)C13—C17—C16103.2 (2)
C3—C2—H2A109.0C20—C17—H17106.7
C1—C2—H2A109.0C13—C17—H17106.7
C3—C2—H2B109.0C16—C17—H17106.7
C1—C2—H2B109.0C13—C18—H18A109.5
H2A—C2—H2B107.8C13—C18—H18B109.5
O1—C3—C2119.3 (3)H18A—C18—H18B109.5
O1—C3—C4122.9 (3)C13—C18—H18C109.5
C2—C3—C4117.8 (3)H18A—C18—H18C109.5
C3—C4—C29109.1 (3)H18B—C18—H18C109.5
C3—C4—C28106.6 (2)C9—C19—C1061.19 (17)
C29—C4—C28109.4 (3)C9—C19—H19A117.6
C3—C4—C5109.0 (2)C10—C19—H19A117.6
C29—C4—C5109.9 (2)C9—C19—H19B117.6
C28—C4—C5112.7 (2)C10—C19—H19B117.6
C10—C5—C6112.9 (2)H19A—C19—H19B114.8
C10—C5—C4113.4 (2)C21—C20—C17112.7 (2)
C6—C5—C4114.8 (2)C21—C20—C22110.9 (2)
C10—C5—H5104.8C17—C20—C22108.92 (19)
C6—C5—H5104.8C21—C20—H20108.1
C4—C5—H5104.8C17—C20—H20108.1
C7—C6—C5109.1 (2)C22—C20—H20108.1
C7—C6—H6A109.9C20—C21—H21A109.5
C5—C6—H6A109.9C20—C21—H21B109.5
C7—C6—H6B109.9H21A—C21—H21B109.5
C5—C6—H6B109.9C20—C21—H21C109.5
H6A—C6—H6B108.3H21A—C21—H21C109.5
C6—C7—C8110.7 (2)H21B—C21—H21C109.5
C6—C7—H7A109.5C23—C22—C20116.8 (2)
C8—C7—H7A109.5C23—C22—H22A108.1
C6—C7—H7B109.5C20—C22—H22A108.1
C8—C7—H7B109.5C23—C22—H22B108.1
H7A—C7—H7B108.1C20—C22—H22B108.1
C7—C8—C14113.4 (2)H22A—C22—H22B107.3
C7—C8—C9112.2 (2)C24—C23—C22116.0 (2)
C14—C8—C9112.2 (2)C24—C23—H23A108.3
C7—C8—H8106.1C22—C23—H23A108.3
C14—C8—H8106.1C24—C23—H23B108.3
C9—C8—H8106.1C22—C23—H23B108.3
C19—C9—C11117.6 (2)H23A—C23—H23B107.4
C19—C9—C1059.54 (17)C31—C24—C23124.8 (3)
C11—C9—C10116.5 (2)C31—C24—C25118.5 (3)
C19—C9—C8115.3 (2)C23—C24—C25116.7 (3)
C11—C9—C8117.4 (2)C27—C25—C26113.7 (3)
C10—C9—C8117.8 (2)C27—C25—C24113.3 (3)
C19—C10—C1117.0 (2)C26—C25—C24113.0 (3)
C19—C10—C5122.1 (2)C27—C25—H25105.2
C1—C10—C5110.2 (2)C26—C25—H25105.2
C19—C10—C959.27 (17)C24—C25—H25105.2
C1—C10—C9119.4 (2)C25—C26—H26A109.5
C5—C10—C9120.8 (2)C25—C26—H26B109.5
C9—C11—C12117.5 (2)H26A—C26—H26B109.5
C9—C11—H11A107.9C25—C26—H26C109.5
C12—C11—H11A107.9H26A—C26—H26C109.5
C9—C11—H11B107.9H26B—C26—H26C109.5
C12—C11—H11B107.9C25—C27—H27A109.5
H11A—C11—H11B107.2C25—C27—H27B109.5
C13—C12—C11114.4 (2)H27A—C27—H27B109.5
C13—C12—H12A108.7C25—C27—H27C109.5
C11—C12—H12A108.7H27A—C27—H27C109.5
C13—C12—H12B108.7H27B—C27—H27C109.5
C11—C12—H12B108.7C4—C28—H28A109.5
H12A—C12—H12B107.6C4—C28—H28B109.5
C18—C13—C12108.44 (19)H28A—C28—H28B109.5
C18—C13—C17109.7 (2)C4—C28—H28C109.5
C12—C13—C17116.6 (2)H28A—C28—H28C109.5
C18—C13—C14112.1 (2)H28B—C28—H28C109.5
C12—C13—C14108.02 (19)C4—C29—H29A109.5
C17—C13—C14101.81 (16)C4—C29—H29B109.5
C15—C14—C8113.5 (2)H29A—C29—H29B109.5
C15—C14—C30108.2 (2)C4—C29—H29C109.5
C8—C14—C30110.8 (2)H29A—C29—H29C109.5
C15—C14—C13102.19 (19)H29B—C29—H29C109.5
C8—C14—C13110.07 (18)C14—C30—H30A109.5
C30—C14—C13111.8 (2)C14—C30—H30B109.5
C16—C15—C14105.3 (2)H30A—C30—H30B109.5
C16—C15—H15A110.7C14—C30—H30C109.5
C14—C15—H15A110.7H30A—C30—H30C109.5
C16—C15—H15B110.7H30B—C30—H30C109.5
C14—C15—H15B110.7C24—C31—H31A120.0
H15A—C15—H15B108.8C24—C31—H31B120.0
C15—C16—C17107.4 (2)H31A—C31—H31B120.0
C15—C16—H16A110.2

Experimental details

Crystal data
Chemical formulaC31H50O
Mr438.71
Crystal system, space groupMonoclinic, P21
Temperature (K)293
a, b, c (Å)9.918 (5), 10.212 (6), 14.077 (7)
β (°) 108.542 (6)
V3)1351.7 (12)
Z2
Radiation typeMo Kα
µ (mm1)0.06
Crystal size (mm)0.40 × 0.25 × 0.15
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.976, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
6145, 4360, 2901
Rint0.046
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.133, 0.91
No. of reflections4360
No. of parameters296
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.14, 0.20
Absolute structureFlack (1983), 1530 Friedel pairs
Absolute structure parameter6 (3)

Computer programs: SMART (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The authors thank Professor Lin-Hong Weng (Department of Chemistry, Fudan University, Shanghai) for the structure analysis.

References

First citationAlves, J. S., De Castro, J. C. M., Freire, M. O., Leitao Da-Cunha, E. V., Barbosa-Filho, J. M. & De Silva, M. S. (2000). Magn. Reson. Chem. 38, 201–206.  CrossRef CAS Google Scholar
First citationAnjaneyulu, V., Satyanarayana, P., Viswanadham, K. N., Jyothi, V. G., Rao, K. N. & Radhika, P. (1999). Phytochemistry, 50, 1229–1236.  Web of Science CrossRef CAS Google Scholar
First citationBoehme, F., Schmidt, J., Van Sung, T. & Adam, G. (1997). Phytochemistry, 45, 1041–1044.  CAS Google Scholar
First citationBruker (2005). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChinese Materia Medica (2007). Chinese Materia Medica, Vol. 21, p. 643. Shanghai Science Press.  Google Scholar
First citationEi-Dib, R., Kaloga, M., Mahmoud, I., Soliman, H. S. H., Moharram, F. & Kolodzej, H. (2004). Phytochemistry, 65, 1153–1157.  Web of Science PubMed Google Scholar
First citationFiechi, A., Capella, P., Fedeli, E., Lanzani, A. & Jacini, G. (1966). Ric.Sci. 36, 1316–1320.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGabrera, G. M. & Seldes, A. (1995). J. Nat. Prod. 58, 1920–1924.  CAS Google Scholar
First citationJayasinghe, U. L. B., Vithana, H. S. K., Wannigama, G. P. & Fujimoto, Y. (2001). Fitoterapia, 72, 594–595.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKojima, Y., Djamal, S. & Kayama, T. (1985). Mokuzai Gakkaishi, 31, 312–315.  CAS Google Scholar
First citationKolhe, J. N., Bhaskar, A. & Bringi, N. V. (1982). Lipids, 17, 166–168.  CrossRef CAS Web of Science Google Scholar
First citationLao, A., Fujimoto, Y. & Tatsuno, T. (1984). Chem. Pharm. Bull. 32, 723–727.  CrossRef CAS Google Scholar
First citationLawrie, W., Mclean, J. & Olubajo, O. O. (1970). Phytochemistry, 9, 1669–11670.  CrossRef CAS Web of Science Google Scholar
First citationLi, L. N. & Xue, H. (1986). Planta Med. 6, 492–493.  PubMed Google Scholar
First citationManoharan, K. P., Benny, T. K. H. & Yang, D. (2005). Phytochemistry, 66, 2304–2308.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOhta, G. & Shimizu, M. (1958). Chem. Pharm. Bull. 3, 325–326.  CrossRef Google Scholar
First citationOhtsu, H., Tanaka, R., Michida, T., Shingu, T. & Matsunaga, S. (1998). Phytochemistry, 49, 1761–1768.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSchulte, K. E., Ruecker, G. & Matern, H. U. (1979). Planta Med. 35, 76–83.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTachi, Y., Taga, S., Kamano, Y. & Manki, K. (1971). Chem. Pharm. Bull, 19, 2193–2194.  CAS Google Scholar
First citationTandon, S. & Rastogi, R. P. (1976). Planta Med. 29, 190–192.  CrossRef CAS PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds