organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2,4-Di­chloro­phen­yl)(di­phenyl­phosphor­yl)methanol

aKey Laboratory of Jiangxi University for Applied Chemistry and Chemical Biology, Yichun 336000, People's Republic of China, and bJiangxi Science & Technology Research Center for Work Safety, Nanchang 330046, People's Republic of China
*Correspondence e-mail: yc_mgq@ycu.jx.cn

(Received 7 December 2009; accepted 28 December 2009; online 30 January 2010)

In the title compound, C19H15Cl2O2P, the dihedral angle between the mean planes of the phenyl rings bonded to the P atom is 75.4 (1)°. In the crystal, mol­ecules are linked into chains running along the a axis by inter­molecular O—H⋯O hydrogen bonds. Mol­ecules are further connected into a three-dimensional array by weak C—H⋯O inter­actions.

Related literature

For applications of the analogous compound (diphenyl­phosphino­yl)phenyl­methanol, see: Clark et al. (2002[Clark, H. J., Wang, R. & Alper, H. (2002). J. Org. Chem. 67, 6224-6225.]). For related structures, see: Liu et al. (2007[Liu, W.-Y., Huo, P., Gao, Y.-X., Liu, P. & Zhao, Y.-F. (2007). Acta Cryst. E63, o1008-o1009.]); Liu & Huo (2008[Liu, W.-Y. & Huo, P. (2008). Acta Cryst. E64, o233.]).

[Scheme 1]

Experimental

Crystal data
  • C19H15Cl2O2P

  • Mr = 377.18

  • Monoclinic, P 21 /n

  • a = 8.8157 (18) Å

  • b = 11.334 (2) Å

  • c = 19.262 (4) Å

  • β = 102.41 (3)°

  • V = 1879.6 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.44 mm−1

  • T = 293 K

  • 0.30 × 0.23 × 0.12 mm

Data collection
  • Bruker SMART APEX area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SAINT, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.880, Tmax = 0.949

  • 15866 measured reflections

  • 3680 independent reflections

  • 2783 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.156

  • S = 1.11

  • 3680 reflections

  • 217 parameters

  • H-atom parameters constrained

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.44 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2A⋯O1i 0.82 1.79 2.576 (2) 161
C10—H10A⋯O2ii 0.93 2.64 3.348 (3) 134
C1—H1A⋯O1i 0.98 2.69 3.075 (3) 104
Symmetry codes: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2001[Bruker (2001). SAINT, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SAINT, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title compound, (I), is an analog of (diphenylphosphinoyl)phenylmethanol, which was employed as a ligand in the rhodium-catalyzed hydroformylation of alkenes, with good conversions and regioselectivities (Clark et al., 2002).

The molecular structure of (I) is shown in Fig. 1. Bond lengths and angles in (I) are in agreement with those reported for similar compounds (Liu et al., 2007; Liu et al., 2008). The dihedral angle between the mean-planes of the phenyl rings (C8—C13) and (C14—C19) bonded to P-atoms is 75.4 (1)°. A strong O—H···O hydrogen bond involving the hydroxyl group link the molecules into a chain running along the a axis (Table 1). Molecules are further connected into a three-dimensional array by non-classical and rather weak C—H···O intermolecular hydrogen-bonding interactions.

Related literature top

For applications of the analogous compound (diphenylphosphinoyl)phenylmethanol, see: Clark et al. (2002). For related structures, see: Liu et al. (2007, 2008).

Experimental top

To a solution of 2, 4-dichlorobenzaldehyde (0.35 g, 2.0 mmol) and diphenylphosphine oxide (0.40 g, 2.0 mmol) in tetrahydrofuran (10 ml) at 273 K was added dropwise triethylamine (0.03 ml, 2 mmol). The cooling bath was removed and the mixture warmed to ambient temperature for 2 h. The solvent was concentrated under vacuum and the crude product was purified by recrystallization in methanol to give the title compound as a white solid in 80% yield. Single crystals of (I) were obtained by slow evaporation of a methanol solution.

Refinement top

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.93 Å (aromatic), 0.98 Å (methine), O—H = 0.82 Å, and Uiso(H) = 1.2Ueq(c) and 1.5Ueq(O).

Structure description top

The title compound, (I), is an analog of (diphenylphosphinoyl)phenylmethanol, which was employed as a ligand in the rhodium-catalyzed hydroformylation of alkenes, with good conversions and regioselectivities (Clark et al., 2002).

The molecular structure of (I) is shown in Fig. 1. Bond lengths and angles in (I) are in agreement with those reported for similar compounds (Liu et al., 2007; Liu et al., 2008). The dihedral angle between the mean-planes of the phenyl rings (C8—C13) and (C14—C19) bonded to P-atoms is 75.4 (1)°. A strong O—H···O hydrogen bond involving the hydroxyl group link the molecules into a chain running along the a axis (Table 1). Molecules are further connected into a three-dimensional array by non-classical and rather weak C—H···O intermolecular hydrogen-bonding interactions.

For applications of the analogous compound (diphenylphosphinoyl)phenylmethanol, see: Clark et al. (2002). For related structures, see: Liu et al. (2007, 2008).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 50% probability displacement ellipsoids (arbitrary spheres for H atoms).
(2,4-Dichlorophenyl)(diphenylphosphoryl)methanol top
Crystal data top
C19H15Cl2O2PF(000) = 776
Mr = 377.18Dx = 1.333 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1526 reflections
a = 8.8157 (18) Åθ = 3.3–27.5°
b = 11.334 (2) ŵ = 0.44 mm1
c = 19.262 (4) ÅT = 293 K
β = 102.41 (3)°Plate, colorless
V = 1879.6 (7) Å30.30 × 0.23 × 0.12 mm
Z = 4
Data collection top
Bruker APEX area-detector
diffractometer
3680 independent reflections
Radiation source: fine-focus sealed tube2783 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
φ and ω scansθmax = 26.0°, θmin = 3.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1010
Tmin = 0.880, Tmax = 0.949k = 1313
15866 measured reflectionsl = 2323
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.156H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0771P)2 + 0.5515P]
where P = (Fo2 + 2Fc2)/3
3680 reflections(Δ/σ)max < 0.001
217 parametersΔρmax = 0.43 e Å3
0 restraintsΔρmin = 0.44 e Å3
Crystal data top
C19H15Cl2O2PV = 1879.6 (7) Å3
Mr = 377.18Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.8157 (18) ŵ = 0.44 mm1
b = 11.334 (2) ÅT = 293 K
c = 19.262 (4) Å0.30 × 0.23 × 0.12 mm
β = 102.41 (3)°
Data collection top
Bruker APEX area-detector
diffractometer
3680 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2783 reflections with I > 2σ(I)
Tmin = 0.880, Tmax = 0.949Rint = 0.025
15866 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.156H-atom parameters constrained
S = 1.11Δρmax = 0.43 e Å3
3680 reflectionsΔρmin = 0.44 e Å3
217 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.63438 (6)0.94073 (5)0.21088 (4)0.0543 (2)
Cl10.99338 (10)0.89244 (14)0.36475 (6)0.1424 (5)
Cl20.66962 (19)0.89703 (11)0.57032 (6)0.1442 (5)
C10.6904 (2)0.80652 (19)0.26412 (15)0.0612 (6)
H1A0.79510.78310.26010.073*
C20.6902 (3)0.8293 (2)0.34053 (15)0.0661 (6)
C30.8186 (4)0.8676 (3)0.38994 (19)0.0881 (9)
C40.8124 (5)0.8865 (3)0.4608 (2)0.1068 (12)
H4A0.90070.91080.49340.128*
C50.6769 (5)0.8695 (3)0.48191 (19)0.0970 (10)
C60.5478 (5)0.8317 (3)0.4349 (2)0.1001 (11)
H6A0.45550.81940.44990.120*
C70.5547 (3)0.8117 (3)0.36529 (18)0.0799 (8)
H7A0.46600.78560.33370.096*
C80.4292 (2)0.95822 (18)0.20306 (12)0.0524 (5)
C90.3801 (3)1.0514 (2)0.24046 (15)0.0701 (7)
H9A0.45261.10140.26790.084*
C100.2238 (3)1.0687 (3)0.23653 (17)0.0839 (9)
H10A0.19091.13130.26080.101*
C110.1173 (3)0.9947 (3)0.19732 (17)0.0839 (9)
H11A0.01221.00670.19550.101*
C120.1633 (3)0.9022 (3)0.16022 (17)0.0781 (8)
H12A0.08960.85230.13340.094*
C130.3199 (3)0.8840 (2)0.16314 (14)0.0618 (6)
H13A0.35160.82170.13820.074*
C140.6700 (3)0.9144 (2)0.12355 (16)0.0662 (6)
C150.6984 (4)1.0121 (3)0.08557 (17)0.0890 (9)
H15A0.69561.08680.10530.107*
C160.7307 (5)1.0012 (4)0.0193 (2)0.1152 (12)
H16A0.75011.06820.00530.138*
C170.7344 (5)0.8922 (5)0.0107 (2)0.1150 (13)
H17A0.75460.88460.05590.138*
C180.7083 (5)0.7958 (4)0.0261 (3)0.1295 (16)
H18A0.71170.72160.00590.155*
C190.6763 (5)0.8045 (3)0.0935 (2)0.1076 (12)
H19A0.65940.73690.11810.129*
O10.7200 (2)1.04574 (14)0.24533 (11)0.0708 (5)
O20.58404 (18)0.71745 (13)0.23355 (11)0.0705 (5)
H2A0.62920.65390.23590.106*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0408 (3)0.0380 (3)0.0837 (4)0.0029 (2)0.0128 (3)0.0001 (3)
Cl10.0633 (5)0.2302 (15)0.1210 (8)0.0437 (7)0.0081 (5)0.0291 (8)
Cl20.2145 (15)0.1219 (9)0.1001 (7)0.0202 (9)0.0428 (8)0.0175 (6)
C10.0386 (11)0.0413 (11)0.1017 (19)0.0011 (8)0.0105 (11)0.0028 (11)
C20.0552 (13)0.0450 (12)0.0951 (19)0.0006 (10)0.0097 (12)0.0127 (12)
C30.0698 (18)0.090 (2)0.098 (2)0.0106 (15)0.0030 (15)0.0224 (18)
C40.111 (3)0.103 (3)0.092 (2)0.011 (2)0.009 (2)0.021 (2)
C50.125 (3)0.073 (2)0.094 (2)0.006 (2)0.025 (2)0.0176 (17)
C60.105 (3)0.084 (2)0.122 (3)0.0023 (19)0.046 (2)0.014 (2)
C70.0708 (17)0.0644 (16)0.108 (2)0.0025 (13)0.0265 (15)0.0054 (15)
C80.0456 (11)0.0439 (11)0.0677 (13)0.0078 (8)0.0121 (9)0.0042 (10)
C90.0613 (15)0.0642 (15)0.0818 (17)0.0153 (12)0.0088 (12)0.0097 (13)
C100.0691 (18)0.094 (2)0.0890 (19)0.0313 (15)0.0182 (15)0.0146 (16)
C110.0480 (14)0.109 (2)0.095 (2)0.0237 (15)0.0167 (13)0.0002 (18)
C120.0464 (14)0.0899 (19)0.094 (2)0.0003 (12)0.0063 (13)0.0071 (16)
C130.0474 (12)0.0583 (13)0.0789 (16)0.0034 (10)0.0118 (11)0.0054 (12)
C140.0440 (12)0.0645 (15)0.0914 (18)0.0019 (10)0.0178 (11)0.0042 (13)
C150.106 (2)0.078 (2)0.082 (2)0.0025 (17)0.0163 (17)0.0079 (16)
C160.143 (3)0.115 (3)0.091 (2)0.003 (3)0.031 (2)0.016 (2)
C170.105 (3)0.146 (4)0.101 (3)0.002 (3)0.038 (2)0.013 (3)
C180.150 (4)0.108 (3)0.155 (4)0.013 (3)0.088 (3)0.043 (3)
C190.127 (3)0.079 (2)0.140 (3)0.0133 (19)0.081 (3)0.023 (2)
O10.0637 (10)0.0464 (9)0.0993 (13)0.0165 (7)0.0111 (9)0.0006 (8)
O20.0504 (9)0.0381 (8)0.1200 (15)0.0003 (6)0.0116 (9)0.0005 (9)
Geometric parameters (Å, º) top
P1—O11.4872 (17)C9—H9A0.9300
P1—C81.794 (2)C10—C111.360 (4)
P1—C141.801 (3)C10—H10A0.9300
P1—C11.842 (2)C11—C121.378 (4)
Cl1—C31.735 (3)C11—H11A0.9300
Cl2—C51.746 (4)C12—C131.385 (3)
C1—O21.417 (3)C12—H12A0.9300
C1—C21.495 (4)C13—H13A0.9300
C1—H1A0.9800C14—C151.379 (4)
C2—C31.383 (4)C14—C191.380 (4)
C2—C71.393 (4)C15—C161.372 (5)
C3—C41.394 (5)C15—H15A0.9300
C4—C51.356 (5)C16—C171.368 (6)
C4—H4A0.9300C16—H16A0.9300
C5—C61.363 (5)C17—C181.349 (6)
C6—C71.374 (5)C17—H17A0.9300
C6—H6A0.9300C18—C191.389 (5)
C7—H7A0.9300C18—H18A0.9300
C8—C131.382 (3)C19—H19A0.9300
C8—C91.398 (3)O2—H2A0.8200
C9—C101.378 (4)
O1—P1—C8110.82 (11)C10—C9—H9A120.1
O1—P1—C14112.05 (11)C8—C9—H9A120.1
C8—P1—C14108.36 (11)C11—C10—C9120.3 (3)
O1—P1—C1111.28 (11)C11—C10—H10A119.8
C8—P1—C1106.43 (10)C9—C10—H10A119.8
C14—P1—C1107.67 (12)C10—C11—C12120.8 (2)
O2—C1—C2113.1 (2)C10—C11—H11A119.6
O2—C1—P1106.44 (16)C12—C11—H11A119.6
C2—C1—P1110.43 (16)C11—C12—C13119.6 (3)
O2—C1—H1A108.9C11—C12—H12A120.2
C2—C1—H1A108.9C13—C12—H12A120.2
P1—C1—H1A108.9C8—C13—C12120.1 (2)
C3—C2—C7116.4 (3)C8—C13—H13A120.0
C3—C2—C1123.9 (2)C12—C13—H13A120.0
C7—C2—C1119.7 (2)C15—C14—C19118.3 (3)
C2—C3—C4121.5 (3)C15—C14—P1116.8 (2)
C2—C3—Cl1120.2 (3)C19—C14—P1124.9 (2)
C4—C3—Cl1118.2 (3)C16—C15—C14121.2 (3)
C5—C4—C3119.7 (3)C16—C15—H15A119.4
C5—C4—H4A120.2C14—C15—H15A119.4
C3—C4—H4A120.2C17—C16—C15120.2 (4)
C4—C5—C6120.6 (4)C17—C16—H16A119.9
C4—C5—Cl2119.2 (3)C15—C16—H16A119.9
C6—C5—Cl2120.2 (3)C18—C17—C16119.1 (4)
C5—C6—C7119.6 (3)C18—C17—H17A120.4
C5—C6—H6A120.2C16—C17—H17A120.4
C7—C6—H6A120.2C17—C18—C19121.7 (4)
C6—C7—C2122.1 (3)C17—C18—H18A119.1
C6—C7—H7A118.9C19—C18—H18A119.1
C2—C7—H7A118.9C14—C19—C18119.4 (4)
C13—C8—C9119.4 (2)C14—C19—H19A120.3
C13—C8—P1123.32 (17)C18—C19—H19A120.3
C9—C8—P1117.30 (19)C1—O2—H2A109.5
C10—C9—C8119.8 (3)
O1—P1—C1—O2170.00 (15)O1—P1—C8—C911.8 (2)
C8—P1—C1—O249.18 (19)C14—P1—C8—C9135.1 (2)
C14—P1—C1—O266.84 (18)C1—P1—C8—C9109.4 (2)
O1—P1—C1—C246.92 (18)C13—C8—C9—C100.6 (4)
C8—P1—C1—C273.91 (18)P1—C8—C9—C10179.8 (2)
C14—P1—C1—C2170.08 (15)C8—C9—C10—C110.9 (5)
O2—C1—C2—C3150.1 (2)C9—C10—C11—C120.8 (5)
P1—C1—C2—C390.8 (3)C10—C11—C12—C130.3 (5)
O2—C1—C2—C729.9 (3)C9—C8—C13—C120.2 (4)
P1—C1—C2—C789.2 (2)P1—C8—C13—C12179.3 (2)
C7—C2—C3—C40.5 (4)C11—C12—C13—C80.0 (4)
C1—C2—C3—C4179.5 (3)O1—P1—C14—C1531.3 (3)
C7—C2—C3—Cl1179.9 (2)C8—P1—C14—C1591.3 (2)
C1—C2—C3—Cl10.1 (4)C1—P1—C14—C15153.9 (2)
C2—C3—C4—C51.3 (5)O1—P1—C14—C19146.3 (3)
Cl1—C3—C4—C5179.1 (3)C8—P1—C14—C1991.1 (3)
C3—C4—C5—C61.4 (6)C1—P1—C14—C1923.6 (3)
C3—C4—C5—Cl2178.5 (3)C19—C14—C15—C160.6 (5)
C4—C5—C6—C70.6 (6)P1—C14—C15—C16178.3 (3)
Cl2—C5—C6—C7179.2 (3)C14—C15—C16—C170.4 (6)
C5—C6—C7—C20.2 (5)C15—C16—C17—C181.0 (7)
C3—C2—C7—C60.3 (4)C16—C17—C18—C190.6 (7)
C1—C2—C7—C6179.7 (3)C15—C14—C19—C181.0 (6)
O1—P1—C8—C13169.1 (2)P1—C14—C19—C18178.6 (3)
C14—P1—C8—C1345.8 (2)C17—C18—C19—C140.4 (7)
C1—P1—C8—C1369.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O1i0.821.792.576 (2)161
C10—H10A···O2ii0.932.643.348 (3)134
C1—H1A···O1i0.982.693.075 (3)104
Symmetry codes: (i) x+3/2, y1/2, z+1/2; (ii) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC19H15Cl2O2P
Mr377.18
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)8.8157 (18), 11.334 (2), 19.262 (4)
β (°) 102.41 (3)
V3)1879.6 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.44
Crystal size (mm)0.30 × 0.23 × 0.12
Data collection
DiffractometerBruker APEX area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.880, 0.949
No. of measured, independent and
observed [I > 2σ(I)] reflections
15866, 3680, 2783
Rint0.025
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.156, 1.11
No. of reflections3680
No. of parameters217
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.43, 0.44

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O1i0.821.792.576 (2)161.0
C10—H10A···O2ii0.932.643.348 (3)133.8
C1—H1A···O1i0.982.693.075 (3)103.5
Symmetry codes: (i) x+3/2, y1/2, z+1/2; (ii) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

The authors thank the Technical Project of the Department of Education of Jiangxi Province of China (Nos. GJJ08528 and GJJ09355) for supporting this work. We also thank the Hunan Provincial University Key Laboratory of QSAR/QSPR for providing technical assistance.

References

First citationBruker (2001). SAINT, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationClark, H. J., Wang, R. & Alper, H. (2002). J. Org. Chem. 67, 6224–6225.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationLiu, W.-Y. & Huo, P. (2008). Acta Cryst. E64, o233.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLiu, W.-Y., Huo, P., Gao, Y.-X., Liu, P. & Zhao, Y.-F. (2007). Acta Cryst. E63, o1008–o1009.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds